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 Abstract 
 We  present  SLIViT,  a  deep-learning  framework  that  accurately  measures 
 disease-related  risk  factors  in  volumetric  biomedical  imaging,  such  as  magnetic 
 resonance  imaging  (MRI)  scans,  optical  coherence  tomography  (OCT)  scans,  and 
 ultrasound  videos.  To  evaluate  SLIViT,  we  applied  it  to  five  different  datasets  of  these 
 three  different  data  modalities  tackling  seven  learning  tasks  (including  both  classification 
 and  regression)  and  found  that  it  consistently  and  significantly  outperforms 
 domain-specific  state-of-the-art  models,  typically  improving  performance  (ROC  AUC  or 
 correlation)  by  0.1-0.4.  Notably,  compared  to  existing  approaches,  SLIViT  can  be 
 applied  even  when  only  a  small  number  of  annotated  training  samples  is  available, 
 which  is  often  a  constraint  in  medical  applications.  When  trained  on  less  than  700 
 annotated  volumes,  SLIViT  obtained  accuracy  comparable  to  trained  clinical  specialists 
 while  reducing  annotation  time  by  a  factor  of  5,000  demonstrating  its  utility  to  automate 
 and expedite ongoing research and other practical clinical scenarios. 

 Main 
 Biomedical  imaging  analysis  is  a  critical  component  of  clinical  care  with  widespread  use 
 across  multiple  domains.  For  example,  analyzing  optical  coherence  tomography  (OCT) 
 images  of  the  retina  allows  ophthalmologists  to  diagnose  and  follow  up  on  ocular 
 diseases,  such  as  age-related  macular  degeneration  (AMD),  and  tailor  appropriate  and 
 personalized  interventions  to  delay  the  progression  of  retinal  atrophy  and  irreversible 
 vision  loss  1,2  .  Another  example  is  the  analysis  of  heart  function  using  cardiac  imaging, 
 such  as  heart  computed  tomography  (CT)  and  ultrasound.  Monitoring  heart  function  can 
 help  cardiologists  assess  potential  cardiac  issues,  prescribe  medications  to  improve  a 
 medical  condition,  e.g.,  reduced  heart  ejection  fraction,  and  guide  treatment  decisions  3,4  . 
 Lastly,  radiologists’  analysis  and  regular  monitoring  of  breast  imaging  such  as 
 mammography  and  magnetic  resonance  imaging  (MRI)  help  detect  early  breast 
 cancers,  initiate  a  consequent  interventive  therapy,  and  determine  the  effectiveness  of 
 such  therapeutics  5,6  .  These  medical  insights  and  actionable  information  are  obtained 
 following  an  expert’s  time-intensive  manual  analysis.  The  automation  of  these  analyses 
 using  artificial  intelligence  may  further  improve  healthcare  as  it  reduces  costs  and 
 treatment burden  7  . 

 Deep  vision  models,  such  as  Convolutional  Neural  Networks  (CNNs)  and  their 
 derivatives,  are  considered  state-of-the-art  methods  to  tackle  computer  vision  tasks  in 
 general  8,9  and  medical-related  vision  tasks  in  particular  10  .  In  order  to  train  a  deep  vision 
 model  to  accurately  learn  and  predict  a  target  variable  in  a  general  vision  task 
 (excluding  segmentation  tasks)  from  scratch,  a  very  large  number  of  training  samples  is 



 needed.  Transfer  learning  addresses  this  challenge  by  pre-training  a  vision  model  for  a 
 general  learning  task  on  a  very  large  data  set,  and  then  using  this  general  model  as  a 
 starting  point  for  training  a  specialized  model  on  a  much  smaller  dataset  11  .  The  key 
 advantage  of  transfer  learning  is  that  the  pre-training  can  be  done  on  a  large  dataset  in 
 another  domain,  where  data  are  abundant,  and  then  the  fine-tuning  can  be  done  using  a 
 small  dataset  in  the  domain  of  interest.  Using  a  transfer  learning  approach,  a  plethora  of 
 previously  developed  deep  vision  methods  analyzing  2D  biomedical-imaging  12–15  ,  were 
 first  pre-trained  on  over  a  million  labeled  natural  images  (in  a  supervised  fashion)  taken 
 from  ImageNet  16  ,  and  later  on,  fine-tuned  to  a  specific  medical-learning  task  on  a  much 
 smaller  number  of  labeled  biomedical  images  (typically  fewer  than  10,000).  Some 
 methods  used  self-supervised-based  transfer-learning  techniques  relying  mainly  on 
 unlabeled  medical  data  17–19  ,  and  others  combined  both  natural  and  medical  images  7,20  . 
 Overall,  the  understanding  that  pre-trained  weights  can  be  leveraged  as  ‘prior 
 knowledge’  for  fine-tuning  downstream  learning  tasks,  were  major  factors  in  the 
 fruitfulness of the majority of these 2D biomedical-imaging deep vision models. 

 Many  diagnoses  rely,  however,  on  volumetric  biomedical  imaging  (e.g.,  3D  OCT  and 
 MRI  scans,  or  ultrasound  videos)  and  transfer  learning  is  not  directly  applicable,  since  in 
 contrast  to  the  2D  domain,  there  is  no  large  annotated  ‘ImageNet-like’  dataset  of 
 structured  3D  scans.  Moreover,  annotating  3D  biomedical  images  is  far  more 
 labor-prohibitive  than  2D  images.  For  example,  a  3D  OCT  scan  that  is  composed  of  97 
 2D  frames  (usually  referred  to  as  B-scans)  usually  requires  a  5-10  minutes  inspection  of 
 a  highly  trained  clinical  retina  specialist  in  order  to  detect  retinal-disease  biomarkers, 
 such  as,  the  volume  of  a  drusen  lesion  21  .  Therefore,  considering  the  resources  typically 
 devoted  to  such  a  task,  it  is  practically  infeasible  to  annotate  100,000  (or  more) 
 volumes,  to  eliminate  the  necessity  of  supervised  transfer  learning.  In  fact,  even  merely 
 compiling  such  large-sized  volumetric  datasets  (without  labels)  that  is  required  for 
 self-supervised-based  learning  22  could  be  cost-,  processing-,  and  storage-prohibitive 
 when  standard  resources  are  available  23  .  These  gaps  are  acute  because  state-of-the-art 
 supervised  models  for  3D  image  analysis,  such  as  3D  ResNet  24  and  3D  Vision 
 Transformer  25  (ViT),  involve  the  optimization  of  a  very  large  number  of  parameters,  thus 
 requiring large datasets for training  26  . 

 Nonetheless,  several  attempts  were  undertaken  to  tackle  volumetric-biomedical-imaging 
 learning  tasks  with  sparsely  annotated  training  datasets  on  different  data  modalities.  For 
 instance,  SLIVER-net  was  designed  for  binary  classification  of  AMD  biomarkers  in  3D 
 OCT  scans  27  .  EchoNet  was  designed  to  predict  heart  ejection  fraction  (EF)  in 
 echocardiograms  28  .  A  few  other  recent  studies  achieved  state-of-the-art  performance 
 using  2D-Slice-CNN-based  methods  and  3D  ResNet-based  architectures  in  diagnosing 
 Alzheimer’s  disease  29  ,  breast  cancer  30  ,  and  Parkinson’s  disease  31  in  3D  MRI  scans. 



 Notably,  although  3D  ResNet  was  first  published  in  2018,  it  is  still  largely  considered  a 
 solid  baseline  and  evidently,  very  popular  not  only  on  MRI  studies  (e.g.,  30,31  ),  but  also 
 across  other  recent  volumetric-medical-imaging-modality  studies  such  as  ultrasound  32 

 and  CT  33  studies.  The  main  limitation  of  each  of  these  approaches  is  that  they  are  all 
 tailored  and  optimized  for  specific  biomedical  data  modality  and  domain.  While  each 
 data  modality  requires  a  specific  treatment,  there  are  commonalities  across  the  different 
 data  modalities,  and  a  foundational  approach  that  can  provide  improved  results  across 
 multiple  modalities  will  provide  a  faster  development  time  for  future  predictive  models. 
 UniMiSS,  a  pioneering  pyramid  U-like  Medical  Transformer  devised  by  Xie  Y.,  et  al.  19  , 
 has  recently  been  proposed  to  tackle  this  gap  by  utilizing  multi-modal  unlabeled  medical 
 images  in  a  self-supervised  manner.  UniMiSS  surpassed  a  diverse  set  of  strong 
 self-supervised  approaches  34–38  in  a  variety  of  medical-imaging  learning  tasks  with 
 different  data  modalities.  However,  with  respect  to  volumetric  imaging,  it  was  tested  on 
 a  single  classification  problem  in  a  single  imaging  modality,  and  regression  was  not 
 addressed  at  all.  Thus,  the  full  utility  of  transfer  learning  has  yet  to  be  attained  across 
 different modalities of volumetric-medical-imaging technologies. 

 Here,  we  present  the  SLice  Integration  by  Vision  Transformer  (SLIViT)  framework,  a 
 uniform  3D-based  deep-learning  model  that  overcomes  the  annotation  bottleneck  and  is 
 adept  at  volumetric-biomedical-imaging  learning  tasks.  We  leverage  the  combination  of 
 a  2D  ConvNeXt-based  39  feature-map  extractor  and  a  tweaked  ViT  40  together  with 
 cross-dimension  and  cross-domain  (i.e.,  imaging  modality,  organ,  and  pathology) 
 transfer  learning.  The  2D-based  feature-map  extractor  allows  leveraging  prior  2D 
 biomedical  (and  non-biomedical)  vision  knowledge  when  extracting  information  from  a 
 given  volume  in  a  variety  of  medical-imaging  modalities.  The  attention-based 
 mechanism  of  the  ViT  allows  next  to  integrate  the  extracted  information  across  the  2D 
 frames of the volume in question. 

 Specifically,  we  demonstrate  the  generalizability  and  utility  of  SLIViT  in  very  different 
 medical  domains,  including  retinal-disease  risk  biomarkers  diagnosis  in  3D  OCT  scans, 
 cardiac  function  in  echocardiogram  videos,  and  hepatic-disease  severity  assessment 
 from  3D  MRI  scans.  We  show  that  SLIViT  consistently  attains  significantly  improved 
 performance  compared  to  both  strong  generic  baselines  and  domain-specific 
 state-of-the-art  models.  Notably,  the  architecture  and  hyperparameters  stay  invariant 
 across  (tasks  and)  data  modalities,  that  is,  SLIViT  provides  these  improved  performance 
 results  across  data  modalities  with  neither  tailoring  the  architecture  nor  optimizing 
 hyperparameters  per  (task  or)  data  modality,  unlike  other  medical-imaging  learning 
 methods(e.g.,  7,13,19  ).  We  further  demonstrate  that  SLIViT’s  performance  is  comparable 
 to  clinical  specialists’  manual  annotation,  and  that  it  shortens  the  annotation  time  by  a 
 factor  of  5,000;  hence  it  can  potentially  be  used  to  save  resources,  reduce  the  burden 



 on  clinicians,  and  expedite  ongoing  research  7  .  Finally,  we  demonstrate  that  SLIViT  is 
 robust  to  frame  permutation,  suggesting  that  (1)  it  is  able  to  reconstruct  long-range 
 dependencies  of  the  volume’s  depth  dimension  (that  are  likely  ignored  when  the  volume 
 is  tiled;  see  next  section);  and  (2)  it  could  be  applied  to  datasets  in  which  the  slice  order 
 (within  a  volume)  is  not  recorded,  a  recurring  situation  in  currently  available  public 
 limited  datasets.  Of  note,  compared  to  other  methods  (e.g.,  19  ),  SLIViT  does  not  require 
 task-specific  hyperparameter  tuning  and  is  relatively  memory-thrifty  (and  thus  can  be 
 effectively  trained  using  standard  hardware  in  reasonable  time).  Both  ultimately  facilitate 
 generalizability,  reproducibility,  and  successful  applicability  by  a  broader  community  of 
 researchers to their datasets. 

 Results 

 A  unified  AI  framework  for  analyzing  volumetric 
 biomedical-imaging data 
 In  this  study,  we  devise  SLIViT,  a  deep-learning  vision  model  for  automatic  annotation  of 
 medical  features  in  three-dimensional  biomedical  images.  An  overview  of  SLIViT  is 
 summarized  in  Figure  1.  SLIViT  preprocesses  volumes  into  2D  images  and  then 
 combines  two  deep  vision  architectures:  (1)  a  ConvNeXt  backbone  module  39  that 
 extracts  feature  maps  for  the  slices  (i.e.,  2D  frames  of  a  volume),  and  (2)  a  ViT  module  40 

 that  integrates  the  slices  feature  maps  into  a  single  diagnosis  prediction.  One  key  part 
 of  SLIViT  is  that  its  feature-map  extractor  is  initialized  by  pre-trained  weights.  These 
 weights  were  obtained  by  pre-training  a  2D  ConvNeXt  (T  variant)  first  on  ImageNet  16 

 and  then  on  an  independent  2D  OCT  B-scan  dataset,  compiled  by  Kermany  DS.,  et 
 al.  41  ,  and  labeled  with  retinal-disease  coarse  risk  factors.  These  pre-trained  weights, 
 that  were  used  for  initialization  on  each  of  the  experiments  detailed  in  this  study, 
 allowed  SLIViT  to  improve  the  performance  in  a  variety  of  learning  tasks  especially 
 when  a  very  small  training  dataset  is  available  (few  hundreds  of  samples).  Our 
 hypothesis  was  that  the  basic  features  that  are  extracted  from  2D  B-scans  when 
 learning  one  task  could  serve  as  an  improved  training  starting  point  not  only  for  3D  OCT 
 scans but also for other data types, such as ultrasound video or 3D MRI. 

 In  order  to  cope  with  volumetric  data,  we  treat  each  volume  as  a  set  of  slices.  A  similar 
 technique  was  shown  to  be  effective  for  volumetric  data  modalities  42  .  Essentially,  each 
 original  slice  of  the  volume  is  embedded  into  a  single  feature  map.  However,  SLIViT 
 reduces  memory  overhead  and  accelerates  the  processing  time,  by  tiling  the  2D  images 
 into  a  single  elongated  2D  image  (rather  than  a  set  of  separate  images),  such  that  it 



 conforms  with  the  input  dimension  expected  by  the  2D-based  feature-map  extractor. 
 Once  the  feature  maps  are  extracted,  they  are  paired  with  (trainable)  positional 
 embeddings  and  comprehensively  aggregated  using  a  downstream  ViT  module  40  . 
 SLIViT’s  ViT  module  together  with  (trainable)  positional  embeddings  allow  to  preserve 
 the  long-range  dependencies  across  the  depth  dimension  if  needed  29,43  .  Similar 
 divide-and-conquer  schemes  were  shown  to  be  fruitful  in  other  studies  as  well  44,45  .  Of 
 note,  the  ViT’s  attention  mechanism  implicitly  eliminates  the  necessity  for  image 
 registration preprocessing. 

 We  tested  SLIViT  on  five  datasets  of  three  different  data  modalities  (OCT,  ultrasound, 
 and  MRI)  with  a  limited  number  of  annotated  samples,  tackling  a  variety  of 
 clinical-feature  learning  tasks  (including  both  classification  and  regression).  In  the  OCT 
 experiment,  we  evaluated  the  diagnosis  performance  of  ocular  disease  high-risk 
 factors  27  and  measured  it  by  both  the  receiver  operating  characteristic  (ROC)  area 
 under  the  curve  (AUC)  and  precision-recall  (PR)  AUC.  In  the  ultrasound  and  MRI 

 experiments,  we  compared  the  of  the  models’  predictions  vs.  ground  truth  in  𝑅  2 
 (respectively)  cardiac  function  analysis  and  in  hepatic  fat  level  imputation.  In  each  data 
 modality,  we  compared  SLIViT  with  a  diverse  set  of  up  to  six  strong  baselines,  including 
 domain-specific  24,27–29  and  generic  (fully-supervised-  24,25  and  self-supervised-based  7,19  ) 
 state-of-the-art  methods.  SLIViT  manifested  consistent  and  significant  performance 
 superiority  across  domains  (Fig.  2).  In  the  following  sections  we  present  these  and 
 additional results in detail. 

 SLIViT  outperforms  state-of-the-art  models  in  detecting  ocular 
 disease high-risk factors using 3D OCT scans 
 We  first  compared  SLIViT’s  performance  against  trained  SLIVER-net  (subjected  to  the 
 same  pre-training  approach),  3D  ResNet,  3D  ViT,  and  UniMiSS  models,  on  the  Houston 
 Dataset  which  includes  only  691  OCT  B-scan  volumes  of  different  individuals  (see 
 Methods).  OCT  B-scan  volume  data  were  collected  from  independent  individuals 
 affected  in  at  least  one  eye  by  dry  AMD,  a  globally  leading  cause  of  irreversible  central 
 visual  impairment  46  .  Each  OCT  volume  had  four  different  binary  labels  of  AMD  high-risk 
 biomarkers-  drusen  volume  larger  than  0.03  mm  3  (DV),  intraretinal  hyperreflective  foci 
 (IHRF),  subretinal  drusen  deposits  (SDD),  and  hyporeflective  drusen  cores  (hDC)  47  .  The 
 annotation  was  done  by  a  senior  retina  specialist  and  the  procured  positive-label 
 frequencies  of  DV,  IHRF,  SDD,  and  hDC,  were  47%,  43.5%,  52.8%,  and  31.3%, 
 respectively.  We  randomly  split  the  dataset  into  train,  validation,  and  test  sets  of  sizes 
 483  (70%),  104  (15%),  and  104  (15%),  respectively,  and  trained  four  different  SLIViT 
 models  (one  per  binary  label).  We  used  both  ROC  AUC  and  PR  AUC  scores  (the  latter 



 is  also  known  as  average  precision  or  average  positive  predictive  value)  for 
 performance  evaluation.  The  models  were  trained  (using  less  than  600  volumes)  and 
 tested  on  the  same  split  (see  left  panels  of  Figures  3  and  S1,  and  Table  S1).  In  all  four 
 biomarkers,  SLIViT  significantly  outperformed  the  other  approaches  in  both  evaluation 
 metrics.  For  example,  in  the  DV  classification  task  (also  shown  as  the  OCT  experiment 
 in  Fig.  2)  SLIViT  (ROC  AUC=0.924;  CI  [0.909,  0.938])  was  significantly  better  compared 
 to  the  second-best  performing  method  (SLIVER-net  ROC  AUC=0.838;  CI  [0.813,  0.86]; 
 paired  t-test  p-value<0.001).  In  terms  of  average  precision  of  the  DV  classification, 
 SLIViT  (PR  AUC=0.914;  CI  [0.898,  0.928])  significantly  outperformed  the  second-best 
 performing  method  (3D  ResNet  PR  AUC=0.759;  CI  [0.748,  0.769];  paired  t-test 
 p-value<0.001).  Notably,  since  the  biomarkers  considered  in  these  experiments  are  all 
 structural,  their  identification  requires  aggregation  of  three-dimensional  information. 
 Thus,  the  ability  of  SLIViT  to  successfully  identify  these  biomarkers  suggests  that  it 
 adequately captures a three-dimensional signal within a given volume. 

 To  further  challenge  SLIViT  we  sought  to  explore  its  performance  on  the  SLIVER-net 
 Dataset  used  in  the  original  SLIVER-net  study  27  .  In  this  task,  SLIVER-net  should  have 
 an  advantage  as  it  was  optimized  for  this  dataset.  The  SLIVER-net  Dataset  was 
 composed  of  roughly  one  thousand  OCT  scans  (imaged  from  independent  individuals  in 
 an  Amish  population)  collected  from  three  different  clinical  centers  (see  Methods).  We 
 trained  SLIViT,  SLIVER-net  (subjected  to  the  same  pre-training  approach),  3D  ResNet, 
 3D  ViT,  and  UniMiSS,  this  time  using  all  the  691  Houston  Dataset  volumes  and  used  the 
 SLIVER-net  Dataset  as  the  test  set.  For  some  biomarker  classification  tasks,  the 
 relative  improvement  of  SLIViT  compared  to  SLIVER-net  was  reduced,  as  expected  in 
 this  setting.  Yet,  SLIViT  was  never  overperformed  by  the  other  approaches,  in  any  of  the 
 four  AMD-biomarker  classification  tasks  (see  right  panels  of  Figures  3  and  S1,  and 
 Table S1). 

   SLIViT  outperforms  state-of-the-art  models  in  analyzing  cardiac 
 function using ultrasound videos 
 In  order  to  evaluate  SLIViT’s  generalizability,  we  next  tested  it  on  other  3D  data 
 modalities.  The  EchoNet-Dynamic  Dataset  contains  10,030  standard  apical 
 four-chamber  view  ultrasound  videos  (echocardiograms)  obtained  from  unrelated 
 individuals,  each  associated  with  a  continuous  number  representing  the  corresponding 
 ejection  fraction  (EF)  measured  in  a  clinical  setting  48  .  The  EF  is  measured  by  tracing  the 
 chamber  volume  of  the  left  ventricle  in  the  end-systole  and  end-diastole,  and  is  a  key 
 metric  of  cardiac  function  as  it  measures  how  well  the  heart’s  left  ventricle  is  pumping 
 blood.  Low  EF  measurements  (<0.5)  can  indicate  cardiomyopathy  or  other  heart 



 problems  3,49  .  As  a  first  experiment,  we  sought  to  explore  SLIViT’s  ability  to  predict 
 cardiomyopathy  as  a  binary  classification  task.  To  this  end,  we  binarized  the  EF 
 measurements  accordingly  (>=0.5  was  considered  as  normal  50,51  )  and,  using  the  original 
 EchoNet-Dynamic  Dataset  split,  trained  SLIViT  and  3D  ResNet  (Fig.  4,  upper  panel). 
 SLIViT  obtained  0.913  ROC  AUC  (CI  [0.901,  0.928])  and  significantly  overperformed  3D 
 ResNet with 0.793 ROC AUC (CI [0.772, 0.814]) (paired t-test p-value<0.001). 

 In  a  second  experiment,  we  sought  to  test  SLIViT  in  a  regression  task.  Previously, 
 Ghorbani  A.,  et  al.,  implemented  EchoNet,  which  is  a  GoogLeNet-based  architecture  for 

 predicting  the  EF  of  a  given  echocardiogram  video,  and  obtained  a  0.5  on  the  𝑅  2 
 EchoNet-Dynamic  Dataset  test  set  28  .  This  reported  result  did  not  include  a  CI  (that 
 would  allow  a  direct  comparison)  and  the  trained  model  itself  was  not  published.  Thus, 
 we  implemented  the  proposed  method  and  were  able  to  reproduce  similar  levels  of 

 performance  (  =0.489;  CI  [0.434,  0.526]).  Using  the  same  split  from  the  original  𝑅  2 
 EchoNet  paper,  we  then  trained  SLIViT  and  obtained  a  significant  improvement  of  0.75 

 (CI  [0.706,  0.781];  paired  t-test  p-value<0.001).  A  scatter  plot  of  the  𝑅  2 
 actual-versus-predicted  per  trained  model  is  shown  in  the  middle  panel  of  Fig.  4.  As  we 
 did  in  all  other  experiments,  we  also  tested  3D  ResNet  and  UniMiSS  and  observed  that 
 both  significantly  underperformed  SLIViT  with  0.384  (CI  [0.364,  0.413])  and  0.502  (CI 

 [0.487,  0.531])  ,  respectively  (see  ultrasound  experiment  in  Fig.  2  and  middle  and  𝑅  2 
 lower  panels  of  Fig.  4).  Moreover,  we  also  examined  (1)  a  factorized  spatiotemporal 
 ResNet  architecture  (R(2+1)D,  in  contrast  to  the  3D-filter-based  R3D  ResNet  we  used 
 across  the  study)  that  is  known  to  capture  well  both  spatial  and  temporal  features  from 
 video  frames  and  achieved  state-of-the-art  performance  in  a  variety  of  video-based 
 learning  tasks  24  ,  and  (2)  3D  ViT  25  Both  methods  performed  below  par  compared  to  the 

 other  abovementioned  benchmarks  (  =-0.081;  CI  [-0.106,  -0.056]  and  =0.333;  CI  𝑅  2  𝑅  2 
 [0.27, 0.396], respectively). 

 This  result,  together  with  the  exceptional  magnitude  of  this  public  annotated  dataset, 
 further  motivated  us  to  examine  the  dynamics  of  the  training  set  size  and  SLIViT’s 
 performance  in  predicting  the  EF  of  a  given  echocardiogram  (Fig.  4,  lower  panel).  We 
 randomly  sampled  size-decreasing  subsets  from  the  original  training  set  and  trained  a 
 SLIViT  model  per  subset.  Compared  to  other  examined  methods  trained  on  the  original 

 training  set  (n=7,465),  when  SLIViT  used  the  25%  subset  (n=1,866)  its  performance  (  𝑅  2 
 =0.487;  CI  [0.466,  0.507])  was  significantly  better  than  R3D,  R(2+1)D,  and  3D  ViT 
 (paired  t-test  p-value<0.001);  on  par  with  EchoNet  (paired  t-test  p-value>0.579);  and 
 significantly  lower  than  UniMiSS  (paired  t-test  p-value<0.001).  When  SLIViT  used  the 

 50%  subset,  it  significantly  outperformed  all  other  benchmarked  methods  (  =0.614;  CI  𝑅  2 



 [0.594,  0.634];  paired  t-test  p-value<0.001).  These  observations  substantiate  SLIViT’s 
 ability to appropriately learn spatiotemporal features using a sparsely-labeled dataset. 

 SLIViT  outperforms  state-of-the-art  models  in  predicting  hepatic 
 fat levels in 3D MRI scans 
 We  next  sought  to  evaluate  SLIViT  ability  to  model  3D  MRI  data.  We  used  a  UK 
 Biobank  Dataset  containing  3D  hepatic  MRI  scans  and  a  corresponding  measurement 
 for  hepatic  proton  density  fat  fraction  (PDFF)  level.  The  PDFF  measurement  provides 
 an  accurate  estimation  of  hepatic  fat  levels  and  it  is  also  proposed  to  be  used  as  a 
 non-invasive  method  to  limit  unnecessary  hepatic  biopsies  52–54  .  The  development  of  a 
 quantitative  measurement  of  fat  has  been  instrumental  in  improving  the  diagnosis  of 
 various  fatty-liver  and  diabetes-related  diseases  55–59  .  We  removed  unlabeled  scans  and 
 preprocessed  the  rest  of  the  dataset  to  contain  only  a  single  scan  per  individual.  In  this 
 experiment  we  compared  SLIViT  to  3D  ResNet  (that  plays  a  double  role-  both  the 
 general  and  domain-specific  state-of-the-art  method  29–31  )  and  UniMiSS.  We  randomly 
 split  the  dataset  and  trained  both  models  to  measure  PDFF  levels  of  a  given  3D  MRI. 

 SLIViT  reached  0.916  (CI  [0.879,  0.952])  and  significantly  outperformed  both  3D  𝑅  2 
 ResNet  and  UniMiSS  that  obtained  0.611  (CI  [0.566,  0.644])  and  0.599  (CI  [0.531, 

 0.667])  ,  respectively  (paired  t-test  p-value<0.001;  See  MRI  experiment  in  Fig.  2).  We  𝑅  2 
 also  evaluated  the  performance  of  3D  ViT  and  a  recently  developed 
 2D-Slice-CNN-based  architecture,  that  was  shown  to  perform  well  on  volumetric-MRI 
 learning  tasks  29  ,  but  they  both  ended  up  with  poor  performance  compared  to  all  the 

 abovementioned  benchmarks  (  =0.18  (CI  [0.145,  0.214])  and  -0.130  (CI  [-0.111,  𝑅  2 
 -0.148]), respectively). 

 SLIViT efficiently attains the quality of clinical specialists 
 To  showcase  the  potential  utility  of  automating  the  detection  of  AMD  high-risk 
 biomarkers  we  gathered  the  Pasadena  Dataset,  a  third  3D  OCT  dataset  containing  205 
 3D  OCT  volumes  of  (205)  independent  individuals.  The  ground  truth  for  this  dataset  was 
 obtained  by  three  senior  retina  specialists  (we  used  a  majority  vote  when  there  was  no 
 consensus).  We  asked  seven  junior  clinicians  to  (independently)  annotate  each  of  the 
 OCT  volumes  in  this  dataset  for  the  aforementioned  four  AMD  high-risk  biomarkers,  that 
 is,  DV,  IHRF,  SDD,  and  hDC.  We  also  annotated  these  volumes  using  the  same  SLIViT 
 model  we  trained  on  the  691  Houston  dataset  volumes.  Figure  5  and  S3  summarize 
 respectively  the  true  positive  rate  (TPR;  also  known  as  recall)  vs.  false  positive  rate 
 (FPR;  also  known  as  false  alarm  rate)  and  the  positive  predictive  value  (PPV;  also 



 known  as  precision)  vs.  recall  of  SLIViT  and  the  seven  junior  clinicians  over  the 
 Pasadena  Dataset.  Clinicians  typically  reached  comparable  performance  but  had  to 
 invest  5,000-fold  more  time  to  do  so  (on  average,  it  took  17  working  hours  net  for  each 
 clinician  to  procure  the  annotations  while  SLIViT  completed  the  job  in  under  12 
 seconds).  Interestingly,  SLIViT  obtained  considerably  lower  performance  in  the  hDC 
 classification  task  compared  to  the  other  biomarker  classification  tasks.  A  possible 
 reason  is  the  absence  of  a  universal  consensus  on  the  clinical  definition  of  hDC.  This 
 feature  had  the  highest  senior-specialists’  annotation  discordance  among  the  four 
 biomarkers,  suggesting  indeed  that  it  is  harder  to  distinguish  between  cases  and 
 normals. 

 SLIViT is robust to within-volume frame permutation 
 We  next  sought  to  explore  SLIViT’s  robustness  to  changes  in  the  order  of  the  frames 
 encoding  a  volume.  To  this  end,  we  generated  100  copies  of  the  Houston  Dataset  and 
 randomly  shuffled  each  volume  (in  each  of  these  100  copies).  Then,  we  used  the  same 
 split  to  train  100  SLIViT  models  (one  per  shuffled  copy;  henceforth  “shuffled  models”) 
 and  one  model  on  the  Houston  Dataset  using  the  original  order  (henceforth  “original 
 model”)  to  classify  the  aforementioned  structural  AMD  high-risk  factors.  Figure  S4 
 shows  the  average  bootstrapped  ROC  AUC  dispersion  of  these  101  models. 
 Interestingly,  the  original  model  did  not  outperform  the  shuffled  models.  We  observed 
 that  compared  to  the  100  shuffled-models  performance,  the  average  rank  of  the  original 
 model  across  the  four  AMD  biomarkers  was  40.  This  finding  suggested  that  even  if  the 
 original  order  is  not  documented,  SLIViT’s  performance  does  not  deteriorate.  Thus,  not 
 only  does  SLIViT  effectively  aggregate  information  across  slices,  it  can  do  this  even 
 when the order of slices is not maintained. 

 The utility of 2D B-scan OCT in pre-training 
 The  utility  of  ImageNet  pre-training  (henceforth  “ImageNet  weights”)  has  been 
 demonstrated  in  various  medical-imaging  learning  tasks  7,12,14,15,60–62  .  That  said,  transfer 
 learning  between  unrelated  domains  remains  fairly  controversial  18,63–65  .  Moreover, 
 commonalities  across  data  modalities  may  be  counterintuitive.  We  thus  conducted  a 
 pre-training  ablation  study  across  the  different  learning  tasks  to  evaluate  the  benefit  of 
 our  cross-modality  and  cross-dimensionality  transfer  learning  and  assess  the 
 contribution  of  different  selections  made  for  the  pre-training  step  of  SLIViT  (  Figures  S5 
 and  S6).  We  compared  four  different  initializations:  random  weights,  ImageNet  weights, 
 random  weights  initialization  followed  by  2D  OCT  B-scans  pre-training  (henceforth 
 “Kermany  weights”),  and  ImageNet  weights  initialization  followed  by  2D  OCT  B-scans 



 pre-training  (henceforth  “combined  weights”).  Of  note,  combined  weights  is  the  original 
 initialization  approach  we  intended  (and  eventually  selected)  for  SLIViT.  The  results  of 
 this  experiment  indicate  three  key  insights.  First,  we  observed  that  using  ImageNet 
 weights  improved  performance  for  all  the  data  modalities  we  tested  relative  to  random 
 weights.  We  also  see  that  utilizing  2D  OCT  B-scans  in  pre-training  (either  Kermany 
 weights  relative  to  random  weights  or  combined  weights  relative  to  ImageNet  weights) 
 improved  performance  in  all  downstream  learning  tasks.  Interestingly,  in  the  four 
 OCT-related  classification  tasks,  using  Kermany  weights  (that  is,  without  ImageNet)  was 
 the  best  approach  and  typically  led  to  better  performance,  even  when  compared  to  the 
 combined  approach  (Fig.  S5).  This  last  finding  aligns  with  a  conclusion  previously 
 indicated  by  Zhang  Y.,  et  al.  18  and  may  suggest  an  even  broader  conclusion:  for  an 
 out-of-distribution  medical  imaging  task,  pre-training  using  both  (out-of-distribution) 
 natural  images  and  out-of-distribution  medical  images  leads  to  better  representation, 
 when  compared  to  pre-training  only  on  out-of-distribution  medical  images  (Fig.  S6).  On 
 the  other  hand,  for  an  in-distribution  downstream  task,  pre-training  only  on  in-distribution 
 medical images is more beneficial (Fig. S5). 

 We  also  wished  to  assess  the  benefit  of  using  supervised  learning  for  pre-training,  as 
 opposed  to  self-supervised  learning.  The  latter  was  demonstrated  as  a  powerful 
 approach  in  different  visual  tasks  66  ,  specifically,  in  the  medical-imaging  domain  where 
 procuring  annotations  is  laborious  and  expensive  7,17,19,20  .  We  thus  sought  to  explore  the 
 utility  of  self-supervised-based  pre-training  approach  on  SLIViT  using  an  unlabeled 
 version  of  the  2D  OCT  B-scans  dataset  (  Figures  S5  and  S6)  .  To  this  end,  we  took  the 
 REMEDIS  approach  7  that  was  originally  shown  to  obtain  remarkable  performance  when 
 pre-trained  even  on  much  smaller  (unlabeled)  datasets  than  our  2D  OCT  B-scans 
 dataset.  Yet,  initializing  SLIViT  with  the  fully  supervised  pre-trained  weights  significantly 
 outperformed  the  self-supervised  initialization  in  all  downstream  learning  tasks  (paired 
 t-test p-value<0.001). 

 Interestingly,  in  both  ultrasound  and  MRI  experiments,  SLIViT  achieved  superior 
 performance  relative  to  all  competitor  benchmarks  tested,  regardless  of  the  pre-training 
 strategy  (Figures  2  and  S6).  This  discovery  further  demonstrates  the  advantage  of 
 SLIViT’s  architecture  for  out-of-distribution  volumetric-medical-imaging  learning  tasks. 
 For  the  in-distribution  medical  imaging  task,  that  is,  the  (3D)  OCT  experiment,  only 
 pre-training  strategies  that  leveraged  the  2D  OCT  B-scan  dataset  at  full,  i.e.,  Kermany 
 weights  and  combined  weights,  showed  consistent  superior  performance  relative  to  all 
 other  tested  benchmark  methods  (left  panels  of  Figures  3  and  S1,  and  Fig.  S5).  This 
 outcome  was  less  surprising  and  corresponded  with  a  previous  study’s  18  conclusion 
 regarding the utility of in-distribution pre-training. 



 Discussion 
 Procuring  tens  of  thousands  of  annotated  3D  biomedical-imaging  samples  to  train 
 standard  3D  vision  models  is  expert-time  prohibitive,  impeding  the  full  optimization  of 
 such  models.  In  this  work  we  devised  SLIViT,  an  AI-based  framework  that  allows  an 
 accurate  analysis  of  potentially  any  3D  biomedical-imaging  dataset.  SLIViT  leverages  a 
 unique  combination  of  deep  vision  modules  and  ‘prior  knowledge’  from  the  2D  domain. 
 This,  in  turn,  allows  it  to  be  adept  at  3D-biomedical-imaging-learning  tasks,  in  which  the 
 number  of  annotated  training  samples  is  typically  very  limited,  and  significantly 
 outperform domain-specific state-of-the-art models. 

 To  showcase  SLIViT’s  effectiveness  and  generalizability  we  evaluated  it  over  several 
 classification  and  regression  problems  in  diverse  biomedical  domains  (retinal,  cardiac, 
 and  hepatic)  across  different  3D  biomedical-imaging  data  modalities  (OCT, 
 echocardiograms,  and  MRI)  against  domain-specific  24,27–29  and  generic 
 (fully-supervised-  24,25  and  self-supervised-based  7,19  )  state-of-the-art  methods.  We  started 
 by  demonstrating  SLIViT’s  superiority  when  trained  on  less  than  700  volumes  in  four 
 independent  binary  classification  learning  tasks  of  retinal-disease  risk  factors  with  two 
 independent  3D  OCT  datasets.  Then  we  showed  SLIViT’s  superiority  in  two  heart 
 function  analysis  tasks  both  done  with  an  echocardiogram  dataset.  We  next  tested 
 SLIViT  on  an  MRI  dataset  of  3D  liver  scans  labeled  with  a  corresponding  hepatic  fat 
 content  measurement  and  again,  observed  significant  improvement  compared  to  the 
 state-of-the-art.  We  also  showed  that  SLIViT  was  able  to  obtain  on-par  performance  to 
 clinical  specialists’  assessment,  but  rather,  almost  four  orders  of  magnitude  faster 
 compared  to  the  annotation  procurement  net  time  required  by  the  specialists.  Lastly,  we 
 explored  SLIViT’s  learning  ability  robustness  to  randomly  permuted  volumes.  We 
 showed  that  a  scenario  of  shuffled  volumes  dataset,  a  recurring  situation  in  the  very 
 limited  number  of  publicly  available  volumetric  datasets,  has  little  to  no  effect  on 
 SLIViT’s performance, meaning that SLIViT is potentially agnostic to imaging protocol. 

 To  facilitate  reproducibility,  generalizability,  and  the  likelihood  that  other  researchers  will 
 be  able  to  successfully  apply  SLIViT  to  their  datasets,  we  intentionally  avoided  complex 
 hyperparameter  tuning  and  the  usage  of  specialized  hardware  for  training  as  required 
 by  other  methods  (e.g.,  19  ).  The  sizes  of  the  different  architectures  we  used  were  set 
 according  to  our  available  (standard)  computational  resources,  and  other 
 hyperparameters  were  set  to  default  values.  This  suggests  that  there  is  room  for  further 
 improvement  in  task-specific  performance.  Yet,  in  its  current  form,  SLIViT  can  serve  as 
 a  reliable  baseline  model  for  any  study  of  volumetric  biomedical  imaging.  We  believe 
 that SLIViT’s simplicity is one of its major strengths. 



 The  utility  of  self-supervised  pre-training  has  been  validated  in  numerous  medical 
 imaging  learning  tasks  7,19,20,67,68  ,  however,  its  general  translatability  across  domains 
 remains  unclear  22  .  According  to  our  study,  where  a  large-enough  2D  labeled  dataset  is 
 accessible  and  limited  labeled  volumes  are  available,  the  supervised  pre-training 
 approach  is  superior.  This  finding  was  supported  by  our  experiments  for  fine-tuning  both 
 in  the  same  domain  and  across  domains.  That  being  said,  as  demonstrated,  SLIViT’s 
 pre-training  strategy  is  very  flexible  and  can  thus  harness  the  utility  of  self-supervised 
 approaches,  such  as  REMEDIS.  If  one  has  access  to  an(other)  unlabeled  dataset  of 
 relevant  medical  images  (whether  2D  or  3D),  then  self-supervised  pre-training  SLIViT 
 (either)  as  an  alternative  to  (or  followed/preceded  by)  supervised  2D  OCT  B-scans 
 pre-training  may  further  improve  the  model’s  performance.  Notably,  the  end-to-end 
 fine-tuning  approach  SLIViT  takes  (see  Methods)  was  shown  to  attain  typically  better 
 performance  for  self-supervised-based  medical-imaging  learning  tasks  22  .  That  is,  SLIViT 
 already  employs  an  optimized  fine-tuning  approach  for  a  potential 
 self-supervised-based avenue. 

 SLIViT  was  tested  on  3D  OCT  scans,  echocardiograms,  and  MRI  volumes  and  can 
 potentially  be  leveraged  to  analyze  other  types  of  data  modalities,  such  as  3D  CT  scans 
 and  3D  X-ray  imaging.  Such  biomedical  volumetric  imaging  data  is  inherently  structured 
 in  the  sense  that  they  involve  a  limited  assortment  of  objects  and  movements  (typically 
 shrinkage,  dilation,  and  shivering).  SLIViT  is  specifically  tailored  to  be  adept  at 
 analyzing  a  series  of  biomedical  frames  created  in  a  structured  biomedical-imaging 
 process  and  does  not  pretend  to  be  proficient  at  learning  problems  of  natural  videos, 
 such  as  action  recognition  tasks.  Natural  videos  are  inherently  more  complex,  as  the 
 background  may  change,  objects  may  flip,  change  color  (due  to  shade),  and  even 
 disappear  (due  to  obfuscation),  let  alone  when  considering  a  multi-scene  video.  In 
 addition,  there  is  a  plethora  of  gigantic  natural  video  datasets  that  allow  standard 
 3D-based  vision  models  to  be  adequately  tuned  for  natural  video  learning  tasks.    We 
 thus  do  not  expect  SLIViT  to  outperform  (as  is)  standard  3D-based  vision  models  in 
 natural-videos-learning  tasks  (such  as  action  recognition).  That  being  said,  SLIViT  could 
 potentially  be  tweaked  to  perform  well  on  natural  videos  as  well,  e.g.,  using  a  different 
 feature-map extractor, however, this direction requires further research. 

 Importantly,  there  are  multiple  additional  steps  that  are  required  in  order  to  deploy 
 SLIViT  in  a  clinical  setting.  Notably,  the  point  of  operation  (tradeoff  between  precision 
 and  recall)  is  application  specific  and  further  optimization  may  be  required  to  obtain 
 optimal  results  at  that  point  of  operation.  We  note  that  point  of  operation  varies  also 
 across  clinicians  (see  Figures  5  and  S3).  Moreover,  additional  evaluations  of  the  models 
 are  required  to  ensure  no  systematic  biases  exist  that  would  lead  to  increasing  health 
 disparities  69  . 



 Overall,  this  study  highlights  an  important  step  toward  fully  automating 
 volumetric-biomedical-imaging  annotation.  The  major  leap  happens  under  ‘real  life’ 
 settings  of  a  low-number  training  dataset.  SLIViT  thrives  given  just  hundreds  of  training 
 samples  for  some  tasks  giving  it  an  extreme  advantage  over  other  3D-based  methods, 
 in  almost  every  practical  case  that  is  related  to  3D  biomedical-imaging  annotation.  Even 
 under  the  unrealistic  assumption  that  the  financial  resources  are  endless,  in  ongoing 
 research,  due  to  its  nature,  the  hurdle  of  a  limited-size  training  dataset  is  inevitable. 
 Once  a  previously  unknown  disease-related  risk  factor  is  found  and  characterized,  it 
 could  take  months  in  order  to  train  a  specialist  to  be  able  to  accurately  annotate  this 
 recently-discovered  risk  factor  in  biomedical  images  at  scale.  However,  using  a 
 relatively  small  training  dataset  (that  can  be  annotated  within  only  a  few  working  days  of 
 a  single  trained  clinician),  SLIViT  could  dramatically  expedite  the  annotation  process  of 
 many  other  non-annotated  volumes  with  an  on-par  performance  level  of  a  clinical 
 specialist. 

 Methods 

 SLIViT’s development and analysis 
 SLIViT  was  implemented  in  Python  3.8  using  PyTorch  70  v1.10.2,  fast.ai  71  v2.6.3,  and 
 scikit-learn  72  v1.0.2  libraries  (full  libraries  and  version  list  can  be  found  at 
 https://github.com/berkindurmus/SLIViT/blob/main/requirements.txt  ). 

 Model specifications 
 The  SLIViT  framework  contains  a  preprocessing  step,  a  2D  ConvNeXt  that  serves  as  a 
 feature-map  extractor,  and  a  vision  transformer  (ViT)  that  serves  as  a  feature-map 
 integrator  (see  Fig.  1).  A  ConvNeXt  architecture  has  several  complexities  39  .  Here  we 
 used  the  backbone  of  the  tiny  variant  (ConvNeXt-T)  with  256x256  image  size  as 
 SLIViT’s  feature-map  extractor.  The  ViT-based  feature-map  integrator  underwent  few 
 adjustments  with  respect  to  the  original  architecture  40  ,  including  using  GeLu  as  the 
 activation  functions  73  and  initializing  the  positional  embeddings  as  the  number  of  the 
 original  slice.  Notably,  we  intentionally  avoid  complex  hyperparameter  tuning  and  usage 
 of  specialized  hardware  as  required  by  other  methods  19  .  The  ConvNeXt’s  variant  (T) 
 and  the  ViT’s  depth  (#  layers  =  5)  were  set  according  to  our  available  (standard) 
 computational  resources  to  facilitate  reproducibility,  generalizability,  and  the  likelihood 
 that  other  researchers  will  be  able  to  successfully  apply  it  to  their  datasets.  The  ViT’s 
 width is governed by the number of 2D frames of the input volume. 



 Let  be  the  number  of  2D  frames  of  an  input  image.  Given  an  input  𝑁  𝐻  ×  𝑊  𝑊  ×  𝐻  ×  𝑁 
 image,  its  frames  are  resized  (according  to  the  ConvNeXt-T  variant)  and  tiled  into  an  𝑁 
 image  of  size  (see  Step  (1)  in  Fig.  1).  The  manipulated  image  is  then  fed  𝑁  ∗256×256 
 into  the  feature-map  extractor  which  generates,  in  turn,  an  feature  maps  with  𝑁  ∗8×8 

 filters  each.  These  feature  maps  are  then  reshaped  into  different  𝐹 =  768  𝑁  8×8×768 
 feature  maps  (see  Step  (3)  in  Fig.  1),  each  corresponding  to  a  slice  in  the  original 
 volume.  Each  of  the  feature  maps  is  flattened  into  an  (1D)  vector  and  8∗8∗768 
 tokenized  into  a  vector  of  size  using  a  fully  connected  (FC)  layer.  The  bias  term  of  768 
 the  FC  layer  is  initialized  as  the  feature-map  number  (that  essentially  corresponds  to  an 
 original  slice  number),  and  the  projected  feature  volumes  are  then  fed  into  the  ViT 
 (along  with  a  class  token  of  the  same  size).  The  ViT  outputs  N  encoded  values  and  a 
 class  token.  The  class  token  is  then  fed  into  another  FC  layer  to  generate  final  output. 
 Using  the  2D  ViT  as  a  feature-map  integrator  corresponds  with  the  Factorised  Encoder 
 with  ‘late  fusion  of  depth  information’  of  the  previously  devised  3D  ViT  named  ViViT  25  , 
 yet, is far less complex than the 3D ViT. 

 Pre-training 
 We  borrowed  an  ImageNet-1K  pre-trained  SLIViT-like  feature-map  extractor 
 architecture,  i.e.,  a  ConvNeXt-T  backbone,  from 
 https://huggingface.co/facebook/convnext-tiny-224  ,  and  appended  to  it  a  subsequent 
 FC  layer  to  fit  a  four-category  classification  task.  We  then  trained  this 
 SLIViT-backbone-like  module  on  the  publicly  available  labeled  Kermany  Dataset  41,74  . 
 Training  the  feature-map  extractor  on  the  Kermany  Dataset  took  less  than  12  hours 
 using  a  single  NVIDIA  Tesla  V100  Volta  GPU  Accelerator  32GB  Graphics  Card.  Several 
 sets  of  pre-trained  weights  were  examined  in  this  study  (see  The  utility  of  2D  B-scan 
 OCT  in  pre-training  section).  The  pre-trained  backbone  weights  obtained  from 
 combining  ImageNet  initialization  with  additional  pre-training  on  the  Kermany  Dataset 
 (henceforth  “combined  weights”),  which  typically  led  to  the  best  performance,  are 
 available at project’s GitHub repository (see Code availability section). 

 Per-task fine-tuning 
 Each  of  the  SLIViT  models  used  in  the  different  experiments  reported  here,  was 
 initialized  with  the  combined  weights.  The  fine-tuning  was  done  in  an  end-to-end 
 fashion  22  .  Namely,  rather  than  merely  training  the  downstream  feature-map  integrator, 
 while  keeping  the  feature-map  extractor  frozen,  all  the  model’s  parameters  were  set  as 
 trainable,  and  were  then  fine-tuned  (according  to  the  dataset  and  task  in  question). 



 Notably,  we  intentionally  avoided  complex  hyperparameter  tuning  as  required  by  some 
 other  methods  (e.g.,  19  )  to  facilitate  reproducibility  and  generalizability.  Frames  were 
 resized  into  pixels  to  fit  SLIViT’s  backbone  architecture  and  then,  standard  256×256 
 preprocessing  transformations  were  applied  (including  contrast  stretching,  random 
 horizontal  flipping,  and  random  resize  cropping)  using  PyTorch’s  default  values.  Binary 
 cross  entropy  and  norm  were  used  as  loss  functions  for  the  classification  and  𝐿  1 
 regression  tasks,  respectively.  In  each  experiment,  excluding  the  ultrasound  (in  which 
 the  split  was  given),  a  random  validation  set  was  used  for  determining  the  convergence 
 of  the  training  process  with  the  same  loss  function  metric  used  for  the  test  set 
 evaluation.  The  model  was  optimized  using  the  default  fast.ai  optimizer  with  the  default 
 parameters.  The  starting  learning  rate  in  each  training  procedure  was  chosen  by 
 fast.ai’s  learning  rate  finder  and  the  model  was  fitted  using  the  fit-one-cycle  approach 
 for  faster  convergence  75,76  .  All  models  were  trained  with  four  samples  per  batch  and 
 early  stopping  was  set  to  five  epochs,  meaning  that  the  training  process  continued  until 
 no  improvement  was  observed  in  the  validation  loss  for  five  consecutive  passes  on  the 
 whole  training  set.  The  model  weights  that  achieved  the  lowest  loss  on  the  validation  set 
 during  training  were  used  for  the  test  set  evaluation.  Weights  &  Biases  77  was  used  for 
 experiment tracking and visualizations of the training procedures. 

 Statistical analysis 
 The  performance  of  each  trained  model  was  evaluated  (on  the  corresponding  test  set) 
 using  an  appropriate  metric  score.  The  binary  classification  tasks  were  evaluated  using 

 area  under  the  ROC  and  PR  curves.  The  regression  tasks  were  evaluated  using  the  𝑅  2 
 metric.  The  test  set  predictions  were  calculated  and  a  90%  confidence  interval  (CI)  was 
 computed  for  each  evaluated  score  using  a  standard  bootstrapping  procedure  with 
 1,000  iterations  as  done  in  other  studies  17,78  .  Briefly,  let  n  denote  the  test  set  size,  for 
 each  bootstrap  iteration  n  samples  were  randomly  drawn  (with  repetition)  and  based  on 
 the  predictions  of  the  sampled  set  a  single  score  was  obtained.  Out  of  the  1,000 
 sampled-sets  score  distribution,  the  50th  and  950th  ranked  scores  were  selected  to 
 obtain  the  90%  CI.  In  order  to  compute  the  significance  value  of  the  difference  between 
 two  given  distributions  (induced  by  two  different  models)  a  paired  t-test  on  the 
 distribution  of  differences  between  the  sampled-set  corresponding  scores  was 
 computed  .  SLIViT's  performance  improvement  was  considered  to  be ( 𝐻  𝐴 :    µ ≠  0 )
 significant  if  the  paired  t-test  produced  a  p-value  lower  than  1e-3  subject  to  Bonferroni 
 correction for multiple hypothesis testing. 



 Datasets 

 The Houston Dataset 
 1,128  patients  were  diagnosed  with  intermediate  AMD  in  their  scanned  eye  by  clinical 
 examination  (Beckman  Classification  79  )  at  the  Retina  Consultants  of  Texas  Eye  Clinics 
 between  October  2016  and  October  2020.  This  study  was  reviewed  and  approved  by 
 the  Ethics  Committee  of  Retina  Consultants  Texas  (Houston  Methodist  Hospital, 
 Pro00020661:1  “Retrospective  Prospective  Analysis  of  Retinal  Diseases”).  As  the  data 
 collection  was  retrospective,  a  waiver  of  informed  consent  was  granted.  In  case  both 
 eyes  of  a  given  patient  were  eligible,  one  eye  was  randomly  included  in  the  dataset.  The 
 dataset  included  Heidelberg  Spectralis  (HRA+Optical  Coherence  Tomography  OCT 
 SPECTRALIS;  Heidelberg  Engineering,  Inc,  Heidelberg,  Germany)  6x6  mm  (fovea 
 centered,  10X10  degrees;  49  B-scans  spaced  122  microns  apart,  ART=6)  OCT 
 volumes.  The  data  were  transferred  to  the  Doheny  Image  Reading  Research  Laboratory 
 (DIRRL)  for  imaging  analysis  and  annotation  of  the  structural  OCT  biomarkers  for  AMD 
 progression  80,81  .  The  AMD-biomarker  analysis  was  conducted  at  the  Doheny  Image 
 Reading  Research  Laboratory  (DIRRL)  in  compliance  with  the  Declaration  of  Helsinki 
 and  approved  by  the  UCLA  Institutional  Review  Board  (IRB,  Ocular  Imaging  Study, 
 Doheny  Eye  Center  UCLA).  Cases  with  evidence  of  late  stage  of  AMD  and/or  additional 
 macular  diseases  or  poor-quality  imaging  were  excluded  from  the  analysis.  In  total,  691 
 eyes  (of  691  patients)  were  eligible  for  the  biomarkers  analysis.  The  annotations  were 
 procured  by  a  senior  clinical  retina  specialist.  The  recorded  case  frequency  in  the  whole 
 dataset  was  as  follows:  (1)  48.23%  of  the  scans  had  drusen  volume  >  0.03  mm  3  within 
 the  3  central  mm  2  (denoted  DV);  (2)  36.17%  of  the  scans  had  intraretinal  hyperreflective 
 foci  (denoted  IHRF);  (3)  31.45%  of  the  scans  had  subretinal  drusenoid  deposits  (SDD); 
 and  (4)  11.27%  of  the  scans  had  hyporeflective  drusen  core  (hDC).  Of  note,  some 
 scans were positive for more than one biomarker. 

 The SLIVER-net Dataset 
 The  SLIVER-net  Dataset,  which  was  originally  used  by  Rakocz  and  others  27  to  tune  and 
 validate  SLIVER-net,  was  collected  from  three  independent  medical  centers  between 
 February  2013  and  July  2016  82  .  The  dataset  consisted  of  1,007  OCT  volumes  each 
 consisting  of  97  B-scans  (97,679  B-scans  overall)  collected  from  649  subjects  of  the 
 Amish  general  population,  who  had  a  record  of  at  least  one  individual  with  AMD  in  the 
 family  history.  Imaging  was  conducted  at  three  clinical  centers  in  Pennsylvania,  Indiana, 
 and  Ohio  under  the  supervision  of  investigators  at  the  University  of  Pennsylvania 
 (UPEN),  University  of  Miami  (MU),  and  Case  Western  Reserve  University  (CWRU), 
 respectively.  The  research  was  approved  by  the  institutional  review  boards  (IRBs)  of  the 



 respective  institutions  and  all  subjects  signed  written  informed  consent.  All  OCT  B-scan 
 volumes  in  this  dataset  were  acquired  with  the  Heidelberg  Spectralis  OCT  using  a  scan 
 pattern  centered  on  the  fovea  (20°x20°;  97  B-scans;  512  A-scans  per  B-scans;  ART  9). 
 In  order  to  fit  the  Houston  Dataset  trained  model,  we  down-sampled  each  of  the 
 SLIVER-net  Dataset  volumes  by  taking  every  other  B-scan,  thus  squeezing  each 
 volume  to  49  B-scans.  Also,  to  avoid  aliasing,  we  applied  an  anti-aliasing  filter  on  OCT 
 volumes. 

 The  positive-label  frequencies  in  this  dataset  were  3.37%,  7.87%,  2.0%,  and  2.67%,  for 
 DV,  IHRF,  SDD,  and  hDC,  respectively.  Although  the  annotations  for  this  dataset 
 included  the  eyes  laterality,  the  scans  themselves  lacked  the  laterality  obscuring  the  link 
 between  a  scan  to  its  annotation  in  case  both  eyes  were  scanned  for  a  patient.  To 
 address  this  gap,  we  considered  the  middle  slice  per  volume  to  determine  the  laterality 
 and  trained  a  standard  CNN  on  the  Houston  Dataset  (that  had  the  eyes  laterality 
 recorded).  Using  the  trained  network  (97%  accuracy  on  an  external  test  set;  not  shown) 
 we  inferred  the  laterality  for  the  SLIVER-net  dataset  scans  when  needed,  that  is,  when 
 both eyes of the same patient were scanned. 

 The Pasadena Dataset 
 The  Pasadena  Dataset  established  for  this  study  contained  205  3D  OCT  B-scan 
 volumes  (fovea  centered,  10x10  degree,  ART=5)  collected  from  205  individuals  at  the 
 Doheny-UCLA  Eye  Centers  in  Pasadena  between  2013  and  2022.  This  study  was 
 reviewed  and  approved  by  the  IRB  of  the  University  of  California,  Los  Angeles  (UCLA 
 IRB  #  15-000083).  Informed  consent  was  waived  for  study  participants  given  the 
 retrospective  nature  of  the  study.  Each  of  the  OCT  volumes  was  acquired  on  the 
 Heidelberg  Spectralis  HRA+Optical  Coherence  Tomography  (OCT  SPECTRALIS; 
 Heidelberg  Engineering,  Inc,  Heidelberg,  Germany).  Out  of  the  205  OCT  volumes,  198 
 contained  97  B-scans  and  seven  contained  49  B-scans.  The  OCT  B-scans  were 
 independently  annotated  by  ten  DIRRL-certified  clinical  retina  specialists:  three  seniors 
 (expert  retina  specialists)  and  seven  juniors.  The  ground  truth  for  this  dataset  was 
 determined  by  the  senior  retina  specialists.  Although  the  senior  graders  agreed  in  most 
 cases,  in  the  atypical  case  of  disagreement,  the  ground  truth  was  obtained  by  a  majority 
 vote  of  the  senior  graders’  quorum.  The  positive-label  frequencies  in  this  dataset  were 
 32.8%, 51.6%, 42.9%, and 12.5%, for DV, IHRF, SDD, and hDC, respectively. 

 The EchoNet-Dynamic Dataset 
 The  EchoNet-Dynamic  Dataset  48  was  downloaded  on  September  7,  2022.  The  dataset 
 contains  10,030  echocardiograms  (heartbeat  ultrasound  videos)  obtained  from  10,030 



 different  individuals  who  underwent  echocardiography  between  2006  and  2018.  Each 
 echocardiogram  was  labeled  with  a  continuous  number  (between  zero  and  one) 
 representing  the  ejection  fraction  (EF).  The  EF  was  obtained  by  a  registered 
 sonographer  and  further  verified  by  a  level  3  echocardiographer.  The  minimal  EF  in  the 
 dataset  was  0.069  while  the  maximal  was  0.97.  The  average  EF  was  0.558  with  a 
 standard  deviation  of  0.124.  The  dataset  already  set  a  random  split  for  train,  validation, 
 and  test  sets  of  sizes  7,465  (74.43%),  1,288  (12.84%),  and  1,277  (12.73%), 
 respectively.  In  contrast  to  the  other  datasets  used  in  this  study,  the  number  of  frames 
 (2D  images)  per  video  in  the  dataset  was  not  constant  but  rather  varied  from  28  to 
 1,002  (with  nearly  177  frames  on  average  and  a  standard  deviation  of  58  frames).  To 
 standardize  the  data  we  followed  the  same  approach  that  the  EchoNet  paper  authors 
 took and sampled 32 equally-spaced frames per volume. 

 The United Kingdom Biobank Dataset 
 The  United  Kingdom  Biobank  (UKBB)  Dataset  of  MRI  imaging  with  Proton  Density  Fat 
 Fraction  (PDFF)  measurements  was  downloaded  on  June  7,  2022,  from  the  UKBB 
 repository  23  .  The  UKBB  is  a  widely  studied  population-scale  repository  of  phenotypic 
 and  genetic  information  for  roughly  half  a  million  individuals.  At  the  time  of  the  study,  the 
 UKBB  made  available  16,876  PDFF  measurements  acquired  from  a  subset  of  the 
 54,606  total  hepatic-imaging  MRIs.  The  MRI  data  of  each  individual  consisted  of  an 
 unordered  series  of  36  imaging  scans  in  DICOM  format  at  284  by  288  resolution 
 (  in-plane  pixel  spacing  9.3  mm)  acquired  from  a  single  breath-hold  session.  Of  the  data 
 available,  we  identified  a  subset  of  9,954  White  British  individuals  who  were  unrelated 
 and  possessed  both  the  hepatic  MRI  and  PDFF  measurement.  The  individuals  were 
 further  divided  into  train,  validation,  and  test  sets  of  sizes  5972  (60%),  1991  (20%),  and 
 1991 (20%), respectively. 

 Code availability 
 The  code  of  SLIViT  is  available  at  the  project’s  GitHub  repository: 
 https://github.com/berkindurmus/SLIViT  . 

 Data availability 
 The  Kermany  dataset  was  downloaded  from 
 https://www.kaggle.com/datasets/paultimothymooney/kermany2018  .  The  3D  OCT 
 B-scan  data  are  not  publicly  available  due  to  institutional  data  use  policy  and  concerns 



 about  patient  privacy.  However,  they  are  available  from  the  authors  upon  reasonable 
 request  and  with  permission  of  the  institutional  review  board.  The  echocardiogram 
 dataset  was  downloaded  from  https://echonet.github.io/dynamic/index.html#dataset  . 
 The  MRI  dataset  was  downloaded  from  https://www.ukbiobank.ac.uk  under  application 
 number 33127. 
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 Figures 
 Figure 1 | The proposed SLIViT framework 

 The  input  of  SLIViT  is  a  3D  volume  of  N  frames  of  size  HxW.  (1)  The  frames  of  the 
 volume  are  resized  and  vertically  tiled  into  an  “elongated  image”.  (2)  The  elongated 
 image  is  fed  into  a  ConvNeXt-based  Feature  Extractor  that  was  pre-trained  on  both 
 natural  and  medical  2D  labeled  images.  (3)  N  feature  maps  are  extracted  (each 
 corresponding  to  an  original  frame).  (4)  Feature  maps  are  (tokenized  and)  fed  into  a 
 ViT-based  Feature  Integrator  followed  by  a  fully-connected  layer  that  outputs  the 
 prediction for the task in question. 



 Figure 2 | SLIViT’s outperformance overview 

 Shown  are  the  performance  scores  in  one  classification  task  (with  two  different  metrics) 
 of  eye  disease  biomarker  diagnosis  in  volumetric-OCT  scans  and  two  regression  tasks 
 of  (1)  heart  function  analysis  in  ultrasound  videos  and  (2)  liver  fat  levels  imputation  in 
 volumetric  MRI  scans.  Domain-specific  methods  (hatched)  used  are  SLIVER-net, 
 EchoNet,  and  3D  ResNet,  for  OCT,  ultrasound,  and  MRI,  respectively.  The  general 
 cross-modality  benchmarking  used  are  3D  ResNet  (green)  and  UniMiSS  (brown)  which 
 are  (fully)  supervised  and  self-supervised-based,  respectively  (see  relevant 
 experiment’s  section  for  additional  benchmarking).  Box  plot  whiskers  represent  a  90% 
 CI. 



 Figure  3  |  ROC  AUC  performance  comparison  of  five  models  in  four  independent 
 AMD-biomarker classification tasks when trained on less than 700 OCT volumes 

 Shown  are  the  ROC  AUC  scores  of  SLIViT  (blue),  SLIVER-net  (orange),  3D  ResNet 
 (green),  3D  ViT  (red),  and  UniMiSS  (brown)  on  four  single-task  classification  problems 
 of  AMD  high-risk  factors  in  two  independent  volumetric-OCT  datasets.  The  expected 
 performance  of  a  naive  classifier  is  0.5.  The  left  panel  shows  the  performance  when 
 trained  and  tested  on  the  Houston  Dataset.  The  right  panel  shows  the  performance 
 when  trained  on  the  Houston  Dataset  and  tested  on  the  SLIVER-net  Dataset  (see  Table 
 S1A). Box plot whiskers represent a 90% CI. 



 Figure  4  |  Performance  comparison 
 on  cardiac  function  prediction  tasks 
 using echocardiograms 

 Upper  panel  -  ROC  curves  of 
 cardiomyopathy  prediction 
 (EF<0.5).  Middle  panel  -  predicted 
 vs.  actual  EF  levels  for  three 
 different  models  trained  on  the 
 original  training  set  (solid  black  line 
 represents  the  y=x  line).  Lower 

 panel-  performance  of  heart  EF  𝑅  2 
 prediction  using  different 
 percentages  of  the  original  training 
 dataset.  Box  plot  whiskers 
 represent  a  90%  CI.  Of  note,  when 
 SLIViT  was  trained  on  25% 
 (n=1,866)  of  the  original  training 
 set  it  obtained  similar  accuracy  as 
 the  other  examined  methods  when 
 trained  on  100%  (n=7,465)  of  the 
 training set. 



 Figure 5 | SLIViT’s ROC curve compared to junior clinical retina specialists’ assessment 

 Shown  are  the  ROC  curves  (blue)  of  SLIViT  trained  to  predict  four  AMD  high-risk 
 biomarkers  (DV,  IHRF,  SDD,  and  hDC;  see  main  text)  using  less  than  700  OCT  volumes 
 (Houston  Dataset)  and  tested  on  an  independent  dataset  (Pasadena  Dataset).  The 
 light-blue  shaded  area  represents  a  90%  CI  for  SLIViT’s  performance.  The  red  dot 
 represents  the  specialists’  average  performance.  The  green  asterisks  correspond  to  the 
 retina  specialists’  assessments.  Two  of  the  clinical  specialists  obtained  the  exact  same 
 performance score for IHRF classification. 



 Supplementary Material 
 Figure  S1  |  PR-AUC  performance  comparison  of  five  models  in  four  independent 
 AMD-biomarker classification tasks when trained on less than 700 OCT volumes 

 Shown  are  the  PR  AUC  scores  as  an  alternative  scoring  metric  for  the  experiment 
 shown  in  Figure  3.  The  dashed  lines  represent  the  corresponding  biomarker’s 
 positive-label  prevalence,  which  is  the  expected  PR  AUC  score  of  a  naive  classifier.  The 
 left  panel  shows  the  performance  when  trained  and  tested  on  the  Houston  Dataset.  The 
 right  panel  shows  the  performance  when  trained  on  the  Houston  Dataset  and  tested  on 
 the SLIVER-net Dataset (see Table S1B). Box plot whiskers represent a 90% CI. 



 Figure S2 | Performance comparison of a cardiomyopathy binary classification task on 
 echocardiograms 

 Shown  are  the  PR  curves  yielded  by  modeling  SLIViT  (blue)  and  3D  ResNet  (green)  to 
 classify cardiomyopathy. The shaded areas represent a 90% CI. 



 Figure  S3  |  SLIViT’s  PR  performance  compared  to  junior  clinical  retina  specialists’ 
 assessment 

 Shown  are  the  PR  curves  (blue)  of  SLIViT  trained  to  predict  four  AMD  high-risk 
 biomarkers  (DV,  IHRF,  SDD,  and  hDC;  see  main  text)  using  less  than  700  OCT  volumes 
 (Houston  Dataset)  and  tested  on  an  independent  dataset  (Pasadena  Dataset).  The 
 light-blue  shaded  area  represents  a  90%  CI  for  SLIViT’s  performance.  The  red  dot 
 represents  the  specialists’  average  performance.  The  green  asterisks  correspond  to  the 
 retina  specialists’  assessments.  Two  of  the  clinical  specialists  obtained  the  exact  same 
 performance score for IHRF classification. 



 Figure S4 | SLIViT’s performance in a volumetric-OCT frame-permutation experiment 

 Shown  is  the  ROC  AUC  scores  distribution  of  100  shuffled  models  (light  blue)  trained  on 
 100  different  (shuffled)  copies  of  a  volumetric-OCT  dataset.  The  expected  performance 
 of  a  naive  classifier  is  0.5.  Box  plot  whiskers  extend  to  the  5th  and  the  95th  percentiles 
 of  the  100  shuffled  models’  performance  distribution.  The  dashed  blue  line  represents 
 the  performance  of  a  SLIViT  model  trained  on  the  volumetric-OCT  dataset  using  the 
 original  order  of  each  volume.  The  performance  ranks  of  this  latter  model  compared  to 
 the  former  models’  distribution  were  22,  34,  56,  and  47  for  DV,  IHRF,  SDD,  and  hDC, 
 respectively. 



 Figure  S5  |  Pre-training  ablation  study  for  (volumetric)  OCT-related  downstream  learning 
 tasks 

 Shown  are  the  ROC  (left)  and  PR  (right)  AUC  scores  across  different  fine-tuned  models 
 for  volumetric-OCT  classification  tasks  initialized  with  five  different  sets  of  pre-trained 
 weights.  The  expected  ROC  AUC  score  of  a  naive  classifier  is  0.5.  Combined,  the 
 proposed  SLIViT’s  initialization,  is  ImageNet  weights  initialization  followed  by  supervised 
 pre-training  on  the  Kermany  Dataset.  ssCombined  is  an  ImageNet  weights  initialization 
 followed  by  self-supervised  pre-training  on  an  unlabeled  version  of  the  Kermany 
 Dataset.  The  dashed  lines  represent  the  corresponding  biomarker’s  positive-label 
 prevalence,  which  is  the  expected  PR  AUC  score  of  a  naive  classifier.  Box  plot  whiskers 
 represent a 90% CI. 



 Figure  S6  |  Pre-training  ablation  study  for  (volumetric)  non-OCT-related  downstream 
 learning tasks 

 Shown  are  the  scores  for  the  volumetric  ultrasound  and  MRI  regression  tasks  𝑅  2    
 initialized  with  five  different  sets  of  pre-trained  weights.  Combined,  the  proposed 
 SLIViT’s  initialization,  is  ImageNet  weights  initialization  followed  by  supervised 
 pre-training  on  the  Kermany  Dataset.  ssCombined  is  an  ImageNet  weights  initialization 
 followed  by  self-supervised  pre-training  on  an  unlabeled  version  of  the  Kermany 
 dataset. Box plot whiskers represent a 90% CI. 



 Table  S1  |  Average  classification  performance  scores  of  SLIViT,  SLIVER-net,  3D 
 ResNet, 3D ViT, and UniMiSS trained on less than 700 OCT volumes 

 Shown  are  the  performance  raw  numbers  underlying  Fig.  3  (ROC  AUC)  and  Fig.  S1 
 (PR  AUC)  of  the  AMD  high-risk  biomarker  prediction  experiments.  The  numbers  in  the 
 square brackets represent the corresponding 90% CI. 

 A – ROC AUC scores 

 Test dataset  Method  DV  IHRF  SDD  hDC 

 Houston 

 SLIViT  .924 
 [.909, .938] 

 .883 
 [.86, .906] 

 .877 
 [.855, .893] 

 .89 
 [.877, .916] 

 SLIVER-net  .838 
 [.813, .86] 

 .837 
 [.82, .855] 

 .805 
 [.78, .827] 

 .854 
 [.836, .869] 

 3D ResNet  .777 
 [.769, .783] 

 .655 
 [.625, .682] 

 .783 
 [.762, .806] 

 .782 
 [.757, .805] 

 3D ViT  .576 
 [.547, .605] 

 .617 
 [.583, .651] 

 .629 
 [.598, .66] 

 .667 
 [.63, .703] 

 UniMiSS  .783 
 [.771, .793] 

 .675 
 [.66, .69] 

 .714 
 [.701, .726] 

 .715 
 [.7, .729] 

 SLIVER-net 

 SLIViT  .958 
 [.941, .975] 

 .891 
 [.873, .909] 

 .967 
 [.959, .973] 

 .863 
 [.839, .892] 

 SLIVER-net  .933 
 [.919, .95 ] 

 .839 
 [.817, .86] 

 .911 
 [.9, .922 ] 

 .625 
 [.576, .676] 

 3D ResNet  .904 
 [.891, .911] 

 .8 
 [.788, .813] 

 .895 
 [.865, .925] 

 .716 
 [.689, .737] 

 3D ViT  .642 
 [.611, .674] 

 .758 
 [.737, .78] 

 .735 
 [.7, .77] 

 .718 
 [.677, .758] 

 UniMiSS  .929 
 [.915, .939] 

 .781 
 [.753, .808] 

 .774 
 [.723, .825] 

 .795 
 [.765, .825] 



 B – PR AUC scores 

 Test dataset  Method  DV  IHRF  SDD  hDC 

 Houston 

 SLIViT  .914 
 [.898, .928] 

 .852 
 [.826, .875] 

 .855 
 [.831, .879] 

 .795 
 [.747, .838] 

 SLIVER-net  .708 
 [.676, .744] 

 .799 
 [.778, .817] 

 .785 
 [.752, .816] 

 .74 
 [.716, .76] 

 3D ResNet  .759 
 [.748, .769] 

 .619 
 [.584, .647] 

 .791 
 [.77, .815] 

 .669 
 [.622, .697] 

 3D ViT  .589 
 [.551, .628] 

 .627 
 [.584, .67] 

 .54 
 [.494, .586] 

 .479 
 [.428, .529] 

 UniMiSS  .755 
 [.742, .769] 

 .616 
 [.598, .634] 

 .711 
 [.696, .726] 

 .484 
 [.462, .506] 

 SLIVER-net 

 SLIViT  .575 
 [.517, .63] 

 .728 
 [.696, .763] 

 .399 
 [.341, .469] 

 .222 
 [.184, .263] 

 SLIVER-net  .535 
 [.47, .588] 

 .621 
 [.588, .653] 

 .278 
 [.221, .345] 

 .093 
 [.07, .122] 

 3D ResNet  .497 
 [.444, .553] 

 .593 
 [.563, .626] 

 .183 
 [.147, .225] 

 .219 
 [.162, .282] 

 3D ViT  .06 
 [.046, .074] 

 .238 
 [.199, .276] 

 .046 
 [.032, .061] 

 .061 
 [.042, .08] 

 UniMiSS  .56 
 [.497, .623] 

 .48 
 [.431, .528] 

 .153 
 [.114, .191] 

 .08 
 [.061, .099] 
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