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.7 Abstract

38 We present SLIVIT, a deep-learning framework that accurately measures
39 disease-related risk factors in volumetric biomedical imaging, such as magnetic
40 resonance imaging (MRI) scans, optical coherence tomography (OCT) scans, and
41 ultrasound videos. To evaluate SLIVIT, we applied it to five different datasets of these
42 three different data modalities tackling seven learning tasks (including both classification
43 and regression) and found that it consistently and significantly outperforms
44 domain-specific state-of-the-art models, typically improving performance (ROC AUC or
45 correlation) by 0.1-0.4. Notably, compared to existing approaches, SLIVIiT can be
46 applied even when only a small number of annotated training samples is available,
47 which is often a constraint in medical applications. When trained on less than 700
48 annotated volumes, SLIVIT obtained accuracy comparable to trained clinical specialists
49 while reducing annotation time by a factor of 5,000 demonstrating its utility to automate
50 and expedite ongoing research and other practical clinical scenarios.

s Main

52 Biomedical imaging analysis is a critical component of clinical care with widespread use
53 across multiple domains. For example, analyzing optical coherence tomography (OCT)
54 images of the retina allows ophthalmologists to diagnose and follow up on ocular
55 diseases, such as age-related macular degeneration (AMD), and tailor appropriate and
56 personalized interventions to delay the progression of retinal atrophy and irreversible
57 vision loss'2. Another example is the analysis of heart function using cardiac imaging,
58 such as heart computed tomography (CT) and ultrasound. Monitoring heart function can
59 help cardiologists assess potential cardiac issues, prescribe medications to improve a
60 medical condition, e.g., reduced heart ejection fraction, and guide treatment decisions**.
61 Lastly, radiologists’ analysis and regular monitoring of breast imaging such as
62 mammography and magnetic resonance imaging (MRI) help detect early breast
63 cancers, initiate a consequent interventive therapy, and determine the effectiveness of
64 such therapeutics®®. These medical insights and actionable information are obtained
65 following an expert’s time-intensive manual analysis. The automation of these analyses
66 using artificial intelligence may further improve healthcare as it reduces costs and
67 treatment burden’.

68

69 Deep vision models, such as Convolutional Neural Networks (CNNs) and their
70 derivatives, are considered state-of-the-art methods to tackle computer vision tasks in
71 general®® and medical-related vision tasks in particular'®. In order to train a deep vision
72 model to accurately learn and predict a target variable in a general vision task
73 (excluding segmentation tasks) from scratch, a very large number of training samples is



74 needed. Transfer learning addresses this challenge by pre-training a vision model for a
75 general learning task on a very large data set, and then using this general model as a
76 starting point for training a specialized model on a much smaller dataset'. The key
77 advantage of transfer learning is that the pre-training can be done on a large dataset in
78 another domain, where data are abundant, and then the fine-tuning can be done using a
79 small dataset in the domain of interest. Using a transfer learning approach, a plethora of
so previously developed deep vision methods analyzing 2D biomedical-imaging'®'®, were
81 first pre-trained on over a million labeled natural images (in a supervised fashion) taken
82 from ImageNet'®, and later on, fine-tuned to a specific medical-learning task on a much
83 smaller number of labeled biomedical images (typically fewer than 10,000). Some
84 methods used self-supervised-based transfer-learning techniques relying mainly on
85 unlabeled medical data'~"°, and others combined both natural and medical images’.
g6 Overall, the understanding that pre-trained weights can be leveraged as ‘prior
87 knowledge’ for fine-tuning downstream learning tasks, were major factors in the
g8 fruitfulness of the maijority of these 2D biomedical-imaging deep vision models.

89

92 Many diagnoses rely, however, on volumetric biomedical imaging (e.g., 3D OCT and
91 MRI scans, or ultrasound videos) and transfer learning is not directly applicable, since in
92 contrast to the 2D domain, there is no large annotated ‘ImageNet-like’ dataset of
93 structured 3D scans. Moreover, annotating 3D biomedical images is far more
94 labor-prohibitive than 2D images. For example, a 3D OCT scan that is composed of 97
95 2D frames (usually referred to as B-scans) usually requires a 5-10 minutes inspection of
96 a highly trained clinical retina specialist in order to detect retinal-disease biomarkers,
97 such as, the volume of a drusen lesion?'. Therefore, considering the resources typically
98 devoted to such a task, it is practically infeasible to annotate 100,000 (or more)
99 volumes, to eliminate the necessity of supervised transfer learning. In fact, even merely
100 compiling such large-sized volumetric datasets (without labels) that is required for
101 self-supervised-based learning? could be cost-, processing-, and storage-prohibitive
102 when standard resources are available®>. These gaps are acute because state-of-the-art
103 supervised models for 3D image analysis, such as 3D ResNet* and 3D Vision
104 Transformer® (ViT), involve the optimization of a very large number of parameters, thus
105 requiring large datasets for training?.

106

107 Nonetheless, several attempts were undertaken to tackle volumetric-biomedical-imaging
108 learning tasks with sparsely annotated training datasets on different data modalities. For
109 instance, SLIVER-net was designed for binary classification of AMD biomarkers in 3D
110 OCT scans?. EchoNet was designed to predict heart ejection fraction (EF) in
111 echocardiograms?®. A few other recent studies achieved state-of-the-art performance
112 using 2D-Slice-CNN-based methods and 3D ResNet-based architectures in diagnosing
113 Alzheimer’s disease?®®, breast cancer®®, and Parkinson’s disease®' in 3D MRI scans.



114 Notably, although 3D ResNet was first published in 2018, it is still largely considered a
115 solid baseline and evidently, very popular not only on MRI studies (e.g., ***'), but also
116 across other recent volumetric-medical-imaging-modality studies such as ultrasound®
117 and CT* studies. The main limitation of each of these approaches is that they are all
118 tailored and optimized for specific biomedical data modality and domain. While each
119 data modality requires a specific treatment, there are commonalities across the different
120 data modalities, and a foundational approach that can provide improved results across
121 multiple modalities will provide a faster development time for future predictive models.
122 UniMiSS, a pioneering pyramid U-like Medical Transformer devised by Xie Y., et al.”,
123 has recently been proposed to tackle this gap by utilizing multi-modal unlabeled medical
124 images in a self-supervised manner. UniMiSS surpassed a diverse set of strong
125 self-supervised approaches®* in a variety of medical-imaging learning tasks with
126 different data modalities. However, with respect to volumetric imaging, it was tested on
127 a single classification problem in a single imaging modality, and regression was not
128 addressed at all. Thus, the full utility of transfer learning has yet to be attained across
129 different modalities of volumetric-medical-imaging technologies.

130

131 Here, we present the SLice Integration by Vision Transformer (SLIVIT) framework, a
132 uniform 3D-based deep-learning model that overcomes the annotation bottleneck and is
133 adept at volumetric-biomedical-imaging learning tasks. We leverage the combination of
134 @ 2D ConvNeXt-based*® feature-map extractor and a tweaked ViT* together with
135 cross-dimension and cross-domain (i.e., imaging modality, organ, and pathology)
136 transfer learning. The 2D-based feature-map extractor allows leveraging prior 2D
137 biomedical (and non-biomedical) vision knowledge when extracting information from a
138 given volume in a variety of medical-imaging modalities. The attention-based
139 mechanism of the ViT allows next to integrate the extracted information across the 2D
140 frames of the volume in question.

141

142 Specifically, we demonstrate the generalizability and utility of SLIVIT in very different
143 medical domains, including retinal-disease risk biomarkers diagnosis in 3D OCT scans,
144 cardiac function in echocardiogram videos, and hepatic-disease severity assessment
145 from 3D MRI scans. We show that SLIViT consistently attains significantly improved
146 performance compared to both strong generic baselines and domain-specific
147 state-of-the-art models. Notably, the architecture and hyperparameters stay invariant
148 across (tasks and) data modalities, that is, SLIVIT provides these improved performance
149 results across data modalities with neither tailoring the architecture nor optimizing
150 hyperparameters per (task or) data modality, unlike other medical-imaging learning
151 methods(e.g., "*'%). We further demonstrate that SLIViT’s performance is comparable
152 to clinical specialists’ manual annotation, and that it shortens the annotation time by a
153 factor of 5,000; hence it can potentially be used to save resources, reduce the burden



154 on clinicians, and expedite ongoing research’. Finally, we demonstrate that SLIVIT is
155 robust to frame permutation, suggesting that (1) it is able to reconstruct long-range
156 dependencies of the volume’s depth dimension (that are likely ignored when the volume
157 is tiled; see next section); and (2) it could be applied to datasets in which the slice order
158 (within a volume) is not recorded, a recurring situation in currently available public
159 limited datasets. Of note, compared to other methods (e.g., '), SLIViT does not require
160 task-specific hyperparameter tuning and is relatively memory-thrifty (and thus can be
161 effectively trained using standard hardware in reasonable time). Both ultimately facilitate
162 generalizability, reproducibility, and successful applicability by a broader community of
163 researchers to their datasets.

164

165 Results

16 A uniflied Al  framework for analyzing volumetric
167 biomedical-imaging data

168 In this study, we devise SLIVIT, a deep-learning vision model for automatic annotation of
169 medical features in three-dimensional biomedical images. An overview of SLIVIT is
170 summarized in Figure 1. SLIVIiT preprocesses volumes into 2D images and then
171 combines two deep vision architectures: (1) a ConvNeXt backbone module® that
172 extracts feature maps for the slices (i.e., 2D frames of a volume), and (2) a ViT module*°
173 that integrates the slices feature maps into a single diagnosis prediction. One key part
174 of SLIVIT is that its feature-map extractor is initialized by pre-trained weights. These
175 weights were obtained by pre-training a 2D ConvNeXt (T variant) first on ImageNet'®
176 and then on an independent 2D OCT B-scan dataset, compiled by Kermany DS., et
177 al.*!, and labeled with retinal-disease coarse risk factors. These pre-trained weights,
178 that were used for initialization on each of the experiments detailed in this study,
179 allowed SLIVIT to improve the performance in a variety of learning tasks especially
180 when a very small training dataset is available (few hundreds of samples). Our
181 hypothesis was that the basic features that are extracted from 2D B-scans when
182 learning one task could serve as an improved training starting point not only for 3D OCT
183 scans but also for other data types, such as ultrasound video or 3D MRI.

184

185 In order to cope with volumetric data, we treat each volume as a set of slices. A similar
186 technique was shown to be effective for volumetric data modalities**. Essentially, each
187 original slice of the volume is embedded into a single feature map. However, SLIVIT
188 reduces memory overhead and accelerates the processing time, by tiling the 2D images
189 into a single elongated 2D image (rather than a set of separate images), such that it



190 conforms with the input dimension expected by the 2D-based feature-map extractor.
191 Once the feature maps are extracted, they are paired with (trainable) positional
192 embeddings and comprehensively aggregated using a downstream ViT module®.
193 SLIViT’s VIT module together with (trainable) positional embeddings allow to preserve
194 the long-range dependencies across the depth dimension if needed®“3. Similar
195 divide-and-conquer schemes were shown to be fruitful in other studies as well**5. Of
196 note, the ViT’s attention mechanism implicitly eliminates the necessity for image
197 registration preprocessing.

198

199 We tested SLIVIT on five datasets of three different data modalities (OCT, ultrasound,
200 and MRI) with a limited number of annotated samples, tackling a variety of
201 clinical-feature learning tasks (including both classification and regression). In the OCT
202 experiment, we evaluated the diagnosis performance of ocular disease high-risk
203 factors®” and measured it by both the receiver operating characteristic (ROC) area
204 under the curve (AUC) and precision-recall (PR) AUC. In the ultrasound and MRI

205 experiments, we compared the R® of the models’ predictions vs. ground truth in
206 (respectively) cardiac function analysis and in hepatic fat level imputation. In each data
207 modality, we compared SLIViT with a diverse set of up to six strong baselines, including
208 domain-specific?*?’2° and generic (fully-supervised->** and self-supervised-based”'®)
209 state-of-the-art methods. SLIVIT manifested consistent and significant performance
210 superiority across domains (Fig. 2). In the following sections we present these and
211 additional results in detail.

212

213 SLIVIT outperforms state-of-the-art models in detecting ocular
214 disease high-risk factors using 3D OCT scans

215 We first compared SLIViT’s performance against trained SLIVER-net (subjected to the
216 same pre-training approach), 3D ResNet, 3D ViT, and UniMiSS models, on the Houston
217 Dataset which includes only 691 OCT B-scan volumes of different individuals (see
218 Methods). OCT B-scan volume data were collected from independent individuals
219 affected in at least one eye by dry AMD, a globally leading cause of irreversible central
220 visual impairment*. Each OCT volume had four different binary labels of AMD high-risk
221 biomarkers- drusen volume larger than 0.03 mm?® (DV), intraretinal hyperreflective foci
222 (IHRF), subretinal drusen deposits (SDD), and hyporeflective drusen cores (hDC)*. The
223 annotation was done by a senior retina specialist and the procured positive-label
224 frequencies of DV, IHRF, SDD, and hDC, were 47%, 43.5%, 52.8%, and 31.3%,
225 respectively. We randomly split the dataset into train, validation, and test sets of sizes
226 483 (70%), 104 (15%), and 104 (15%), respectively, and trained four different SLIViT
227 models (one per binary label). We used both ROC AUC and PR AUC scores (the latter



228 is also known as average precision or average positive predictive value) for
229 performance evaluation. The models were trained (using less than 600 volumes) and
230 tested on the same split (see left panels of Figures 3 and S1, and Table S1). In all four
231 biomarkers, SLIViT significantly outperformed the other approaches in both evaluation
232 metrics. For example, in the DV classification task (also shown as the OCT experiment
233 in Fig. 2) SLIVIiT (ROC AUC=0.924; CI [0.909, 0.938]) was significantly better compared
234 to the second-best performing method (SLIVER-net ROC AUC=0.838; CI [0.813, 0.86];
235 paired t-test p-value<0.001). In terms of average precision of the DV classification,
236 SLIVIT (PR AUC=0.914; CI [0.898, 0.928]) significantly outperformed the second-best
237 performing method (3D ResNet PR AUC=0.759; CI [0.748, 0.769]; paired t-test
238 p-value<0.001). Notably, since the biomarkers considered in these experiments are all
239 structural, their identification requires aggregation of three-dimensional information.
240 Thus, the ability of SLIVIiT to successfully identify these biomarkers suggests that it
241 adequately captures a three-dimensional signal within a given volume.

242

243 To further challenge SLIVIT we sought to explore its performance on the SLIVER-net
244 Dataset used in the original SLIVER-net study?. In this task, SLIVER-net should have
245 an advantage as it was optimized for this dataset. The SLIVER-net Dataset was
246 composed of roughly one thousand OCT scans (imaged from independent individuals in
247 an Amish population) collected from three different clinical centers (see Methods). We
248 trained SLIVIT, SLIVER-net (subjected to the same pre-training approach), 3D ResNet,
249 3D VIiT, and UniMiSS, this time using all the 691 Houston Dataset volumes and used the
250 SLIVER-net Dataset as the test set. For some biomarker classification tasks, the
251 relative improvement of SLIVIT compared to SLIVER-net was reduced, as expected in
252 this setting. Yet, SLIVIT was never overperformed by the other approaches, in any of the
253 four AMD-biomarker classification tasks (see right panels of Figures 3 and S1, and
254 Table S1).

255

256 SLIVIT outperforms state-of-the-art models in analyzing cardiac
257 function using ultrasound videos

258 In order to evaluate SLIViT’s generalizability, we next tested it on other 3D data
259 modalities. The EchoNet-Dynamic Dataset contains 10,030 standard apical
260 four-chamber view ultrasound videos (echocardiograms) obtained from unrelated
261 individuals, each associated with a continuous number representing the corresponding
262 ejection fraction (EF) measured in a clinical setting*®. The EF is measured by tracing the
263 chamber volume of the left ventricle in the end-systole and end-diastole, and is a key
264 metric of cardiac function as it measures how well the heart’s left ventricle is pumping
265 blood. Low EF measurements (<0.5) can indicate cardiomyopathy or other heart



266 problems3#°. As a first experiment, we sought to explore SLIViT's ability to predict
267 cardiomyopathy as a binary classification task. To this end, we binarized the EF
268 measurements accordingly (>=0.5 was considered as normal®®*') and, using the original
269 EchoNet-Dynamic Dataset split, trained SLIVIT and 3D ResNet (Fig. 4, upper panel).
270 SLIVIT obtained 0.913 ROC AUC (CI [0.901, 0.928]) and significantly overperformed 3D
271 ResNet with 0.793 ROC AUC (CI1 [0.772, 0.814]) (paired t-test p-value<0.001).

272

273 In a second experiment, we sought to test SLIVIT in a regression task. Previously,
274 Ghorbani A., et al., implemented EchoNet, which is a GoogLeNet-based architecture for

275 predicting the EF of a given echocardiogram video, and obtained a 0.5 R® on the
276 EchoNet-Dynamic Dataset test set?®. This reported result did not include a Cl (that
277 would allow a direct comparison) and the trained model itself was not published. Thus,
278 we implemented the proposed method and were able to reproduce similar levels of

279 performance (R2=0.489; Cl [0.434, 0.526]). Using the same split from the original
280 EchoNet paper, we then trained SLIVIT and obtained a significant improvement of 0.75

281 R (Cl [0.706, 0.781]; paired t-test p-value<0.001). A scatter plot of the
282 actual-versus-predicted per trained model is shown in the middle panel of Fig. 4. As we
283 did in all other experiments, we also tested 3D ResNet and UniMiSS and observed that
284 both significantly underperformed SLIVIT with 0.384 (Cl [0.364, 0.413]) and 0.502 (ClI

285 [0.487, 0.531]) RZ, respectively (see ultrasound experiment in Fig. 2 and middle and
286 lower panels of Fig. 4). Moreover, we also examined (1) a factorized spatiotemporal
287 ResNet architecture (R(2+1)D, in contrast to the 3D-filter-based R3D ResNet we used
288 across the study) that is known to capture well both spatial and temporal features from
289 video frames and achieved state-of-the-art performance in a variety of video-based
290 learning tasks?*, and (2) 3D ViT?® Both methods performed below par compared to the

291 other abovementioned benchmarks (R2=-0.081; Cl [-0.106, -0.056] and R2=0.333; Cl
292 [0.27, 0.396], respectively).

293

294 This result, together with the exceptional magnitude of this public annotated dataset,
295 further motivated us to examine the dynamics of the training set size and SLIViT’s
296 performance in predicting the EF of a given echocardiogram (Fig. 4, lower panel). We
297 randomly sampled size-decreasing subsets from the original training set and trained a
298 SLIVIT model per subset. Compared to other examined methods trained on the original

299 training set (n=7,465), when SLIViT used the 25% subset (n=1,866) its performance (R2
300 =0.487; CIl [0.466, 0.507]) was significantly better than R3D, R(2+1)D, and 3D ViT
301 (paired t-test p-value<0.001); on par with EchoNet (paired t-test p-value>0.579); and
302 significantly lower than UniMiSS (paired t-test p-value<0.001). When SLIViT used the

303 50% subset, it significantly outperformed all other benchmarked methods (R2=0.614; Cl



304 [0.594, 0.634]; paired t-test p-value<0.001). These observations substantiate SLIViT’s
305 ability to appropriately learn spatiotemporal features using a sparsely-labeled dataset.
306

s07r SLIVIT outperforms state-of-the-art models in predicting hepatic
s08 fat levels in 3D MRI scans

309 We next sought to evaluate SLIVIT ability to model 3D MRI data. We used a UK
310 Biobank Dataset containing 3D hepatic MRI scans and a corresponding measurement
311 for hepatic proton density fat fraction (PDFF) level. The PDFF measurement provides
312 an accurate estimation of hepatic fat levels and it is also proposed to be used as a
313 non-invasive method to limit unnecessary hepatic biopsies®*®*. The development of a
314 quantitative measurement of fat has been instrumental in improving the diagnosis of
315 various fatty-liver and diabetes-related diseases®>°. We removed unlabeled scans and
316 preprocessed the rest of the dataset to contain only a single scan per individual. In this
317 experiment we compared SLIVIiT to 3D ResNet (that plays a double role- both the
318 general and domain-specific state-of-the-art method?**') and UniMiSS. We randomly
319 split the dataset and trained both models to measure PDFF levels of a given 3D MRI.

320 SLIVIiT reached 0.916 R’ (Cl [0.879, 0.952]) and significantly outperformed both 3D
321 ResNet and UniMiSS that obtained 0.611 (Cl [0.566, 0.644]) and 0.599 (CI [0.531,

322 0.667]) Rz, respectively (paired t-test p-value<0.001; See MRI experiment in Fig. 2). We
323 also evaluated the performance of 3D VIT and a recently developed
324 2D-Slice-CNN-based architecture, that was shown to perform well on volumetric-MRI
325 learning tasks?®, but they both ended up with poor performance compared to all the

326 abovementioned benchmarks (R2=0.18 (Cl [0.145, 0.214]) and -0.130 (CI [-0.111,
327 -0.148]), respectively).
328

320 SLIVIT efficiently attains the quality of clinical specialists

330 To showcase the potential utility of automating the detection of AMD high-risk
331 biomarkers we gathered the Pasadena Dataset, a third 3D OCT dataset containing 205
332 3D OCT volumes of (205) independent individuals. The ground truth for this dataset was
333 obtained by three senior retina specialists (we used a majority vote when there was no
334 consensus). We asked seven junior clinicians to (independently) annotate each of the
335 OCT volumes in this dataset for the aforementioned four AMD high-risk biomarkers, that
336 is, DV, IHRF, SDD, and hDC. We also annotated these volumes using the same SLIViT
337 model we trained on the 691 Houston dataset volumes. Figure 5 and S3 summarize
338 respectively the true positive rate (TPR; also known as recall) vs. false positive rate
339 (FPR; also known as false alarm rate) and the positive predictive value (PPV; also



340 known as precision) vs. recall of SLIVIT and the seven junior clinicians over the
341 Pasadena Dataset. Clinicians typically reached comparable performance but had to
342 invest 5,000-fold more time to do so (on average, it took 17 working hours net for each
343 clinician to procure the annotations while SLIVIT completed the job in under 12
344 seconds). Interestingly, SLIVIT obtained considerably lower performance in the hDC
345 classification task compared to the other biomarker classification tasks. A possible
346 reason is the absence of a universal consensus on the clinical definition of hDC. This
347 feature had the highest senior-specialists’ annotation discordance among the four
348 biomarkers, suggesting indeed that it is harder to distinguish between cases and
349 normals.

350

351 SLIVIT is robust to within-volume frame permutation

352 We next sought to explore SLIViT’s robustness to changes in the order of the frames
353 encoding a volume. To this end, we generated 100 copies of the Houston Dataset and
354 randomly shuffled each volume (in each of these 100 copies). Then, we used the same
355 split to train 100 SLIVIiT models (one per shuffled copy; henceforth “shuffled models”)
356 and one model on the Houston Dataset using the original order (henceforth “original
357 model”) to classify the aforementioned structural AMD high-risk factors. Figure S4
358 shows the average bootstrapped ROC AUC dispersion of these 101 models.
359 Interestingly, the original model did not outperform the shuffled models. We observed
360 that compared to the 100 shuffled-models performance, the average rank of the original
361 model across the four AMD biomarkers was 40. This finding suggested that even if the
362 original order is not documented, SLIViT’s performance does not deteriorate. Thus, not
363 only does SLIVIT effectively aggregate information across slices, it can do this even
364 when the order of slices is not maintained.

365

ses 1he utility of 2D B-scan OCT in pre-training

367 The utility of ImageNet pre-training (henceforth “ImageNet weights”) has been
368 demonstrated in various medical-imaging learning tasks’'2141560-62  That said, transfer
369 learning between unrelated domains remains fairly controversial'®*%°, Moreover,
370 commonalities across data modalities may be counterintuitive. We thus conducted a
371 pre-training ablation study across the different learning tasks to evaluate the benefit of
372 our cross-modality and cross-dimensionality transfer learning and assess the
373 contribution of different selections made for the pre-training step of SLIVIT (Figures S5
374 and S6). We compared four different initializations: random weights, ImageNet weights,
375 random weights initialization followed by 2D OCT B-scans pre-training (henceforth
376 “Kermany weights”), and ImageNet weights initialization followed by 2D OCT B-scans



377 pre-training (henceforth “combined weights”). Of note, combined weights is the original
378 initialization approach we intended (and eventually selected) for SLIViT. The results of
379 this experiment indicate three key insights. First, we observed that using ImageNet
380 weights improved performance for all the data modalities we tested relative to random
381 weights. We also see that utilizing 2D OCT B-scans in pre-training (either Kermany
382 weights relative to random weights or combined weights relative to ImageNet weights)
383 improved performance in all downstream learning tasks. Interestingly, in the four
384 OCT-related classification tasks, using Kermany weights (that is, without ImageNet) was
385 the best approach and typically led to better performance, even when compared to the
386 combined approach (Fig. S5). This last finding aligns with a conclusion previously
387 indicated by Zhang V., et al.”® and may suggest an even broader conclusion: for an
388 out-of-distribution medical imaging task, pre-training using both (out-of-distribution)
389 natural images and out-of-distribution medical images leads to better representation,
390 when compared to pre-training only on out-of-distribution medical images (Fig. S6). On
391 the other hand, for an in-distribution downstream task, pre-training only on in-distribution
392 medical images is more beneficial (Fig. S5).

393

394 We also wished to assess the benefit of using supervised learning for pre-training, as
395 opposed to self-supervised learning. The latter was demonstrated as a powerful
396 approach in different visual tasks®, specifically, in the medical-imaging domain where
397 procuring annotations is laborious and expensive’'"'%20_ We thus sought to explore the
398 utility of self-supervised-based pre-training approach on SLIVIT using an unlabeled
399 version of the 2D OCT B-scans dataset (Figures S5 and S6). To this end, we took the
400 REMEDIS approach’ that was originally shown to obtain remarkable performance when
401 pre-trained even on much smaller (unlabeled) datasets than our 2D OCT B-scans
402 dataset. Yet, initializing SLIVIT with the fully supervised pre-trained weights significantly
403 outperformed the self-supervised initialization in all downstream learning tasks (paired
404 t-test p-value<0.001).

405

406 Interestingly, in both ultrasound and MRI experiments, SLIVIT achieved superior
407 performance relative to all competitor benchmarks tested, regardless of the pre-training
408 strategy (Figures 2 and S6). This discovery further demonstrates the advantage of
409 SLIViT’s architecture for out-of-distribution volumetric-medical-imaging learning tasks.
410 For the in-distribution medical imaging task, that is, the (3D) OCT experiment, only
411 pre-training strategies that leveraged the 2D OCT B-scan dataset at full, i.e., Kermany
412 weights and combined weights, showed consistent superior performance relative to all
413 other tested benchmark methods (left panels of Figures 3 and S1, and Fig. S5). This
414 outcome was less surprising and corresponded with a previous study’s conclusion
415 regarding the utility of in-distribution pre-training.

416



«7 Discussion

418 Procuring tens of thousands of annotated 3D biomedical-imaging samples to train
419 standard 3D vision models is expert-time prohibitive, impeding the full optimization of
420 such models. In this work we devised SLIVIiT, an Al-based framework that allows an
421 accurate analysis of potentially any 3D biomedical-imaging dataset. SLIVIT leverages a
422 unique combination of deep vision modules and ‘prior knowledge’ from the 2D domain.
423 This, in turn, allows it to be adept at 3D-biomedical-imaging-learning tasks, in which the
424 number of annotated training samples is typically very limited, and significantly
425 outperform domain-specific state-of-the-art models.

426

427 To showcase SLIViT’s effectiveness and generalizability we evaluated it over several
428 classification and regression problems in diverse biomedical domains (retinal, cardiac,
429 and hepatic) across different 3D biomedical-imaging data modalities (OCT,
430 echocardiograms, and MRI) against domain-specific®*?*° and  generic
431 (fully-supervised-**2° and self-supervised-based’'°) state-of-the-art methods. We started
432 by demonstrating SLIViT’s superiority when trained on less than 700 volumes in four
433 independent binary classification learning tasks of retinal-disease risk factors with two
434 independent 3D OCT datasets. Then we showed SLIViT’s superiority in two heart
435 function analysis tasks both done with an echocardiogram dataset. We next tested
436 SLIVIT on an MRI dataset of 3D liver scans labeled with a corresponding hepatic fat
437 content measurement and again, observed significant improvement compared to the
438 state-of-the-art. We also showed that SLIViT was able to obtain on-par performance to
439 clinical specialists’ assessment, but rather, almost four orders of magnitude faster
449 compared to the annotation procurement net time required by the specialists. Lastly, we
441 explored SLIViT’s learning ability robustness to randomly permuted volumes. We
442 showed that a scenario of shuffled volumes dataset, a recurring situation in the very
443 limited number of publicly available volumetric datasets, has little to no effect on
444 SLIViT’s performance, meaning that SLIVIT is potentially agnostic to imaging protocol.
445

446 To facilitate reproducibility, generalizability, and the likelihood that other researchers will
447 be able to successfully apply SLIVIT to their datasets, we intentionally avoided complex
448 hyperparameter tuning and the usage of specialized hardware for training as required
449 by other methods (e.g., '°). The sizes of the different architectures we used were set
450 according to our available (standard) computational resources, and other
451 hyperparameters were set to default values. This suggests that there is room for further
452 improvement in task-specific performance. Yet, in its current form, SLIVIiT can serve as
453 a reliable baseline model for any study of volumetric biomedical imaging. We believe
454 that SLIVIT’s simplicity is one of its major strengths.

455



456 The utility of self-supervised pre-training has been validated in numerous medical
457 imaging learning tasks”'920¢768 however, its general translatability across domains
458 remains unclear?. According to our study, where a large-enough 2D labeled dataset is
459 accessible and limited labeled volumes are available, the supervised pre-training
460 approach is superior. This finding was supported by our experiments for fine-tuning both
461 in the same domain and across domains. That being said, as demonstrated, SLIViT's
462 pre-training strategy is very flexible and can thus harness the utility of self-supervised
463 approaches, such as REMEDIS. If one has access to an(other) unlabeled dataset of
464 relevant medical images (whether 2D or 3D), then self-supervised pre-training SLIVIT
465 (either) as an alternative to (or followed/preceded by) supervised 2D OCT B-scans
466 pre-training may further improve the model's performance. Notably, the end-to-end
467 fine-tuning approach SLIVIT takes (see Methods) was shown to attain typically better
468 performance for self-supervised-based medical-imaging learning tasks?. That is, SLIVIT
469 already employs an optimized fine-tuning approach for a potential
470 self-supervised-based avenue.

471

472 SLIVIT was tested on 3D OCT scans, echocardiograms, and MRI volumes and can
473 potentially be leveraged to analyze other types of data modalities, such as 3D CT scans
474 and 3D X-ray imaging. Such biomedical volumetric imaging data is inherently structured
475 in the sense that they involve a limited assortment of objects and movements (typically
476 shrinkage, dilation, and shivering). SLIVIiT is specifically tailored to be adept at
477 analyzing a series of biomedical frames created in a structured biomedical-imaging
478 process and does not pretend to be proficient at learning problems of natural videos,
479 such as action recognition tasks. Natural videos are inherently more complex, as the
480 background may change, objects may flip, change color (due to shade), and even
481 disappear (due to obfuscation), let alone when considering a multi-scene video. In
482 addition, there is a plethora of gigantic natural video datasets that allow standard
483 3D-based vision models to be adequately tuned for natural video learning tasks. We
484 thus do not expect SLIVIT to outperform (as is) standard 3D-based vision models in
485 natural-videos-learning tasks (such as action recognition). That being said, SLIViT could
486 potentially be tweaked to perform well on natural videos as well, e.g., using a different
487 feature-map extractor, however, this direction requires further research.

488

489 Importantly, there are multiple additional steps that are required in order to deploy
490 SLIVIT in a clinical setting. Notably, the point of operation (tradeoff between precision
491 and recall) is application specific and further optimization may be required to obtain
492 optimal results at that point of operation. We note that point of operation varies also
493 across clinicians (see Figures 5 and S3). Moreover, additional evaluations of the models
494 are required to ensure no systematic biases exist that would lead to increasing health
495 disparities®.



496
497 Overall, this study highlights an important step toward fully automating
498 volumetric-biomedical-imaging annotation. The major leap happens under ‘real life’
499 settings of a low-number training dataset. SLIVIT thrives given just hundreds of training
500 samples for some tasks giving it an extreme advantage over other 3D-based methods,
501 in almost every practical case that is related to 3D biomedical-imaging annotation. Even
502 under the unrealistic assumption that the financial resources are endless, in ongoing
503 research, due to its nature, the hurdle of a limited-size training dataset is inevitable.
504 Once a previously unknown disease-related risk factor is found and characterized, it
505 could take months in order to train a specialist to be able to accurately annotate this
506 recently-discovered risk factor in biomedical images at scale. However, using a
507 relatively small training dataset (that can be annotated within only a few working days of
508 a single trained clinician), SLIVIT could dramatically expedite the annotation process of
509 many other non-annotated volumes with an on-par performance level of a clinical
510 specialist.

511

1 Methods

s13 SLIVIT’s development and analysis

514 SLIVIT was implemented in Python 3.8 using PyTorch’™ v1.10.2, fast.ai’’ v2.6.3, and
515 scikit-learn” v1.0.2 libraries (full libraries and version list can be found at
516 https://github.com/berkindurmus/SLIViT/blob/main/requirements.txt).

517 Model specifications

518 The SLIVIT framework contains a preprocessing step, a 2D ConvNeXt that serves as a
519 feature-map extractor, and a vision transformer (ViT) that serves as a feature-map
520 integrator (see Fig. 1). A ConvNeXt architecture has several complexities®®. Here we
521 used the backbone of the tiny variant (ConvNeXt-T) with 256x256 image size as
522 SLIViT’s feature-map extractor. The ViT-based feature-map integrator underwent few
523 adjustments with respect to the original architecture®’, including using GelLu as the
524 activation functions™ and initializing the positional embeddings as the number of the
525 original slice. Notably, we intentionally avoid complex hyperparameter tuning and usage
526 of specialized hardware as required by other methods™. The ConvNeXt's variant (T)
527 and the ViT's depth (# layers = 5) were set according to our available (standard)
528 computational resources to facilitate reproducibility, generalizability, and the likelihood
529 that other researchers will be able to successfully apply it to their datasets. The ViT’s
530 width is governed by the number of 2D frames of the input volume.



531
532 Let N be the number of HXW 2D frames of an input image. Given an input WxHXN
533 image, its N frames are resized (according to the ConvNeXt-T variant) and tiled into an
534 image of size Nx256x256 (see Step (1) in Fig. 1). The manipulated image is then fed
535 into the feature-map extractor which generates, in turn, an N*8x8 feature maps with
536 F = 768 filters each. These feature maps are then reshaped into N different 8x8x768
537 feature maps (see Step (3) in Fig. 1), each corresponding to a slice in the original
538 volume. Each of the feature maps is flattened into an 8+8+768 (1D) vector and
539 tokenized into a vector of size 768 using a fully connected (FC) layer. The bias term of
540 the FC layer is initialized as the feature-map number (that essentially corresponds to an
541 original slice number), and the projected feature volumes are then fed into the ViT
542 (along with a class token of the same size). The ViT outputs N encoded values and a
543 class token. The class token is then fed into another FC layer to generate final output.
544 Using the 2D VIiT as a feature-map integrator corresponds with the Factorised Encoder
545 with ‘late fusion of depth information’ of the previously devised 3D ViT named ViViT?,
546 yet, is far less complex than the 3D ViT.

547

s48 Pre-training

540 We borrowed an ImageNet-1K pre-trained SLIViT-like feature-map extractor
550 architecture, ie., a ConvNeXt-T backbone, from
551 https://huggingface.co/facebook/convnext-tiny-224, and appended to it a subsequent
552 FC layer to fit a four-category classification task. We then trained this
553 SLIViT-backbone-like module on the publicly available labeled Kermany Dataset*!™.
554 Training the feature-map extractor on the Kermany Dataset took less than 12 hours
555 using a single NVIDIA Tesla V100 Volta GPU Accelerator 32GB Graphics Card. Several
556 sets of pre-trained weights were examined in this study (see The utility of 2D B-scan
557 OCT in pre-training section). The pre-trained backbone weights obtained from
558 combining ImageNet initialization with additional pre-training on the Kermany Dataset
559 (henceforth “combined weights”), which typically led to the best performance, are
560 available at project’s GitHub repository (see Code availability section).

561

562 Per-task fine-tuning

563 Each of the SLIVIT models used in the different experiments reported here, was
564 initialized with the combined weights. The fine-tuning was done in an end-to-end
565 fashion?. Namely, rather than merely training the downstream feature-map integrator,
566 While keeping the feature-map extractor frozen, all the model's parameters were set as
567 trainable, and were then fine-tuned (according to the dataset and task in question).



568 Notably, we intentionally avoided complex hyperparameter tuning as required by some
569 other methods (e.g., '°) to facilitate reproducibility and generalizability. Frames were
570 resized into 256x256 pixels to fit SLIViT’s backbone architecture and then, standard
571 preprocessing transformations were applied (including contrast stretching, random
572 horizontal flipping, and random resize cropping) using PyTorch’s default values. Binary
573 cross entropy and L1 norm were used as loss functions for the classification and
574 regression tasks, respectively. In each experiment, excluding the ultrasound (in which
575 the split was given), a random validation set was used for determining the convergence
576 of the training process with the same loss function metric used for the test set
577 evaluation. The model was optimized using the default fast.ai optimizer with the default
578 parameters. The starting learning rate in each training procedure was chosen by
579 fast.ai’s learning rate finder and the model was fitted using the fit-one-cycle approach
s80 for faster convergence” . All models were trained with four samples per batch and
581 early stopping was set to five epochs, meaning that the training process continued until
582 No improvement was observed in the validation loss for five consecutive passes on the
583 whole training set. The model weights that achieved the lowest loss on the validation set
584 during training were used for the test set evaluation. Weights & Biases’” was used for
585 experiment tracking and visualizations of the training procedures.

586

sg7 Statistical analysis

588 The performance of each trained model was evaluated (on the corresponding test set)
589 using an appropriate metric score. The binary classification tasks were evaluated using

590 area under the ROC and PR curves. The regression tasks were evaluated using the R’
591 metric. The test set predictions were calculated and a 90% confidence interval (Cl) was
592 computed for each evaluated score using a standard bootstrapping procedure with
593 1,000 iterations as done in other studies'”’®. Briefly, let n denote the test set size, for
594 each bootstrap iteration n samples were randomly drawn (with repetition) and based on
595 the predictions of the sampled set a single score was obtained. Out of the 1,000
596 sampled-sets score distribution, the 50th and 950th ranked scores were selected to
597 obtain the 90% CI. In order to compute the significance value of the difference between
598 two given distributions (induced by two different models) a paired t-test on the
599 distribution of differences between the sampled-set corresponding scores was
600 computed (HA: u # 0). SLIViT's performance improvement was considered to be

601 significant if the paired t-test produced a p-value lower than 1e-3 subject to Bonferroni
602 correction for multiple hypothesis testing.
603



c0s Datasets

605 1 he Houston Dataset

606 1,128 patients were diagnosed with intermediate AMD in their scanned eye by clinical
607 examination (Beckman Classification’) at the Retina Consultants of Texas Eye Clinics
608 between October 2016 and October 2020. This study was reviewed and approved by
609 the Ethics Committee of Retina Consultants Texas (Houston Methodist Hospital,
610 Pro00020661:1 “Retrospective Prospective Analysis of Retinal Diseases”). As the data
611 collection was retrospective, a waiver of informed consent was granted. In case both
612 eyes of a given patient were eligible, one eye was randomly included in the dataset. The
613 dataset included Heidelberg Spectralis (HRA+Optical Coherence Tomography OCT
614 SPECTRALIS; Heidelberg Engineering, Inc, Heidelberg, Germany) 6x6 mm (fovea
615 centered, 10X10 degrees; 49 B-scans spaced 122 microns apart, ART=6) OCT
616 volumes. The data were transferred to the Doheny Image Reading Research Laboratory
617 (DIRRL) for imaging analysis and annotation of the structural OCT biomarkers for AMD
618 progression®®®'. The AMD-biomarker analysis was conducted at the Doheny Image
619 Reading Research Laboratory (DIRRL) in compliance with the Declaration of Helsinki
620 and approved by the UCLA Institutional Review Board (IRB, Ocular Imaging Study,
621 Doheny Eye Center UCLA). Cases with evidence of late stage of AMD and/or additional
622 macular diseases or poor-quality imaging were excluded from the analysis. In total, 691
623 eyes (of 691 patients) were eligible for the biomarkers analysis. The annotations were
624 procured by a senior clinical retina specialist. The recorded case frequency in the whole
625 dataset was as follows: (1) 48.23% of the scans had drusen volume > 0.03 mm? within
626 the 3 central mm? (denoted DV); (2) 36.17% of the scans had intraretinal hyperreflective
627 foci (denoted IHRF); (3) 31.45% of the scans had subretinal drusenoid deposits (SDD);
628 and (4) 11.27% of the scans had hyporeflective drusen core (hDC). Of note, some
629 scans were positive for more than one biomarker.

630

631 The SLIVER-net Dataset

632 The SLIVER-net Dataset, which was originally used by Rakocz and others?’ to tune and
633 validate SLIVER-net, was collected from three independent medical centers between
634 February 2013 and July 2016%%. The dataset consisted of 1,007 OCT volumes each
635 consisting of 97 B-scans (97,679 B-scans overall) collected from 649 subjects of the
636 Amish general population, who had a record of at least one individual with AMD in the
637 family history. Imaging was conducted at three clinical centers in Pennsylvania, Indiana,
638 and Ohio under the supervision of investigators at the University of Pennsylvania
639 (UPEN), University of Miami (MU), and Case Western Reserve University (CWRU),
640 respectively. The research was approved by the institutional review boards (IRBs) of the



641 respective institutions and all subjects signed written informed consent. All OCT B-scan
642 volumes in this dataset were acquired with the Heidelberg Spectralis OCT using a scan
643 pattern centered on the fovea (20°x20°; 97 B-scans; 512 A-scans per B-scans; ART 9).
644 In order to fit the Houston Dataset trained model, we down-sampled each of the
645 SLIVER-net Dataset volumes by taking every other B-scan, thus squeezing each
646 volume to 49 B-scans. Also, to avoid aliasing, we applied an anti-aliasing filter on OCT
647 volumes.

648

649 The positive-label frequencies in this dataset were 3.37%, 7.87%, 2.0%, and 2.67%, for
650 DV, IHRF, SDD, and hDC, respectively. Although the annotations for this dataset
651 included the eyes laterality, the scans themselves lacked the laterality obscuring the link
652 between a scan to its annotation in case both eyes were scanned for a patient. To
653 address this gap, we considered the middle slice per volume to determine the laterality
654 and trained a standard CNN on the Houston Dataset (that had the eyes laterality
655 recorded). Using the trained network (97% accuracy on an external test set; not shown)
656 we inferred the laterality for the SLIVER-net dataset scans when needed, that is, when
657 both eyes of the same patient were scanned.

658

659 1 he Pasadena Dataset

660 The Pasadena Dataset established for this study contained 205 3D OCT B-scan
661 volumes (fovea centered, 10x10 degree, ART=5) collected from 205 individuals at the
662 Doheny-UCLA Eye Centers in Pasadena between 2013 and 2022. This study was
663 reviewed and approved by the IRB of the University of California, Los Angeles (UCLA
664 IRB # 15-000083). Informed consent was waived for study participants given the
665 retrospective nature of the study. Each of the OCT volumes was acquired on the
666 Heidelberg Spectralis HRA+Optical Coherence Tomography (OCT SPECTRALIS;
667 Heidelberg Engineering, Inc, Heidelberg, Germany). Out of the 205 OCT volumes, 198
668 contained 97 B-scans and seven contained 49 B-scans. The OCT B-scans were
669 independently annotated by ten DIRRL-certified clinical retina specialists: three seniors
670 (expert retina specialists) and seven juniors. The ground truth for this dataset was
671 determined by the senior retina specialists. Although the senior graders agreed in most
672 cases, in the atypical case of disagreement, the ground truth was obtained by a majority
673 vote of the senior graders’ quorum. The positive-label frequencies in this dataset were
674 32.8%, 51.6%, 42.9%, and 12.5%, for DV, IHRF, SDD, and hDC, respectively.

675

676 1he EchoNet-Dynamic Dataset

677 The EchoNet-Dynamic Dataset*® was downloaded on September 7, 2022. The dataset
678 contains 10,030 echocardiograms (heartbeat ultrasound videos) obtained from 10,030



679 different individuals who underwent echocardiography between 2006 and 2018. Each
680 echocardiogram was labeled with a continuous number (between zero and one)
681 representing the ejection fraction (EF). The EF was obtained by a registered
682 sonographer and further verified by a level 3 echocardiographer. The minimal EF in the
683 dataset was 0.069 while the maximal was 0.97. The average EF was 0.558 with a
684 standard deviation of 0.124. The dataset already set a random split for train, validation,
685 and test sets of sizes 7,465 (74.43%), 1,288 (12.84%), and 1,277 (12.73%),
686 respectively. In contrast to the other datasets used in this study, the number of frames
687 (2D images) per video in the dataset was not constant but rather varied from 28 to
688 1,002 (with nearly 177 frames on average and a standard deviation of 58 frames). To
689 standardize the data we followed the same approach that the EchoNet paper authors
690 took and sampled 32 equally-spaced frames per volume.

691

692 The United Kingdom Biobank Dataset

693 The United Kingdom Biobank (UKBB) Dataset of MRI imaging with Proton Density Fat
694 Fraction (PDFF) measurements was downloaded on June 7, 2022, from the UKBB
695 repository?®. The UKBB is a widely studied population-scale repository of phenotypic
696 and genetic information for roughly half a million individuals. At the time of the study, the
697 UKBB made available 16,876 PDFF measurements acquired from a subset of the
698 54,606 total hepatic-imaging MRIs. The MRI data of each individual consisted of an
699 unordered series of 36 imaging scans in DICOM format at 284 by 288 resolution
700 (in-plane pixel spacing 9.3 mm) acquired from a single breath-hold session. Of the data
701 available, we identified a subset of 9,954 White British individuals who were unrelated
702 and possessed both the hepatic MRl and PDFF measurement. The individuals were
703 further divided into train, validation, and test sets of sizes 5972 (60%), 1991 (20%), and
704 1991 (20%), respectively.

705

706 Code availability

707 The code of SLIVIT is available at the project's GitHub repository:
708 https://github.com/berkindurmus/SLIVIiT.
709

710 Data availability

711 The Kermany dataset was downloaded from
712 https://www.kaggle.com/datasets/paultimothymooney/kermany2018. The 3D OCT
713 B-scan data are not publicly available due to institutional data use policy and concerns




714 about patient privacy. However, they are available from the authors upon reasonable
715 request and with permission of the institutional review board. The echocardiogram
716 dataset was downloaded from https://echonet.github.io/dynamic/index.html#dataset.
717 The MRI dataset was downloaded from https://www.ukbiobank.ac.uk under application
718 number 33127.
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»s Figures

729 Figure 1 | The proposed SLIViT framework

730

731 The input of SLIVIiT is a 3D volume of N frames of size HxW. (1) The frames of the
732 volume are resized and vertically tiled into an “elongated image”. (2) The elongated
733 image is fed into a ConvNeXt-based Feature Extractor that was pre-trained on both
734 natural and medical 2D labeled images. (3) N feature maps are extracted (each
735 corresponding to an original frame). (4) Feature maps are (tokenized and) fed into a
736 ViT-based Feature Integrator followed by a fully-connected layer that outputs the
737 prediction for the task in question.

B

738

=

Pre-trained 2D

739 ﬁ

—
o o
o]

-
o — ©
m%—‘ $ o
o X oo
s g
e =
= @ o
=y 1) =]
— -,
0 ©
v (4]
L s

740



741 Figure 2 | SLIVIiT’s outperformance overview

742
743 Shown are the performance scores in one classification task (with two different metrics)
744 of eye disease biomarker diagnosis in volumetric-OCT scans and two regression tasks
745 of (1) heart function analysis in ultrasound videos and (2) liver fat levels imputation in
746 volumetric MRI scans. Domain-specific methods (hatched) used are SLIVER-net,
747 EchoNet, and 3D ResNet, for OCT, ultrasound, and MRI, respectively. The general
748 cross-modality benchmarking used are 3D ResNet (green) and UniMiSS (brown) which
749 are (fully) supervised and self-supervised-based, respectively (see relevant
750 experiment’s section for additional benchmarking). Box plot whiskers represent a 90%
751 CI.

1.0

0.8 1 —_—

s

0.4 - =

HH
)

0.2 - I SLIVIT
X1 Domain-specific
I 3D ResNet
3 UniMiss
0.0 T T T .
OCT (ROC AUC) OCT (PR AUC) Ultrasound (R?) MRI (R?)

3D Imaging Modality
752

753



754 Figure 3 | ROC AUC performance comparison of five models in four independent
755 AMD-biomarker classification tasks when trained on less than 700 OCT volumes

756
757 Shown are the ROC AUC scores of SLIVIT (blue), SLIVER-net (orange), 3D ResNet
758 (green), 3D VIiT (red), and UniMiSS (brown) on four single-task classification problems
759 of AMD high-risk factors in two independent volumetric-OCT datasets. The expected
760 performance of a naive classifier is 0.5. The left panel shows the performance when
761 trained and tested on the Houston Dataset. The right panel shows the performance
762 when trained on the Houston Dataset and tested on the SLIVER-net Dataset (see Table
763 S1A). Box plot whiskers represent a 90% CI.
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766 Figure 4 | Performance comparison
767 on cardiac function prediction tasks
768 Using echocardiograms

769
770 Upper panel - ROC curves of
771 cardiomyopathy prediction

772 (EF<0.5). Middle panel - predicted
773 vs. actual EF levels for three
774 different models trained on the
775 original training set (solid black line
776 represents the y=x line). Lower

777 panel- R’ performance of heart EF
778 prediction using different
779 percentages of the original training
780 dataset. Box  plot  whiskers
781 represent a 90% CI. Of note, when
782 SLIVIT was trained on 25%
783 (n=1,866) of the original training
784 set it obtained similar accuracy as
785 the other examined methods when
786 trained on 100% (n=7,465) of the
787 training set.
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789 Figure 5 | SLIViT's ROC curve compared to junior clinical retina specialists’ assessment

790
791 Shown are the ROC curves (blue) of SLIVIT trained to predict four AMD high-risk
792 biomarkers (DV, IHRF, SDD, and hDC; see main text) using less than 700 OCT volumes
793 (Houston Dataset) and tested on an independent dataset (Pasadena Dataset). The
794 light-blue shaded area represents a 90% CI for SLIViT's performance. The red dot
795 represents the specialists’ average performance. The green asterisks correspond to the
796 retina specialists’ assessments. Two of the clinical specialists obtained the exact same
797 performance score for IHRF classification.
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s: SUPplementary Material

go2 Figure S1 | PR-AUC performance comparison of five models in four independent

803 AMD-biomarker classification tasks when trained on less than 700 OCT volumes

804

ges Shown are the PR AUC scores as an alternative scoring metric for the experiment
go6 shown in Figure 3. The dashed lines represent the corresponding biomarker’s
8o7 positive-label prevalence, which is the expected PR AUC score of a naive classifier. The
ses left panel shows the performance when trained and tested on the Houston Dataset. The
809 right panel shows the performance when trained on the Houston Dataset and tested on

s10 the SLIVER-net Dataset (see Table S1B). Box plot whiskers represent a 90% CI.
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813 Figure S2 | Performance comparison of a cardiomyopathy binary classification task on
814 echocardiograms

815
816 Shown are the PR curves yielded by modeling SLIVIT (blue) and 3D ResNet (green) to
817 classify cardiomyopathy. The shaded areas represent a 90% CI.
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820 Figure S3 | SLIViT’s PR performance compared to junior clinical retina specialists’
821 assessment

822
823 Shown are the PR curves (blue) of SLIVIT trained to predict four AMD high-risk
824 biomarkers (DV, IHRF, SDD, and hDC; see main text) using less than 700 OCT volumes
825 (Houston Dataset) and tested on an independent dataset (Pasadena Dataset). The
826 light-blue shaded area represents a 90% CI for SLIViT's performance. The red dot
827 represents the specialists’ average performance. The green asterisks correspond to the
828 retina specialists’ assessments. Two of the clinical specialists obtained the exact same
829 performance score for IHRF classification.
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835 Figure S4 | SLIViT’s performance in a volumetric-OCT frame-permutation experiment

836

837 Shown is the ROC AUC scores distribution of 100 shuffled models (light blue) trained on
838 100 different (shuffled) copies of a volumetric-OCT dataset. The expected performance
839 of a naive classifier is 0.5. Box plot whiskers extend to the 5th and the 95th percentiles
40 of the 100 shuffled models’ performance distribution. The dashed blue line represents
841 the performance of a SLIVIT model trained on the volumetric-OCT dataset using the
g42 original order of each volume. The performance ranks of this latter model compared to
843 the former models’ distribution were 22, 34, 56, and 47 for DV, IHRF, SDD, and hDC,
844 respectively.
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846 Figure S5 | Pre-training ablation study for (volumetric) OCT-related downstream learning
847 tasks

848
849 Shown are the ROC (left) and PR (right) AUC scores across different fine-tuned models
gso for volumetric-OCT classification tasks initialized with five different sets of pre-trained
851 weights. The expected ROC AUC score of a naive classifier is 0.5. Combined, the
852 proposed SLIViT’s initialization, is ImageNet weights initialization followed by supervised
853 pre-training on the Kermany Dataset. ssCombined is an ImageNet weights initialization
gs4 followed by self-supervised pre-training on an unlabeled version of the Kermany
gs5 Dataset. The dashed lines represent the corresponding biomarker’s positive-label
856 prevalence, which is the expected PR AUC score of a naive classifier. Box plot whiskers
857 represent a 90% ClI.
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861 Figure S6 | Pre-training ablation study for (volumetric) non-OCT-related downstream
862 learning tasks

863

s64 Shown are the R° scores for the volumetric ultrasound and MRI regression tasks
ges initialized with five different sets of pre-trained weights. Combined, the proposed
ge6 SLIVIT's initialization, is ImageNet weights initialization followed by supervised
867 pre-training on the Kermany Dataset. ssCombined is an ImageNet weights initialization
ges followed by self-supervised pre-training on an unlabeled version of the Kermany
869 dataset. Box plot whiskers represent a 90% CI.
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873 Table S1

874 ResNet, 3D ViT, and UniMiSS trained on less than 700 OCT volumes

875

| Average classification performance scores of SLIVIT, SLIVER-net, 3D

876 Shown are the performance raw numbers underlying Fig. 3 (ROC AUC) and Fig. S1
877 (PR AUC) of the AMD high-risk biomarker prediction experiments. The numbers in the
878 square brackets represent the corresponding 90% CI.

879

gsso A — ROC AUC scores

881
882
883

Test dataset | Method DV IHRF SDD hDC
SLIVIT 924 883 877 89
[.909, .938] |[.86,.906] |[.855,.893] |[.877,.916]
SLIVER-net |.838 837 805 854
[.813,.86] |[.82,.855] |[78,.827] |[.836,.869]
st 3D ResNet | .777 655 783 782
ouston [.769, .783] |[625,.682] |[.762,.806] |[.757,.805]
3D ViT 576 617 629 667
[.547, .605] |[.583, .651] |[.598, .66] |[.63,.703]
UniMiSS 783 675 714 715
[.771,.793] |[.66, .69 [.701,.726] |[.7,.729]
SLIVIT 958 891 967 863
[.941,.975] |[.873,.909] |[.959,.973] |[.839,.892]
SLIVER-net |.933 839 911 625
[919, .95] |[.817,.86] |[.9,.922] |[.576, .676]
SLIVERet | 3D ResNet  |.904 8 895 716
-ne [.891, .911] |[.788, .813] |[.865,.925] |[689,.737]
3D ViT 642 758 735 718
[.611, .674] |[.737,.78] |[.7,.77] [.677, .758]
UniMiSS 929 781 774 795
[.915,.939] |[.753,.808] |[.723,.825] |[.765, .825]




ss4 B — PR AUC scores

885

Test dataset | Method DV IHRF SDD hDC
SLIVIT 914 852 855 795
[.898, .928] |[.826, .875] |[.831,.879] |[.747, .838]
SLIVER-net |.708 799 785 74
[.676,.744] |[.778, .817] |[752, .816] |[.716,.76]
st 3D ResNet | .759 619 791 669
ouston [.748, .769] |[.584, .647] |[.77,.815] |[.622,.697]
3D ViT 589 627 54 479
[.551, .628] |[.584,.67] |[.494,.586] |[.428,.529]
UniMiSS 755 616 71 484
[.742, .769] |[.598, .634] |[.696,.726] |[.462,.506]
SLIVIT 575 728 399 222
[517, .63] |[.696,.763] |[.341,.469] |[.184, .263]
SLIVER-net |.535 621 278 .093
[47,.588] |[.588,.653] |[.221,.345] |[.07,.122]
SLIVER.et | 3D ResNet  |.497 593 183 219
-ne [444, 553] |[.563, .626] |[.147,.225] |[.162, .282]
3D ViT .06 238 046 061
[.046, .074] |[.199, .276] |[.032,.061] |[.042, .08]
UniMiSS 56 48 153 08
[497, .623] |[431,.528] |[114,.191] |[.061,.099]
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