Table 2.
Results of models predicting the success of rest defending situations (successful/unsuccessful rest defense).
| Classifier | Number of features | Accuracy | Precision | f1-Score | AUC |
|---|---|---|---|---|---|
| Logistic regression (ridge regression regularization) | 17 | 0.87 | 0.56 | 0.57 | 0.76 |
| Logistic regression (elastic net regularization) | 17 | 0.82 | 0.54 | 0.54 | 0.74 |
| Random Forest Classifier | 17 | 0.84 | 0.55 | 0.56 | 0.78 |
| Gradient Boosting | 17 | 0.97 | 0.48 | 0.49 | 0.50 |
| XGBoost Classifier | 17 | 0.92 | 0.59 | 0.62 | 0.75 |
| AdaBoost Classifier | 17 | 0.96 | 0.63 | 0.61 | 0.60 |
| AdaBoost Classifier (excluding distance variables) | 15 | 0.97 | 0.73 | 0.64 | 0.60 |