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Abstract— 4D Flow Magnetic Resonance Imaging (4D
Flow MRI) is a non-invasive measurement technique capa-
ble of quantifying blood flow across the cardiovascular sys-
tem. While practical use is limited by spatial resolution and
image noise, incorporation of trained super-resolution (SR)
networks has potential to enhance image quality post-scan.
However, these efforts have predominantly been restricted
to narrowly defined cardiovascular domains, with limited
exploration of how SR performance extends across the
cardiovascular system; a task aggravated by contrasting
hemodynamic conditions apparent across the cardiovas-
culature. The aim of our study was to explore the gener-
alizability of SR 4D Flow MRI using a combination of het-
erogeneous training sets and dedicated ensemble learning.
With synthetic training data generated across three dis-
parate domains (cardiac, aortic, cerebrovascular), varying
convolutional base and ensemble learners were evaluated
as a function of domain and architecture, quantifying per-
formance on both in-silico and acquired in-vivo data from
the same three domains. Results show that both bagging
and stacking ensembling enhance SR performance across
domains, accurately predicting high-resolution velocities
from low-resolution input data in-silico. Likewise, optimized
networks successfully recover native resolution velocities
from downsampled in-vivo data, as well as show qualitative
potential in generating denoised SR-images from clinical-
level input data. In conclusion, our work presents a viable
approach for generalized SR 4D Flow MRI, with ensemble
learning extending utility across various clinical areas of
interest.

Index Terms— 4D Flow MRI, cardiovascular, ensemble
learning, hemodynamics, super-resolution,

I. INTRODUCTION

HEMODYNAMIC quantification is a central feature of
contemporary cardiovascular medicine, with regional
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changes in blood flow, velocity, and pressure all indicative of
disease onset and progression across the entire cardiovascular
system [1]. Amongst a range of available techniques, time-
resolved three-dimensional phase-contrast magnetic resonance
imaging - more commonly 4D Flow MRI - has emerged as
one of the most promising imaging techniques, allowing for
the non-invasive capture of full-field hemodynamics [2]. The
impact of this technique has also been exemplified across
various cardiovascular application areas, from the heart [3]
and aorta [4], to the brain [5]. In clinical practice, the use
of 4D Flow MRI is still limited by effective spatiotemporal
resolution, with acquired voxel size being in direct trade-off
with effective signal-to-noise ratio and required scan time.
Further, with accurate image-based quantification of velocity
[6], flow [7], and pressure [8], all directly dependent on
acquired resolution there remains a definitive need for effective
approaches to achieve high-resolution 4D Flow MRI in order
to extend use across a wider spectrum of cardiovascular
application areas.

To address the need for improved resolution, novel acquisi-
tion protocols or high-Tesla systems have been proposed [9],
[10], however, are limited to pre-defined systems. Image-based
computational fluid dynamics (CFD) provide an avenue for un-
restricted resolution [11], however, require high-performance
computational resources and well-defined model geometry
and boundary conditions. Alternatively, deep learning methods
have been proposed to enable super-resolution image con-
version post acquisition, with networks developed in non-
medical settings now entering the field of medical imaging. For
anatomical super-resolution MRI, deep convolutional networks
have been proposed across various application areas [12], [13],
and novel generative adversarial [14] or attention networks
[15] have also been introduced. For super-resolution 4D Flow
MRI, residual networks have shown particular promise [16]–
[18], and together with recent examples including unsuper-
vised [19] or physics-informed neural networks (PINNs) [20],
this all highlights the increasing interest in using deep learning
to enhance the quality of clinically acquired flow data.

Despite this increasing interest, networks have almost ex-
clusively been trained and tested on isolated, pre-defined
cardiovascular compartments: a number of studies targeting
cerebrovascular flow enhancement using cerebrovascular input
data [17]; others using aortic input data to enhance aortic
flow capture [16], [21]; and for super-resolution PINNs, re-
training is so far required whenever transferring to a new
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anatomy [20]. In the setting of supervised networks, this is
a particular constraint where performance will be directly
dependent on required similarity between training and testing
data. To exemplify, Ferdian et al. showed how application of an
aortic network in a cerebrovascular setting yielded distinctive
prediction biases, necessitating domain-specific training data
whenever applied on novel domains [17]. Shit et al. [18] uti-
lized training data from mulitple flow compartments, however,
generalizability of super-resolution networks into unseen car-
diovascular domains remains an unassessed problem, not least
considering the contrasting hemodynamic conditions present
across the cardiovascular system.

The issue of generalizability is, however, an area of active
research. Data-centric approaches including data augmentation
or cross-validation are commonly employed, and transfer
learning strategies are tailored to improve performance be-
yond a pre-defined training domain [22]. Amongst available
approaches, ensemble learning has emerged as an area of
particular promise, where multiple base learners are combined
in a meta approach to improve performance beyond that of
any singular input network [23]. Crucially, ensemble learning
has shown specific potential to improve out-of-distribution
generalization through combination of heterogeneous base
learners: either by varying training data, or by varying base
architectures. While successfully employed for non-medical
super-resolution imaging [24], ensemble strategies have yet to
be explored for super-resolution 4D Flow MRI.

The aim of this study is therefore to evaluate the utility of
ensemble learning in the setting of super-resolution 4D Flow
MRI, focusing on the ability to generalize performance across
multiple cardiovascular domains. Using the existing super-
resolution network 4DFlowNet [16] as a base framework,
and utilizing synthetic and clinically acquired 4D Flow MRI
data from various cardiovascular compartments for training,
testing, and validation, our contributions lie in (1) quantifying
the limitations in generalizability of base learners trained on
isolated cardiovascular compartments; (2) assessing the perfor-
mance gain of various ensemble learning setups for improving
super-resolution performance across disparate cardiovascular
domains; and (3) translating utilities into a direct clinical
setting, paving the way for super-resolution 4D Flow MRI
in a more direct, cardiovascular practice.

II. METHODS

A. Models and data preparation

1) Patient-specific cardiovascular models: To train a super-
vised super-resolution network, coupled sets of low and high-
resolution images need to be acquired. In practice, collecting
such paired data is inherently difficult, not least considering
that high-resolution data suitable for training would require
virtually noise-free, artifact-free input, acquired at resolutions
beyond clinical routine. As an alternative, synthetic 4D Flow
MRI originating from patient-specific CFD models have been
successfully utilized [16]–[18], allowing for input data at
unrestricted spatiotemporal sampling.

For the purpose of assessing generalizability, we utilize
anatomically accurate patient-specific CFD models from three

different cardiovascular compartments: the heart, the aorta,
and the cerebrovasculature. These were purposely chosen to
represent domains of disparate hemodynamic nature, ranging
from high-velocity aortic jets to slow diastolic flows travers-
ing narrow cerebrovascular arteries. With modelling details
described in separate work [11], [16], [25], below follows a
brief overview of utilized models:

Cardiac: Patient-specific models of the left heart including
left atrium, left ventricle, and left ventricular outflow tract
were utilized from four (n=4) different subjects, each with
varying degrees of simulated mitral regurgitation (one grade
1, two grade 2, and one grade 4). Models based on medical
input data were calibrated and simulated as described in
Bonini et al. [25].
Aortic: Patient-specific models of the thoracic aorta were
utilized from three (n=3) different subjects: one without any
vascular disease; two with coarcted narrowings just distal to
the left subclavian artery. Data was extracted from the aortic
root to a distal part of the descending aorta. Models were
identical to the ones simulated and used for super-resolution
training in Ferdian et al. [16].
Cerebrovascular: Patient-specific models of the arterial
cerebrovasculature were utilized from four (n=4) different
subjects: one without any cerebrovascular disease, one with
severe stenosis in the right proximal internal carotid artery
(ICA); one with bilateral carotid stenosis; and one being
the bilaterial stenosis case after surgial re-opening of the
right proximal ICA. Models were identical to the ones used
for super-resolution training in Ferdian et al. [17], with
modelling details provided in preceeding work [11], [17].
Additionally, in order to assess network performance in an

unseen domain, a fourth model compartment was also defined:
Aortic dissection: Patient-specific CFD modelling was
performed on one (n=1) subject with a medically managed
type B aortic dissection, exhibiting a primary entry and exit
tear with no septal fenestrations in the thoracic segment.
Imaging data was extracted for the entire thoracic type B
aorta, covering the aortic root, branching into false and true
lumen, and cutting the model at a distal descending end
at around diaphragm level. Modelling was performed for
this study, although CFD details follow equivalent steps
presented in similar, previous work [26].
The aortic dissection model was purposely selected to

represent not only a domain withheld from training, but a
domain of highly complex hemodynamic nature.

2) Synthetic image generation: To allow for clinically rele-
vant training data, nodal CFD data was converted into pairs of
synthetic 4D Flow MRI using a pipeline described in Ferdian
et al. [16], [17]. In brief, CFD output was sampled onto
uniform voxelized image grids, with noise-free high resolution
data generated at spatial samplings of dx = 0.5, 0.75, 1,
and 1.5 mm isotropic, respectively. To create low resolution
equivalents mimicking acquired 4D Flow MRI data, high
resolution data was downsampled through appropriate k-space
cropping along with the addition of zero-mean Gaussian noise
in the complex signal. In our work, high:low resolution pairs
were created at a factor of 1:2. Complementing the synthetic
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Fig. 1. Overview of the baseline network architectures, with a number of base learners drawing from pooled data before being ensembled through
either bagging or stacking approaches. The base learner architecture 4DFlowNet (presented elsewhere [16] is shown in brevity on the top right).

phase data, synthetic magnitude images were generated from
the corresponding fluid region segmentations, obtained from
the CFD output.

3) Training patches and data augmentation: To generate a
larger number of training sets, the voxelized representations
were split into 3D patches of 123 voxels throughout the
selected field-of-view, enforcing each patch to contain a min-
imum of 5% non-stationary voxels. With each time frame
treated independently, data heterogeneity was introduced by
varying velocity encoding (VENC) across the cardiac cycle,
leading to varying SNR in subsequent data patches (note that
VENC was consistently kept above the maximum velocity to
avoid aliasing). Patch-based data augmentation was introduced
by rigid Cartesian rotation (90/180/270°) to avoid directional
bias.

Through the above, a total of 13900, 21300, and 30846
patches were created for the cardiac, aortic, and cerebrovas-
cular models, with a data split of 6:2:2 between training,
validation, and testing. Note that data was partitioned model-
wise rather than sample-wise to maintain integrity and inde-
pendence of data during training and evaluation.

B. Network setups
To systematically assess the impact of ensemble learning

on super-resolution performance, a variety of network setups
were evaluated:

1) Baseline super-resolution network: As a basis for com-
parison, the residual network 4DFlowNet [16] served as a
baseline framework (see architecture in Figure 1, top right).
With the network previously published and validated across
various isolated domains [16], [17], it utilizes two core input
paths including 3D image patches of the assessed anatomy
(magnitude) and velocity (phase) for all Cartesian velocity
directions. Once fed into the network, data passes through
stacked convolutional and residual blocks including a core
upsampling layer, before generating output in the form of

super-resolved velocity patches in each Cartesian velocity
direction (vx, vy , vz).

2) Isolated models: To serve as a baseline for how net-
works trained on isolated cardiovascular domain perform,
three 4DFlowNet networks were trained with data coming
from the compartments described in Section II-A.1. This
resulted in so called isolated networks trained only on cardiac
data (4DFlowNet-Cardiac), aortic data (4DFlowNet-Aorta), or
cerebrovascular data (4DFlowNet-Cerebro).

3) Combined baseline model: Advancing from the isolated
models a combined baseline model was created, maintaining
the 4DFlowNet architecture; however, merging datasets from
all models into one. To facilitate for imbalance between
compartment data, a loss function weighting scheme was
introduced, balancing compartment influence on a per-batch
level (see Section II-B.5).

4) Ensemble models: Moving beyond input data variations,
two general ensemble learning approaches were explored (see
Figure 1):

Bagging: Being one of the most common ensemble strate-
gies, bagging consists in fitting several base models on
different bootstrap samples, before aggregating them. Here,
bagging was implemented using singular 4DFlowNet mod-
els as base models, with training samples drawn randomly
from the available training data. Throughout, replacement
sampling was allowed with base learner sample size N
equal to that of the original training set. A soft voting
ensemble was utilized, invoking average weighting of single
models in fusion prediction.
Stacking: Representing a second family of ensemble ap-
proaches, stacking uses a trained meta-learner as fusion of
input base models. Base learners are again represented by
singular 4DFlowNet models trained on sub-samples of all
available training data. For the fusion meta-learner, we em-
ployed a single 8-layer convolutional feed-forward network,
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TABLE I
ACQUISITION PARAMETERS FOR THE UTILIZED in-vivo DATA.

Thoracic Cerebrovascular
Acquisition system Siemens Sola Siemens Skyra
Field strength [T] 1.5 3
Spatial resolution [mm] 3 0.98
Temporal resolution [ms] 55 42-86
Velocity encoding [cm/s] 150 120 / 60
TR / TE [ms] 4.1 / 6.3 5.7-6.6 / 3.1-4.4
Flip angle [◦] 15 15
Gating Retrospective ECG Prospective ECG
Acceleration Compressed sensing k-t GRAPPA
Acceleration factor 7.6 5

1 TR: repetition time; TE: echo time; ECG: electrocardiogram.

with input and output identical to that of 4DFlowNet.
5) Loss function: The optimization target was defined by a

velocity data matching term, lMSE , given as:

lMSE =
1

N

N∑
i=1

∆v2x +∆v2y +∆v2z , (1)

with N being the total number of voxels in a given patch.
To compensate for fluid/non-fluid imbalances, the loss function
was split as per:

ltotal = wc(lMSE−fluid+ lMSE−non−fluid)+λ
N∑
i=1

w2
i , (2)

with λ = 5 · 10−7 introduced on network weights wi. wc

was introduced as a compartment weight, compensating for
imbalances between different training compartments by:

wc =
Nc

Sc

∑Nc

i=1 Ki

(3)

with Nc the number of compartments, Sc the number of
samples of compartment i in the assessed batch, and Ki =

1
Si

.
6) Training: All networks were implemented using Ten-

sorflow 2.6.0 [27] with a Keras backend [28]. The Adam
optimizer was used with an initial learning rate of 10−4 and a
learning rate decay of

√
2. Training was performed on a two

NVIDIA A100 Tensor Core GPUs. With base and meta models
trained for 60 and 80 epochs, respectively, this rendered a total
training time of 10-15 hours for the non-ensemble, and 20-25
hours hours for the ensemble networks, respectively. Complete
setup and trained weights are publicly available at https://
github.com/LeonEricsson/Ensemble4DFlowNet.

C. Performance evaluation
1) Parametric in-silico validation and quantitative accuracy

assessment: To validate network performance, synthetic 4D
Flow MRI data from Section II-A.1 was utilized comparing
high-resolution velocities to super-resolved equivalents. Focus-
ing on domain generalization, performance was consistently
evaluated on cardiac, aortic, and cerebrovascular test cases
along with overall average performance. With evaluation met-
rics defined in Section II-C.4, below follows a brief overview
of the parametric assessments performed:

Baseline vs. ensemble: To provide an estimate of ensem-
ble potential, ensemble models were initially compared

against isolated and combined baseline models. Serving as
a first benchmark for ensemble performance, evaluation was
performed for bagging and stacking networks consisting of
two homogeneous base learners.
Number of base learners: To assess how ensemble per-
formance scaled with the number of input base models,
ensemble models created from an increasing number of base
learners were evaluated (ranging from 2 to 12).
Compartmentalized vs. Non-compartmentalized: To
quantify how variations in base learning training data
influenced performance, ensemble networks consisting of
base learners sampling from a single (compartmentalized)
vs. a pooled (non-compartmentalized) domain of training
data were compared. Models were defined with three
homogeneous base learners.
Architectural heterogeneity: To assess how heterogeneity
in base learner architecture influenced performance, bagging
and stacking models built from three homogeneous base
learners were compared to models built on three heteroge-
neous base learners, where heterogeneity was introduced by
replacing residual blocks with corresponding dense or cross
stage partial blocks (similar to [21]).
2) Quantifying generalizability into an unseen domain: Seek-

ing to quantify network generalizability in out-of-domain
settings, ensemble networks were also evaluated on synthetic
4D Flow MRI from the unseen aortic dissection domain.
Consistently, performance of the best performing networks
from Section Section II-C.1 were compared against isolated
and combined baseline models.

3) In-vivo verification and clinical potential: To translate the
in-silico results into an in-vivo setting, network performance
was evaluated on 4D Flow MRI acquired with research
sequences. Data was retrospectively assembled from both
thoracic (n=5) and cerebrovascular (n=5) subjects, respec-
tively, with specific scan parameters provided in Table I.
All clinical acquisitions followed institutional review board
(IRB) approval, with patients referred for MRI either based on
clinical indication (thoracic) or research-based study inclusion
(cerebrovascular).

In lack of high-resolution reference data, we opted for
downsampling acquired clinical data, assessing how super-
resolution networks can recover initial native resolution.For
this, clinical data was downsampled by a factor of two through
k-space truncation (identical to Section II-A.2). Using our
proposed baseline and ensemble networks, recovered super-
resolution velocity fields were compared to the natively ac-
quired input data, evaluating performance within left ventric-
ular, aortic, or cerebrovascular flow domains, respectively.

4) Evaluation metrics: To measure network performance,
relative speed error, RE, was defined as:

RE= 1
N

∑N
i=1 tanh (

∥V
′
−V∥2

∥V∥2+ϵ
), (4)

with V and V
′

being reference and predicted velocities, and
with ϵ = 10−4 introduced to avoid zero-division. tanh was
introduced to mitigate over-penalizing low velocities.

Beyond the relative metric above, root mean square errors
(RMSE) were estimated across the entire fluid and non-fluid

https://github.com/LeonEricsson/Ensemble4DFlowNet
https://github.com/LeonEricsson/Ensemble4DFlowNet
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TABLE II
ESTIMATED EVALUATION METRICS ACROSS ISOLATED, COMBINED BASELINE AND ENSEMBLE MODELS WITH TWO BASE LEARNERS EACH.

Metric Model Aorta Cerebral Cardiac Average

RE ↓

4DFlowNet-Aorta 12.36% 34.46% 36.99% 27.94%
4DFlowNet-Cerebral 49.65% 29.58% 69.81% 49.68%
4DFlowNet-Cardiac 36.22% 37.15% 33.02% 35.47%
Baseline Combined 10.20% 27.51% 31.25% 22.99%
Bagging-2 10.62% 29.54% 30.73% 23.63%
Stacking-2 10.07% 24.46% 32.20% 22.25%

RMSE ↓

4DFlowNet-Aorta (1.58, 0.53, 0.73) (1.65, 1.58, 1.62) (2.12, 1.59, 1.98) (1.78, 1.23, 1.44)
4DFlowNet-Cerebral (34.01, 35.74, 30.80) (1.04, 0.90, 0.94) (38.18, 40.06, 35.35) (24.41, 25.57, 22.36)
4DFlowNet-Cardiac (4.74, 1.98, 2.22) (1.76, 1.63, 1.75) (2.34, 1.54, 2.13) (2.95, 1.72, 2.03)
Baseline Combined (1.22, 0.45, 0.60) (1.05, 0.83, 0.91) (2.23, 1.43, 1.94) (1.50, 0.90, 1.15)
Bagging-2 (1.42, 0.50, 0.65) (1.07, 0.92, 0.98) (2.33, 1.50, 2.00) (1.61, 0.97, 1.21)
Stacking-2 (1.29, 0.40, 0.53) (0.81, 0.80, 0.75) (2.09, 1.62, 1.87) (1.39, 0.94, 1.05)

k

4DFlowNet-Aorta (0.961, 0.969, 1.012) (0.822, 0.841, 0.856) (0.862, 0.816, 0.761) (0.882, 0.875, 0.876)
4DFlowNet-Cerebral (0.560, 0.578, 0.587) (0.902, 0.890, 0.912) (0.770, 0.668, 0.672) (0.744, 0.712, 0.724)
4DFlowNet-Cardiac (0.610, 0.371, 0.572) (0.834, 0.758, 0.744) (0.842, 0.853, 0.726) (0.762, 0.661, 0.681)
Combined (0.994, 0.964, 0.948) (0.917, 0.927, 0.899) (0.882, 0.863, 0.782) (0.931, 0.918, 0.876)
Bagging-2 (1.004, 0.960, 0.984) (0.916, 0.900, 0.889) (0.898, 0.872, 0.843) (0.939, 0.911, 0.905)
Stacking-2 (0.968, 0.975, 1.003) (0.923, 0.933, 0.933) (0.850, 0.856, 0.805) (0.914, 0.921, 0.914)

R2 ↑

4DFlowNet-Aorta (0.978, 0.967, 0.974) (0.881, 0.865, 0.852) (0.858, 0.834, 0.762) (0.906, 0.889, 0.863)
4DFlowNet-Cerebral (0.705, 0.492, 0.586) (0.881, 0.895, 0.880) (0.405, 0.226, 0.256) (0.664, 0.538, 0.574)
4DFlowNet-Cardiac (0.929, 0.533, 0.831) (0.861, 0.854, 0.821) (0.847, 0.868, 0.764) (0.879, 0.752, 0.805)
Combined (0.987, 0.977, 0.981) (0.891, 0.919, 0.889) (0.874, 0.893, 0.794) (0.917, 0.930, 0.888)
Bagging-2 (0.984, 0.972, 0.979) (0.886, 0.900, 0.881) (0.874, 0.875, 0.798) (0.915, 0.916, 0.886)
Stacking-2 (0.985, 0.981, 0.985) (0.938, 0.920, 0.925) (0.884, 0.847, 0.813) (0.936, 0.916, 0.908)

Each metric’s best value is highlighted in bold. Arrows indicate direction of improvement. RMSE given in cm/s. RMSE, k and R2 given by (vx,vy ,vz ).

domain. To quantify possible estimation bias, linear regres-
sion analysis was performed for all super-resolved networks,
defining linear regression slopes, k, and coefficient of determi-
nation, R2, for each Cartesian velocity direction, respectively.

III. RESULTS

A. Parametric in-silico validation and quantitative
accuracy assessment

1) Baseline vs. ensemble: Qualitative comparison between
isolated, combined baseline, and two ensemble models is
presented in Figure 2. As apparent, distinct noise reduction is

achieved by virtually all networks, albeit with visual artifacts
when transferring isolated base models into unseen domains.

Moving into quantitative estimations, Table II presents sum-
marized error metrics. Overall, isolated models exhibit optimal
performance in the domain in which they had been trained,
with poor translation into unseen domains. The combined
baseline model showed apparent improvement as compared
to the isolated models across all domains, with a relative error
decrease of 1.77, 2.16, and 2.07% in the cardiac, aortic, and
cerebrovascular domains, respectively. Underestimation bias
was also mitigated by the combined baseline model, with

Fig. 2. Qualitative comparison of super-resolution performance across cardiac (2 mm), aortic (2 mm), and cerebrovascular (1 mm) domains using
isolated, combined baseline, and first-attempt ensemble methods with two input base learners each.
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TABLE III
EVALUATION METRICS FOR ENSEMBLE METHOD PERMUTATIONS INCLUDING NUMBER OF BASE LEARNERS (TOP PART), COMPARTMENTALIZED VS.

NON-COMPARTMENTALIZED BASE LEARNERS (MIDDLE PART), AND BASE LEARNERS OF VARYING ARCHITECTURES (BOTTOM PART)

N
um

be
r

of
ba

se
le

ar
ne

rs

Metric Model Aorta Cerebral Cardiac Average

RE ↓

Bagging-4 9.89% 28.19% 29.65% 22.57%
Bagging-8 9.71% 27.67% 29.20% 22.19%
Bagging-12 9.69% 27.22% 29.13% 22.01%
Stacking-4 10.22% 23.97% 32.24% 22.14%
Stacking-8 10.81% 25.18% 33.11% 23.03%
Stacking-12 10.77% 24.90% 35.81% 23.83%

RMSE ↓

Bagging-4 (1.46, 0.47, 0.61) (1.03, 0.86, 0.91) (2.23, 1.45, 1.99) (1.57, 0.93, 1.17)
Bagging-8 (1.41, 0.44, 0.60) (0.99, 0.85, 0.88) (2.15, 1.40, 1.86) (1.52, 0.90, 1.11)
Bagging-12 (1.41, 0.44, 0.59) (0.98, 0.83, 0.88) (2.13, 1.38, 1.85) (1.51, 0.88, 1.11)
Stacking-4 (1.28, 0.42, 0.48) (0.80, 0.76, 0.77) (2.09, 1.56, 1.84) (1.39, 0.91, 1.03)
Stacking-8 (1.39, 0.44, 0.59) (0.84, 0.78, 0.78) (2.16, 1.61, 1.97) (1.46, 0.94, 1.11)
Stacking-12 (1.40, 0.52, 0.57) (0.84, 0.76, 0.75) (2.10, 1.69, 1.96) (1.44, 0.99, 1.09)

k

Bagging-4 (0.996, 0.972, 0.973) (0.908, 0.901, 0.897) (0.890, 0.872, 0.825) (0.931, 0.915, 0.898)
Bagging-8 (0.985, 0.968, 0.979) (0.900, 0.899, 0.899) (0.882, 0.868, 0.821) (0.922, 0.912, 0.900)
Bagging-12 (0.986, 0.964, 0.979) (0.899, 0.899, 0.900) (0.883, 0.867, 0.823) (0.923, 0.910, 0.901)
Stacking-4 (0.974, 0.959, 0.970) (0.918, 0.899, 0.924) (0.836, 0.827, 0.775) (0.909, 0.895, 0.890)
Stacking-8 (0.972, 0.958, 0.947) (0.925, 0.903, 0.906) (0.827, 0.789, 0.711) (0.908, 0.883, 0.855)
Stacking-12 (0.981, 0.954, 0.969 (0.937, 0.901, 0.947) (0.823, 0.768, 0.745) (0.914, 0.874, 0.887)

R2 ↑

Bagging-4 (0.983, 0.975, 0.981) (0.891, 0.910, 0.896) (0.879, 0.884, 0.790) (0.918, 0.923, 0.889)
Bagging-8 (0.983, 0.977, 0.981) (0.897, 0.911, 0.899) (0.885, 0.893, 0.815) (0.922, 0.927, 0.898)
Bagging-12 (0.983, 0.977, 0.981) (0.901, 0.915, 0.902) (0.887, 0.897, 0.817) (0.924, 0.930, 0.900)
Stacking-4 (0.984, 0.981, 0.987) (0.941, 0.925, 0.921) (0.881, 0.854, 0.804) (0.935, 0.920, 0.904)
Stacking-8 (0.981, 0.976, 0.982) (0.934, 0.913, 0.917) (0.861, 0.837, 0.782) (0.925, 0.909, 0.894)
Stacking-12 (0.980, 0.969, 0.981) (0.931, 0.919, 0.920) (0.861, 0.816, 0.780) (0.924, 0.901, 0.894)

C
om

pa
rt

.v
s.

N
on

-c
om

pa
rt

.

Metric Model Aorta Cerebral Cardiac Average

RE ↓

Bagging Comp-3 30.54% 30.56% 43.93% 35.01%
Bagging-3 9.86% 27.95% 29.77% 22.52%
Stacking Comp-3 11.23% 24.92% 35.56% 23.90%
Stacking-3 9.45% 24.14% 31.36% 21.65%

RMSE ↓

Bagging Comp-3 (11.66, 11.90, 10.28) (1.26, 1.77, 1.22) (12.81, 13.38, 11.87) (8.58, 8.81, 7.79)
Bagging-3 (1.38, 0.47, 0.62) (1.01, 0.86, 0.90) (2.25, 1.46, 1.96) (1.55, 0.93, 1.16)
Stacking Comp-3 (1.41, 0.45, 0.58) (0.82, 0.72, 0.77) (2.21, 1.65, 1.95) (1.48, 0.94, 1.10)
Stacking-3 (1.21, 0.39, 0.49) (0.79, 0.79, 0.77) (2.11, 1.50, 1.98) (1.37, 0.89, 1.08)

k

Bagging Comp-3 (0.709, 0.638, 0.723) (0.851, 0.828, 0.836) (0.825, 0.779, 0.720) (0.795, 0.748, 0.760)
Bagging-3 (0.995, 0.965, 0.970) (0.916, 0.900, 0.894) (0.897, 0.874, 0.830) (0.936, 0.913, 0.898)
Stacking Comp-3 (0.982, 1.006, 1.005) (0.923, 0.920, 0.931) (0.845, 0.825, 0.785) (0.917, 0.917, 0.907)
Stacking-3 (0.971, 0.977, 0.987) (0.932, 0.902, 0.943) (0.857, 0.844, 0.770) (0.920, 0.908, 0.900)

R2 ↑

Bagging Comp-3 (0.954, 0.893, 0.927) (0.904, 0.905, 0.892) (0.807, 0.726, 0.679) (0.888, 0.841, 0.833)
Bagging-3 (0.984, 0.975, 0.981) (0.897, 0.911, 0.897) (0.880, 0.882, 0.799) (0.920, 0.923, 0.892)
Stacking Comp-3 (0.982, 0.976, 0.983) (0.935, 0.929, 0.918) (0.864, 0.825, 0.782) (0.927, 0.910, 0.894)
Stacking-3 (0.986, 0.982, 0.987) (0.940, 0.911, 0.920) (0.874, 0.865, 0.774) (0.933, 0.919, 0.894)

A
rc

h.
va

ri
at

io
n

Metric Model Aorta Cerebral Cardiac Average

RE ↓ Bagging Blocks-3 10.35% 27.94% 31.28% 23.19%
Stacking Blocks-3 9.67% 23.77% 31.02% 21.48%

RMSE ↓ Bagging Blocks-3 (1.39, 0.51, 0.61) (1.13, 0.93, 0.90) (2.21, 1.49, 1.92) (1.58, 0.98, 1.14)
Stacking Blocks-3 (1.32, 0.38, 0.51) (0.80, 0.74, 0.76) (2.00, 1.47, 1.76) (1.37, 0.86, 1.01)

k
Bagging Blocks-3 (0.999, 0.984, 0.977) (0.956, 0.947, 0.931) (0.910, 0.883, 0.812) (0.955, 0.938, 0.907)
Stacking Blocks-3 (0.980, 1.005, 0.968) (0.923, 0.909, 0.925) (0.866, 0.837, 0.814) (0.923, 0.917, 0.902)

R2 ↑ Bagging Blocks-3 (0.985, 0.977, 0.980) (0.901, 0.920, 0.903) (0.881, 0.890, 0.803) (0.922, 0.929, 0.895)
Stacking Blocks-3 (0.983, 0.982, 0.986) (0.936, 0.921, 0.917) (0.886, 0.874, 0.825) (0.935, 0.926, 0.909)

Each metric’s best value is highlighted in bold. Arrows indicate direction of improvement. RMSE given in cm/s. RMSE, k and R2 given by (vx,vy ,vz ).

k = 0.908 in average across all velocity directions.

Further minor improvements were observed when moving
into the first-approach ensemble models: stacking outperform-
ing the combined baseline model across a majority of domains
(relative error of 22.25% vs. 22.99%), whilst bagging exhibits
slightly higher deviations (relative error of 23.63%). Similar
indications are observed for RMSE, k, and R2: stacking,
bagging, and combined baseline model showing optimal per-
formance across 25, 5, and 6 out of 36 assessed metrics.

2) Parametric ensemble analysis: Quantitative results for
the parametric ensemble analysis is presented in Table III.

Number of base learners: Keeping all base learners iden-
tical, bagging scaled with the number of base learners with per-
formance peaking at 12 base learners (average RE = 22.01%,
mean RMSE = 1.17 cm/s). In contrast, stacking displays
inverse behaviour, with accuracy decreasing with increasing
number of homogenous base learners (RE = 22.14%, given at
two base learner). This holds true also for bias metrics from
the linear regression analysis. Comparing the two approaches,
the best bagging vs. stacking approach are seemingly inter-
changeable, with strong correlations and low errors observed
across all domains (18 vs. 22 metrics perform better in bagging
vs. stacking across all domains)
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Fig. 3. Qualitative visualization of super-resolution conversion of the unseen aortic dissection domain (left, with the stacking setup representing the
super-resolution conversion), along with representative cross-sections (right). All renderings are performed using calculated velocity magnitudes.

Compartmentalized vs non-compartmentalized: As
given in the middle section of Table III, stacking is able to
fuse compartmentalized base learners better than bagging,
with an average relative error of 23.90% vs. 35.01%. As
compared to other permutations, compartmentalized ensemble
models consistently underperform as compared to non-
compartmentalized equivalents. This holds across all metrics,
with bagging particularly suffering from compartmentalized
learners (relative errors > 30%).

Architectural heterogeneity: The bottom part of Table III
provides results for bagging and stacking containing base
learners with varying architectural blocks. The given stack-
ing permutation (Stacking Blocks-3) shows the best overall
performance of all stacking variations (average relative error
of 21.48%, average RMSE = 1.08 cm/s, k = 0.933, and
R2 = 0.933). Bagging on the other hand does not show the
same benefit of architectural heterogeneity, where instead a
maximized number of input learners (Bagging-12) is the model
with optimal performance across all permutations.

B. Quantifying generalizability into an unseen domain
Table IV provides evaluation metrics for the unseen aortic

dissection, with Bagging-12 and Stacking Blocks-3 used as
optimal ensemble models. As observed, isolated models ex-
hibit significant difficulties translating into an unseen domain,
with the cerebrovascular network having particularly poor
performance (relative error = 75.57%, average RMSE =
60.37 cm/s). In comparison, ensemble methods exhibit high
accuracy across all metrics with relative error = 25.42 and
24.82%, and average RMSE = 2.63 and 2.17 cm/s given
for bagging and stacking, respectively. Concerning estimation
bias, combined baseline, bagging, and stacking all show highly
accurate behaviour, exhibiting high accuracy and low spread
(linear regression data shown in Figure 4). Further, qualitative
renderings of recovered flow features are shown in Figure 3.

C. In-vivo verification and clinical potential
1) Quantitative assessment through recovery of native reso-

lution: Figure 5 shows exemplary in-vivo images, using super-
resolution to recover native input resolution. Qualitatively,

TABLE IV
PREDICTION ERRORS OF ISOLATED, COMBINED AND ENSEMBLE

MODELS ON THE UNSEEN AORTIC DISSECTION DATA.

Metric Model Aortic dissection

RE ↓

4DFlowNet-Aorta 34.70%
4DFlowNet-Cardiac 40.22%
4DFlowNet-Cerebro 75.57%
4DFlowNet-Combined 30.53%
Bagging-12 25.42%
Stacking Blocks-3 24.82%

RMSE ↓

4DFlowNet-Aorta (2.01, 2.30, 4.07)
4DFlowNet-Cardiac (1.86, 2.56, 5.93)
4DFlowNet-Cerebro (54.29, 54.41, 72.42)
4DFlowNet-Combined (2.41, 2.75, 5.19)
Bagging-12 (1.62, 1.95, 4.32)
Stacking Blocks-3 (1.28, 1.73, 3.49)

k

4DFlowNet-Aorta (0.927, 0.819, 0.851)
4DFlowNet-Cardiac (0.711, 0.569, 0.507)
4DFlowNet-Cerebro (0.965, 0.692, 0.903)
4DFlowNet-Combined (1.067, 0.994, 0.978)
Bagging-12 (1.002, 0.982, 0.958)
Stacking Blocks-3 (0.917, 0.880, 0.893)

R2 ↑

4DFlowNet-Aorta (0.824, 0.805, 0.880)
4DFlowNet-Cardiac (0.778, 0.739, 0.779)
4DFlowNet-Cerebro (0.254, 0.215, 0.612)
4DFlowNet-Combined (0.836, 0.847, 0.866)
Bagging-12 (0.889, 0.904, 0.903)
Stacking Blocks-3 (0.905, 0.894, 0.921)

Note: Each metric’s best value is highlighted in bold font. Arrows indicate direction of
improvement. RMSE given in cm/s. RMSE, k, and R2 given by (vx, vy , vz)

both ensemble networks recover high-resolution features along
with background noise suppression. Behaviour also seem
robust across all domains, with both large-vessel aortic and
small-vessel cerebrovascular features captured.

Quantifying the above, summarized linear regressions statics
are provided in Table V. Consistently, relative errors are
lower using ensemble techinques, with Bagging-12 indicating
optimal performance across all domains (average relative error
= 39.85%). Conversely, bias metrics show slight favouring
of the baseline combined approach, with an average k =
0.954 compared to 0.873 and 0.753 for bagging and stacking,
respectively. However, regression spread is lower with ensem-
ble techniques, with bagging exhibiting maximum specificity
(average R2 = 0.815 vs. 0.796 and 0.786 for combined
baseline and stacking, respectively).
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TABLE V
ESTIMATED EVALUATION METRICS FOR RECOVERY OF NATIVE in-vivo RESOLUTION ACROSS DIFFERENT CARDIOVASCULAR DOMAINS.

Metric Model Aorta Cardiac Cerebral Average

RE ↓
Baseline Combined 39.46 ± 6.81% 45.92 ± 5.44% 49.15 ± 4.74% 44.84 ± 5.73%
Bagging-12 34.11 ± 7.25% 42.10 ± 4.78% 43.34 ± 4.31% 39.85 ± 5.60%
Stacking Comp-3 36.11 ± 9.89% 44.81 ± 5.26% 45.35 ± 4.34% 42.09 ± 6.94%

k
Baseline Combined 0.854 ± 0.156 1.034 ± 0.047 0.975 ± 0.126 0.954 ± 0.119
Bagging-12 0.803 ± 0.172 0.967 ± 0.042 0.848 ± 0.096 0.873 ± 0.116
Stacking Comp-3 0.716 ± 0.177 0.866 ± 0.027 0.677 ± 0.072 0.753 ± 0.111

R2 ↑
Baseline Combined 0.789 ± 0.113 0.877 ± 0.051 0.722 ± 0.057 0.796 ± 0.079
Bagging-12 0.818 ± 0.124 0.877 ± 0.033 0.749 ± 0.057 0.815 ± 0.081
Stacking Comp-3 0.807 ± 0.134 0.840 ± 0.031 0.710 ± 0.060 0.786 ± 0.087

Each metrics best value, per compartment, is highlighted in bold. Arrows indicate direction of improvement for each metric.

Fig. 4. Linear regression plots in the unseen aortic dissection, given
for isolated baseline (top row) and combined baseline, bagging, and
stacking (bottom row) learners, respectively, showing velocities in x, y,
and z from left to right, all normalized to a [-1,1] range.

IV. DISCUSSION

In this study, we have evaluated the utility of ensemble
learning for super-resolution 4D Flow MRI, assessing its
ability to generalize across various cardiovascular domains.
As reported, ensembling along with incorporation of disparate
training data distinctly improves domain generalization, with
recovery of high-resolution velocities validated on both syn-
thetic and clinical datasets across the heart, aorta, and brain.
Considering the disparate hemodynamic conditions apparent
across the cardiovasculature, our results thus bear particular
clinical promise, opening up for generalizable super-resolution
performance across domains using a single network setup.

A. Base vs. ensemble learning

As observed across all synthetic datasets, ensemble ap-
proaches consistently outperform isolated base learners (Ta-
ble II). Notably, the benefit is not only observed when moving
outside an isolated model’s domain-of-training, but benefits are
seen even within the setting of an isolated learner. These results
not only speak to the benefit of ensemble approaches[29]
but also highlights limitations in utilizing isolated training
beds with a limited number of patient sets. In our work,
isolated networks are trained on ∼20’000 patches: a figure
comparable to what has been previously utilized for medical

super-resolution [16]–[18], however, small in contrast to non-
medical equivalent. Increasing training data is a common strat-
egy for improved performance, but here our work highlight the
benefit of doing so using data from various compartments with
the combined baseline model outperforming isolated learners.
Adding ensemble strategies can further improve performance,
enabling optimal weighting between individual learners.

The benefit of ensembling and data pooling is emphasized
when transitioning into the unseen aortic dissection where all
isolated models show significant errors. Poor domain gener-
alization has been reported for networks trained on single-
domain data [29], however, our results corroborate this in the
setting of 4D Flow MRI. Moving into an unseen domain also
highlights the benefits of combining learners, with ensemble
networks improving on the combined baseline model. This is
a particularly important feature in seeking generalizable per-
formance, where data heterogeneity is observed both between
domains and patients. The use of ensemble approaches thus
opens for more unified analysis, super-resolving datasets at
maintained accuracy in a diverse clinical reality.

B. Parametric ensemble evaluation

In an attempt to optimize ensemble performance, a range of
networks were assessed in Section III-A. Although variations
were overall minor, a few notable trends can be observed:

First, the number of base learners had opposite effects on
the two assessed approaches: bagging improving but stacking
worsening with an increased number of base learners. For
bagging, being a mere deterministic aggregation of base learn-
ers, bias and variance is typically reported to decrease with
number of base learners, leading to an accuracy plateau at an
empirically determined base learner density [30]. The meta-
architecture of stacking, on the other hand, does not scale with
base learner quantity but rather with base learner diversity [31];
a fact corroborated by the results on architectural variations.

Second, the use of compartmentalized base learners had a
consistently detrimental effect on overall performance. The
reason to this most likely lies in the underperformance of
our isolated base learners, where ensemble combinations alone
cannot overcome the bias exhibited by the base learners
themselves. Bagging suffers particularly from compartmen-
talized base learners, where deterministic weight averaging
renders pronounced errors across all domains. These results
are contradictory to the notion that input diversity is viewed
as one way of improving ensemble performance [23], [29],
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Fig. 5. Recovering in-vivo native resolutions using super-resolution
conversion from downsampled images.

however, this does not necessarily cover scenarios where base
learners are extended into out-of-distribution settings.

Third, architectural variations were beneficial for the stack-
ing setup, with optimal performance given for the Stacking
Blocks-3 network. In our study, architectural variation was not
achieved by replacing overall architecture, but by replacing
internal layers similar to how 4DFlowNet has been altered in
previous work [21]. Higher-degrees of heterogeneity could be
offered by combining super-resolution networks of different
core architectures, being as of yet unexplored for super-
resolution 4D Flow MRI.

C. In-vivo feasibility and clinical utility

To explore clinical translation, ensemble networks were
assessed in-vivo, recovering native resolution from synthet-
ically downsampled data. As reported, performance is kept
stable across domains, although biases and errors are more
pronounced as compared to the in-silico results. Here, compar-
isons between in-silico and in-vivo results should be viewed in
light of the inherent differences between the datasets. In the
in-vivo setting, 4DFlowNet is actually not trying to recover
native input images directly, but rather a de-noised equivalent.
As such, increased in-vivo errors do not necessarily stem from
sub-optimal network performance, but also from differences
between noisy native, and de-noised recovered images.

As a final note on clinical utility, it is worth highlighting that
our networks are directly applicable for true super-resolution
image conversion. To exemplify, Figure 6 showcases two such
qualitative examples, indicating how both intracardiac vortices
and cerebrovascular flow features can be resolved at beyond
clinical resolution, all using a single ensemble network.

D. Scientific contextualization

Whereas, to the best of our knowledge, no previous
work have attempted ensembling techniques to super-resolve
4D Flow MRI data, or explored generalizability of super-
resolution 4D Flow MRI, it is worth contrasting our results
to previously published work within related spaces.

Fig. 6. Qualitative vector field rendering of clinical data upsampled by
a factor two beyond native acquisition resolution. Examples shown for
both cardiac (top) and cerebrovascular (bottom) data, for both bagging
(middle) and stacking (right).

In the non-medical field, ensemble learning has been re-
ported as one of the more promising domain generalization
approaches [29]. Ju et al. evaluated bagging and stacking of
residual learners for image classification, reporting incremental
performance improvement in-line with our findings [32]. Sim-
ilarly, Nguyen et al. [33] utilized stacking of heterogeneous
learners, reporting slight improvement as compared to single
base learners. For improved super-resolution generalization,
examples include exploration of heterogeneous training data
[34], or leveraging domain-specific image priors [35]. The
latter presents an appealing approach for unifying behaviour
across e.g. vendors or centres; however, for the sake of gener-
alizability across flow domains, hemodynamic differences are
inherent to the physiological nature of the observed domain.

In a medical setting, Lyu et al. [13] presented one of few
examples using ensemble learning for super-resolution MRI.
Using generative adversarial networks in a stacking setup
they highlighted the ability to super-resolve anatomical MRI,
however, focusing on a single anatomical domain. For 4D
Flow MRI, Shit et al. [18] trained on both thoracic and cere-
brovascular data, using transfer learning to translate in-silico
results to in-vivo. Although a direct comparison is obstructed
by differences in available datasets, our reported ensemble
output (RMSE ∼1-2 cm/s) appear non-inferior in comparison
across all domains (RMSE ∼2-4 cm/s). Beyond this, recent
PINN work [20] promises increased super-resolution accuracy,
but their utility in an ensemble setting remains to be assessed.

E. Limitations and future work

A few limitations are worth pointing out. First, training
was performed on synthetic 4D Flow MRI without inclusion
of acquired in-vivo data. Acquiring clinical data for super-
resolution purposes is difficult due to practical considerations
(scan time, SNR), not least considering the notion of going
beyond practical resolution limits. The use of k-space data
conversion is instead purposely introduced to mitigate the
effect of in-silico-to-in-vivo discrepancies, resembling the sub-
sampling of an MR scanner.

Second, although tested with respect to recovery of native
resolution, no in-vivo comparison was performed between
acquired high- and acquired low-resolution data. This again
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comes down to the problem of acquiring paired high- and
low-resolution data. The concept of recovering downsampled
data has been explored by others in previous super-resolution
work [18], highlighting the practicality of the approach.

For future work, a number of directions can be envisioned
including exploration of diverse base learners, or incorpo-
ration of clinical training data. Efforts to integrate super-
resolution algorithms as an in-line scanner utility would also
greatly improve use-cases. Nevertheless, our data highlights
how ensemble techniques could help generalize the use of
super-resolution imaging, circumventing the need for purpose-
built networks and opening for wider incorporation of super-
resolution imaging in cardiovascular 4D Flow MRI work.

V. CONCLUSION

In this study, we have shown how ensemble learning enables
super-resolution conversion of clinically acquired 4D Flow
MRI, with accurate performance generalizing across disparate
flow domains. Using a combination of synthetic training data
from different cardiovascular compartments, we have shown
how ensemble approaches maintain accurate performance
across unseen domains, as well as improve on singular base
learner performance. Satisfactory recovery of native resolution
in-vivo also highlights performance transfer into a direct
patient setting, applicable across the heart, aorta, and brain.

ACKNOWLEDGMENT

Computations were performed on resources provided by
the National Academic Infrastructure for Supercomputing in
Sweden at the National Supercomputer Centre at Linköping
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