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Abstract

Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy

with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible
diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor
cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially
involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific
antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signal-
ing, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally sum-
marize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current
challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor,

the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for person-

alized TCR-T therapy.
Keywords Neoantigen, TCR-T, Neoantigen-reactive TCRs

Introduction

The efficacy of adoptive cell therapies (ACTs) with engi-
neered TCRs depends mainly on identifying and using
appropriate tumor antigens which specifically recognize
T cells. Different tumor antigens, e.g. tumor-associated
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antigens (TAAs), tumor-associated viral antigens and
tumor-specific antigens (TSAs), have been found [1, 2].
The former two, usually recruited in TCR-T immuno-
therapy, show some clinical efficacy in tumor-bearing
patients. However, the on-target-off-tumor effects have
largely limited their use in clinic.

During tumorigenesis and progression, numerous
genetic abnormalities including point mutations, read-
ing frameshift mutations, stop codon mutations, DNA
insertions and deletions, or chromosomal translocations
accumulate in tumor cells and produce many mutated
peptides and proteins. Some of these mutants can acti-
vate T or B lymphocytes if they are hydrolyzed into
shorter peptides and successfully presented by major
histocompatibility complex (MHC). These immuno-
genic peptides are called neoantigens. Because neoanti-
gens are not expressed in normal tissues, their specific
T cells can escape negative selection in thymus and are
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therefore abundant in tumor patients with therapeutic
potential [3].

Along with the rapid development of high-speed sequenc-
ing technologies in recent years, more and more TCR-T
targeting neoantigens have been developed, but there are
still many challenges. Therefore, in this review, we summa-
rize TCR structure, activation and revisions, and introduce
recent methodological advances in neoantigens and their
cognate TCRs screening, and then summarize the ongoing
clinical trials, their challenges, and the possible solutions for
neoantigens based TCR-T immunotherapy.

TCR structure-based T cell activation

It is necessary to understand TCR structure and T cell
activation at the cellular and molecular levels to fully
understand how to initiate the most effective anti-tumor
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response, and why the immune response fails to elimi-
nate tumor cells, as well as how to potentially modify
the structure of TCR so that TCR-T cells can better kill
tumors.

TCR structure

In human being, there are two types of TCR’s, namely
af TCR and y8TCR. The former predominates. TCR
forms an octamer comprised of an antigen-binding subu-
nit (TCRap) with three CD3 signaling subunits (CD3dg,
CD3ye and CD3((). CD3y, CD3§ and CD3e chains,
each containing an immunoreceptor tyrosine-based
activation motif (ITAM), while CD3( chain contains 3
ITAMs. The entire TCR-CD3 complex contains a total
of 10 ITAMs [4] (Fig. 1A). Tyrosine phosphorylation in
these ITAMs plays an important role in TCR signaling.
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Phosphorylation of ITAMs by the Src family kinase Lck  the extracellular region of the TCR complex, it can acti-
initiates downstream T cell signaling (Fig. 2). Thus, the vate T cells and transmit the signal downstream. Liang
TCR-CD3 complex remains structurally intact while et al. recently reported a novel mechanism by which
developing new TCR chimeric structures. By activating cholesterol sulfate (CS) interacted with the cytoplasmic
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Fig. 2 Neoantigen presentation and regulatory mechanisms in T cell receptor signaling Neoantigen is generated by tumor cell genome mutation,
transcribed and translated and cleaved to peptides different from normal self-proteins. Immunogenic neoantigen peptides are bound by MHC
molecules (pMHC), and required for recognition by TCR and to initiate immune response. TCR signal is initiated by pMHC recognition of tumor cells
or antigen-presenting cells. Then Lck is recruited to TCR-CD3 complex and phosphorylate [TAMs. Zap70 binds to phosphorylated ITAMs and is also
phosphorylated itself by Lck. Activated ZAP70 subsequently phosphorylates Lat, which in turn induces the recruitment of adaptor proteins (GRB2,
Gads, SLP-76, PLC-y). Activation of LAT-related effectors results in signal transduction through 3 major signaling pathways. Calmodulin, MAPK

and NF-kB signaling pathways. Calmodulin signaling leads to nuclear translocation of NFAT. MAPK signaling leads to actin polymerization and AP-1
activation, a transcription factor of FOS/ JUN complex. NF-kB signaling leads to nuclear translocation of transcription factors of REL and NF-kB
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domain of CD3e to enhance its binding to the cell mem-
brane and induce a stable secondary structure. This
structure inhibited TCR phosphorylation and signal-
ing. When a point mutation (I/A) was introduced to the
ITAMs of CD3g, it would reduce the stability of the sec-
ondary structure, abolish CS-mediated inhibition and
enhance the signaling of the TCR complex [5]. For the
first time, this study realized the rational design of signal-
enhanced TCR-T cells by revealing the signal regulation
mechanism of TCR/CD3 complex signaling, which laid
a solid theoretical foundation for further improving the
efficacy of immune cells in solid tumors in the future. As
to the structure of yOTCR, readers can consult the excel-
lent review of Legut M [6].

T cell activation

If T cells encounter and bind to peptide major histo-
compatibility complexes (pMHCs) in antigen-presenting
cells (APCs), a TCR activation program is initiated [7].
TCR recognizes pMHC in a manner of "immunological
kinapse" (IK) or "immunological synapse” (IS). Kinapse is
a transient and unstable structure while synapse is stable
long-term [8]. T cell activation and signaling depends on
a continuous contact of the TCR with pMHCs. Sufficient
activation of T cells requires three signals. One is anti-
gen-specific signal via TCR-pMHC complex; the other
is a costimulatory signal like CD28-B7 (CD80, CD86).
Cytokines act as a third messenger, which provide cell
proliferation and survival signals in activated T cell [9].
Therefore, enhancing costimulatory signals or increas-
ing cytokine action is another way to improve TCR-T cell
function (discussed in more detail in Sect. Challenges of
neoantigen-based TCR-T therapies).

Recombinant TCRs

As we know, Chimeric antigen receptor (CAR)-T cell
therapy utilizes a synthetic receptor capable of recognizing
specific antigens on the surface of cancer cells, such as
CD19. Due to its inherent high specificity, CAR-T cell
therapy has been successful in the treatment of hemato-
logic malignancies like acute lymphoblastic leukemia but
has shown limited efficacy in solid tumors. Unlike CAR-
T’s single receptor, TCR-T immunotherapy employs the
natural T-cell receptor (TCR) to identify specific tumor
antigens. And in this recognition process, T-cell acti-
vation is more selective and regulated, thereby reduc-
ing the risk of excessive activation and cytokine release.
However, in practice, antigen loss and down-regulation
of MHC molecules often occur in tumors. In addition,
allogeneic application of TCR-T therapy is limited due
to the individuality of MHC types. In order to over-
come these limitations, rapid advances of TCR structural
modifications to improve immunotherapy efficiency
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have been made, such as STAR, AbTCR, ImmTAC et al.
(Fig. 1B).

Synthetic T cell receptor and antigen receptor-T
(STAR-T) integrates the advantages of CAR-T and
TCR-T, is an MHC-independent high-affinity TCR-T.
STAR is an antibody-TCR chimera, in which TCR con-
stant regions are ligated with variable regions of heavy
and light chains of antibody. In order to maintain natu-
ral TCR signaling, gene mutation and addition of func-
tional elements can be performed on the constant and
intracellular regions of TCR. For example, human TCR
constant region-based STAR (hSTAR) can be optimized
as mutSTAR. The mutSTAR has high affinity, specific-
ity and is MHC-unrestricted to surface antigen [10]. T
cell receptor fusion constructs (TRuCs) are comprised
of an antibody-based binding domain (single-chain vari-
able fragment, scFv) fused to one of the TCR subunits,
which can recognize tumor surface antigens effectively
via reprogramming TCR complex and kill tumor cells
independent of MHC [11]. TCR mimic (TCRm) antibod-
ies have been shown to mimic the specificity of TCR for
peptide/MHC class I complexes and mediate antibody-
dependent cytotoxicity [12]. Liu et al. constructed a novel
TCRm antibody that recognizes alpha-fetoprotein poly-
peptide/HLA-A*02 complex, which has the function of
TCR and can target intracellular antigens of hepatoma
cells. The Fab fragment is fused to the y and & subunits
of the TCR to form an antibody-T cell receptor (AbTCR)
structure capable of transmitting a signal. At the same
time, a scFv/CD28 co-stimulatory molecule targeting
phosphatidylinositol proteoglycan 3 (glypican-3, GPC-3)
was constructed. AbTCR and co-stimulatory molecule
were delivered to T cells by a lentiviral vector. The prolif-
eration and activation of T cells were enhanced through
AbBTCR signaling and CD28 co-stimulated signaling [13,
14]. In addition, immune-mobilizing monoclonal T cell
receptors against cancer (ImmTACs) are bifunctional
reagents that combine a soluble TCR with affinity for
an intracellular or extracellular tumor-specific antigen
and an anti-CD3 scFv antibody. These ImmTACs redi-
rect T cells specifically toward tumor cells presenting a
target peptide-MHC complexes [15]. Boudousquie et al.
reported the IMCgp100, an ImmTAC recognizing a pep-
tide derived from the melanoma-specific protein, gp100,
efficiently redirects and activates effector and memory
cells from both CD8* and CD4" T cells. The IMCgp100
induces broad immune responses [16].

Neoantigen and cognate TCR prediction and
screening strategies

Although a series of clinical trials of engineered TCR-T
cells have been carried out, tumor antigens available for
TCR-T therapy remain very limited (discussed in more
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detail in Sect. Neoantigen-targeted TCR-T therapy in
clinical trials). Since neoantigens with therapeutic poten-
tial are critical for anti-cancer immunotherapy, the pre-
diction and selection screening of tumor neoantigens are
essential. Numerous neoantigens have been discovered
through high-throughput sequencing and computational
prediction, some have been tested in immunotherapy
clinical trials of cancer patients. With the aid of protein
level verification data, neoantigen and its cognate TCRs
in silicon predictions have become more precise, even
more so as in vitro or in vivo experimental validation are
optimal for clinical trials.

Computational prediction of neoantigen peptide binding
to MHC

The fundamental premise for an immune response to
occur is that the mutated peptide is effectively bound
to and presented by MHC molecules to elicit a robust
immune response. Therefore, predicting the probability
of MHC molecules binding to peptides is a key step in
current computational pipelines. Published MHC bind-
ing affinity prediction algorithm integrates ligand data-
sets into a machine learning algorithm and utilizes the
receiver operating characteristic (ROC) curve to evaluate
the likelihood of peptide binding or presentation, includ-
ing NetMHC 4.0 [17], MHCflurry [18], MixMHCpred
[19], etc. NetMHCpan is an advanced MHC binding
affinity prediction algorithm that is trained using affin-
ity measurements and mass spectrometry (MS) elution
data of MHC ligands. By leveraging homology with well-
characterized MHC alleles, the algorithm infers potential
ligand preferences, ensuring its robustness and effective-
ness when compared to other prediction tools [20].

New studies have highlighted the crucial importance of
collaborative interactions between antigen-specific CD4"
and CD8™ T cells in anti-tumor immunity. Consequently,
for effective anti-tumor immune response, considera-
tion should be given to neoepitopes that can bind to the
MHC-II alleles of the individual patient. Artificial neural
networks have been widely used in the development of
prediction tools for MHC-II binding epitopes, including
NetMHCII [21], NetMHCIIPan [20], SMMAlign [22]
and NNalign [23] are used for predicting MHC-II bind-
ing peptides (Table 1). Indeed, prediction of neoantigens
presented by MHC-II remains challenging compared to
the accuracy of Class I tools. Firstly, the peptide-binding
groove of MHC-II is relatively shallow and open on both
sides, leading to a wide variation in the length of binding
peptides (9 to 22 residues) [24]. Secondly, the polymor-
phism of the a and B chains in MHC-II molecules has
further expanded the diversity of peptide binding speci-
ficity [25]. Thirdly, the availability of data on validated
binding to MHC-II class molecules is limited, making it

Page 5 of 27

challenging to train and validate prediction models accu-
rately. In light of the above, given that no predictive tool
consistently performs well across all peptide lengths and
all HLA classes, some predictive tools can simultane-
ously combine different algorithms to predict the bind-
ing presentation of MHC molecules, thereby improving
overall performance.

Computational prediction of TCR-pMHC binding

In recent years, one great advance in neoantigen predic-
tion has shifted from focusing solely on the antigenic
peptide to its interaction with T cell receptor (Table 2).
De Neuter et al. first used random forest classifiers and
discovered both the length of TCR sequence and the
number of arginines within TCR complementarity deter-
mining region 3(CDR3) that affect T cell recognition [58].
Gielis et al. proposed a novel strategy to annotate full
TCR repertoires with their epitope-binding specificities,
which has been validated in three independent datasets.
The antigen-specific TCR repertoires were increased
post-vaccination [59]. The application of artificial intel-
ligence in protein structure prediction can effectively
utilize sequence and structural information to construct
novel deep learning network architectures. Natural Lan-
guage Processing (NLP) based methods can be applied
to predict TCR-binding peptide from large-scale diction-
aries. Springer et al. constructed models ERGO-AE and
ERGO-LSTM, which were trained using autoencoder
(AE) and long short-term memory (LSTM), respectively
[60]. Moris et al. presented a novel interaction map rec-
ognition (imRex) method that can be used to predict pre-
viously unseen epitopes. ImRex demonstrated superior
performance on known epitopes and showed the abil-
ity to infer epitopes that are more similar to the training
data than standard dual input methods [61]. All models
mentioned above can only support peptide and TCR
B-chain sequences. However, it was reported that the
a-chain of TCRs can also contribute to binding specific-
ity. Xu et al. described a model, DLpTCR, which was con-
structed using ensemble deep learning for single/paired
chain(s) of TCR and peptide interaction prediction [62].
Additionally, MHC proteins should also be included in
epitope prediction as they were thought to affect the spa-
tial locations of the epitope anchor positions [63].

To discover unknown structural drivers of T-cell acti-
vation and design novel peptide ligands and vaccines, it
is important to understand the peptide binding details
of the spatial conformation of TCR-pMHC [64-66].
Unfortunately, only a few 3D structures of pMHC com-
plexes and TCR-pMHC are available in the Protein Data
Bank [67-69]. Lack of information on the common bind-
ing site and orientation for a given peptide, as well as
its correct docking in TCR-pMHC complexes are still
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Table 2 Currently available TCR-epitope binding prediction methods

TCR-epitope Predictable Epitope constraint TCRlength Method description Published date Software / Webserver

constraint

binding
prediction tool

TCR chain(s)

TCRex

ERGO-LSTM

ERGO-AE

ImRex

DLpTCR

NetTCR-2.0

pMTnet

TCRB

TCRB

TCRB

TCRB

TCRaB

TCRaP

TCRB

Restricted epitopes

None

None

8~11-mer

9-mer

9-mer

None

None

None

None

10~20

8~18

None

Models based on random
forest classifiers

LSTM based model

Autoencoder based model

Dual input CNN model

Ensemble deep learning
model of FCN, LeNet-5
and ResNet

1-dimensional CNN model

deep neural network based
on LSTM and stacked
autoencoders

Nov-2019

Aug-2020

Aug-2020

Dec-2020

Jul-2021

Sep-2021

Sep-2021

Webserver:

https://www.tcrex.biodatamin
ing.be/
Software:

https://github.com/louzo
unlab/ERGO

Software:

https://github.com/louzo
unlab/ERGO

Software:

https://github.com/pmoris/
ImRex

Software:

https://github.com/jiang
Biolab/DLpTCR

Webserver:

http://jianglab.org.cn/
DLpTCR/

Software:

https://github.com/mniellLab/
NetTCR-2.0/

Webserver:

https://services.healthtech.
dtu.dk/service.php?NetTCR-
20

Software:

https://github.com/tianshilu/
pMTnet

Abbreviations LSTM Long short-term memory, CNN,Convolutional neural network, FCN Fully convolutional networks, ResNet Residual neural network

significant challenges for predictive structural modelling
approaches. Although Alphafold2, an artificial intelli-
gence tool, appears to provide superior protein structure
prediction [70], its prediction accuracy of TCR-pMHC
binding conformation needs to be further validated.

Comprehensive pipelines of neoantigens prediction

in silicon

Typically, the prediction of neoantigens begins with the
identification of all somatic mutants from the whole
exome/genome sequencing of tumor samples [31].
However, not all mutations lead to effective neoantigen
products. To identify neoantigens capable of activating
T cells, the prediction of neoantigens needs to consider
factors such as mutation type, proteasome degradation,
transporter associated with antigen processing (TAP),
HLA molecule binding and presentation and the recogni-
tion potential of the T cell receptor (Fig. 2). The existing
classical complete workflows for neoantigen prediction
can be summarized in the following steps:1) perform

whole-exome sequencing (WES) of peripheral blood
monocytes or normal tissue and tumor tissue to identify
tumor-specific mutated peptides; 2) Analyze HLA typ-
ing by RNA-seq or DNA-seq in peripheral blood cells;
3). Predict affinity between mutant peptides and MHC
molecules; 4) Prioritize TCR recognition of the candi-
date peptides. Currently, numerous valuable bioinfor-
matics tools have been established for each step, thus
utilizing various combinations of algorithmic tools, the
key parameters affecting the selection and prioritization
of neoepitopes can be determined. Such optimal combi-
nations may form effective comprehensive pipelines for
neoantigen prediction in silicon [26-29, 35-42, 44, 50—
52, 54-56] (Fig. 3), such as TSNAD, TIminer, MuPeXI,
Neo-Fusion and pVACtools. Some of the predicted neo-
antigen epitopes have shown promising results in clinical
trials [43, 45-48] (Table 1). For example, one glioblas-
toma patient was inoculated with synthetic eight amino
acid peptide (SLP) vaccines produced by the pVAC-seq
predictive pipeline (NCT02510950) [49], and three


https://www.tcrex.biodatamining.be/
https://www.tcrex.biodatamining.be/
https://github.com/louzounlab/ERGO
https://github.com/louzounlab/ERGO
https://github.com/louzounlab/ERGO
https://github.com/louzounlab/ERGO
https://github.com/pmoris/ImRex
https://github.com/pmoris/ImRex
https://github.com/jiangBiolab/DLpTCR
https://github.com/jiangBiolab/DLpTCR
http://jianglab.org.cn/DLpTCR/
http://jianglab.org.cn/DLpTCR/
https://github.com/mnielLab/NetTCR-2.0/
https://github.com/mnielLab/NetTCR-2.0/
https://services.healthtech.dtu.dk/service.php?NetTCR-2.0
https://services.healthtech.dtu.dk/service.php?NetTCR-2.0
https://services.healthtech.dtu.dk/service.php?NetTCR-2.0
https://github.com/tianshilu/pMTnet
https://github.com/tianshilu/pMTnet
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Raw data processing
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Variant calling

Gene

expression
TPM>0

HLA allele prediction

Gene fusion

Customized searchable database

Peptide identified by MS

Filtering screening
. Filter 3
Database Filtering

Sequence similarity
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Prediction of pHLA i
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| Filter 1
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NetMHCpan4.1| Prediction of peptide
NetMHCpan4.0 binding to HLA
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ilmmunogenicity prediction§ ®
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Fig. 3 The workflow of computational prediction and screening pipelines for neoantigens To identify tumor-specific somatic mutations, tumor
tissue and normal tissue samples (usually peripheral blood mononuclear cells) are acquired from the patient perform WES/WGS. Additional

RNA sequencing provides information on the gene expression of the mutated genes and further confirmation of gene fusion. Peripheral blood
cells were used to predict HLA typing performed by RNA-seq or DNA-seq analysis. MHC-peptide binding prediction software predicts peptides
presented by MHC. Computational filtering/screening involves three levels: filter 1 is based on RNA expression; filter 2 is based on proteomics
mass spectrometry identification; filter 3 is based on database high confidence filtering. By integrating various physical and chemical properties
of peptides, computational prediction screening also includes three levels: antigen binding; necantigen peptide epitope-TCR recognition;
immunogenicity calculation to prioritize the predicted peptides and screen out the neoantigens with high confidence that could be recognized

by TCR

HLA I as well as five HLA II restricted neoantigens were
detected in peripheral blood by IFN-y enzyme-linked
immunospot (ELISPOT) after vaccination. In vitro, 52
neoantigens inducing CD8" T cell-specific responses
were detected by MuPeXI in six patients with clear
cell renal cell carcinoma (ccRCC) [30, 32-34, 71]. The
OpenVax pipeline can produce SLPs with user-specified
lengths and three SLP vaccines with long mutant pep-
tides have been tested respectively in phase I clinical trials
(NCT02721043, NCT03223103 and NCT03359239) [42, 53].

Integrated analysis of genomics and proteomics,
proteo-genomics, in theory, may more accurately iden-
tify real genomic to proteomic alterations of somatic
mutations in cancer cells [72]. Among these, MS-based
approaches are considered appropriate for directly ana-
lyzing immunopeptides that are actually presented, pro-
viding protein level verification against HLA-binding
neoantigens predicted solely on genomics data. The
incorporation of mass spectrometry data has made the
prediction algorithms and prediction pipelines more
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diverse, the output list of predicted neopeptides shorter
but more reliable, such using NeoFlow, ProGeo-neo [41,
56] (Table 1). Advances in proteogenomic approaches
not only extended neoantigen prediction pipelines for
neoantigens derived from coding regions, but also help
generated non-coding neoantigen prediction pipeline,
such as PGNneo [57].

Neoantigen selection screening strategies in silicon

Up till now the neoantigens are still predicted compu-
tationally from pipelines. Further selection approaches
which we call screening are vital to identify neoantigens
with greater potential to generate immune response in
TCR-T related immunotherapy. Such screening may be
computational or experimental. In silicon screening is
the first step. Immunogenic features have been found to
be associated with T cell activation, including sequence
similarity, peptide entropy, peptide-binding residues,
physicochemical properties of amino acids, molecular
structure, and sequence length [73, 74]. Integrating these
potential immunogenic features into the pipeline for neo-
antigen computation can enable a more precise assess-
ment of the immunotherapeutic efficacy of the identified
neoantigens. Computational screening strategies include
data filtering and algorithm screening strategies (Fig. 3).
Computational filtering/screening includes three lev-
els: filter 1 is based on RNA expression; filter 2 is based
on mass spectrometry identification; filter 3 is based on
database high confidence blast search [75, 76]. Neoanti-
gens with sequence similarity above a defined threshold
are more likely to be immunogenic. Algorithm screening
involves three levels: antigen binding; neoantigen pep-
tide epitope-TCR recognition; immunogenicity calcula-
tion. Computational screening strategies are more or less
imbedded in almost all above mentioned neoantigen pre-
diction pipelines. Such screening may narrow down the
candidate neoantigen list for further real experimental
validation, and help improve the success of clinic trials.

Experimental screening strategies for tumor neoantigens

Accurately assessing the potential of neoantigens in
immunotherapy and experimentally validating their
reactivity with T cells remain the gold standard for clini-
cal selection. T cells co-cultured with autologous APCs
which loaded with different potential peptides is the most
direct method to detect the reactogenicity of tumor anti-
gens. At present, potential peptides are introduced into
cells simultaneously in the form of tandem mini-gene
(TMG) or a long peptide to improve the screening effi-
ciency [77]. Although successfully used in clinical stud-
ies of various solid tumors, including colorectal tumor,
melanoma and lung cancers [77, 78], these two methods
are arduous and time-consuming for their requirement
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of multiple screening rounds to identify reactive tumor
antigens [77]. A combined use of highly diverse yeast-
displayed peptide-MHC libraries and deep sequencing
largely expands the numbers of recognized epitopes [79,
80]. Alternatively, peptides can be genetically encoded
and displayed on cell surface as pMHC complexes in bac-
uloviral libraries. For example, pMHC complexes were
anchored on Sf9 cell membrane by fusing them with a
transmembrane domain of baculovirus gp64 molecule
[81]. The engineering of APCs can further improve the
efficiency of neoantigen screening. Arnaud et al. devel-
oped a method called Neoscreen, based on exposure of
tumor-infiltrating lymphocytes (TILs) to CD40-activated
(CD40-act) B cells that optimizing the sensitivity of anti-
gen validation. CD40-act B cells expressed key molecules
required for antigen presentation and T cell activation,
such as IL-2, OX40L and 4-1BBL. And CD40-act B cells
loaded with diverse sources of neoantigens (that is, trans-
fected with minigenes or pulsed with synthetic peptides)
ensured efficient stimulation of neoepitope-specific CD8
TILs ex vivo [77]. Recently, Cattaneo et al. proposed a
high-throughput genetic system for personalized identi-
fication of CD4% and CD8" T cell recognition (neo) anti-
gens. In this method, known as HANSolo (HLA-Agnostic
Neoantigen Screening), patient-matched Bcl-6/xL-
immortalized B cell lines are constructed to express large
libraries of minigenes that encode for screening T cell
antigens. This approach provides enhanced sensitivity,
particularly in the discovery of neoantigens recognized
by CD4*" T cells, while enabling a significant increase
in throughput [82]. With the development of single-cell
RNA sequencing(scRNA-seq) and TCR sequencing, it
has made it easier to obtain TCRaf} pairs from blood or
tumor tissues. Accordingly, more platforms with distinct
biological mechanisms are exploited to discover TCR
ligands. Li et al. developed a cell-based selection platform
for T cell antigen discovery by exploiting a membrane
transfer phenomenon called trogocytosis. When T cells
transfer N-hydroxysuccinimide (NHS)-biotin-labeled
surface proteins to cognate target cells, the latter can
be identified and sorted by flow cytometry for peptide
sequencing [83]. Also, a chimeric receptor group, termed
signaling and antigen-presenting bifunctional receptors
(SABRs) provides a second cell-based platform for TCR
ligand discovery. Extracellular domain of a SABR can be
covalently linked to a peptide-p2 microglobulin-MHC
trimer, which is further fused with an intracellular CD3(
signaling domain. After interaction with a TCR, a SABR
presenting its cognate antigen will induce GFP expres-
sion in NFAT-GFP-Jurkat cells upon receiving a signal
of CD3( [84]. In addition, T-Scan, a high-throughput
screening approach of TCR-recognized antigens, has
been developed using a lentiviral delivery of antigen
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libraries with endogenous processing and presentation
on MHC molecules. Target cells functionally recognized
by T cells are isolated using a reporter for granzyme B
activity and then antigens mediating recognition are
identified by next-generation sequencing [85] (Fig. 4).

Experimental strategies for neoantigen-reactive TCRs
screening

In the screening of neoantigen-specific TCRs, peptide
MHC tetramers (pMHC tetramers) and 4-1BB staining
are widely used in multiple cancers, such as myeloma and
metastatic urothelial carcinoma, etc. [86, 87]. Tetram-
ers can simultaneously recognize a variety of antigen-
specific T cells, but the types of MHC'’s are limited (such
as HLA-A*0101, A*0201, B*0702, B*0801, B*3501) due
to their complicated synthesis technology [88]. Over-
all et al. used molecular chaperone TAPBPR for a sta-
ble capture of tetramerized empty MHC-I molecules,
which can be readily loaded with interested peptides
in a high-throughput manner [89]. At the same time,
labeling tetramers with DNA barcodes and multiple
fluorochromes significantly increase antigen species in
one screening [89, 90]. Although widely used to detect
response T cell populations, IFN-yELISPOT and cyto-
toxic activity lack sensitivity at single-cell level against
neoantigens [77]. Some special biosensors, such as fluo-
rescence resonance energy transfer (FRET), fluorescent
NFAT and H2B histone sensors, have been designed to
detect TCR activation [91-93]. However, the specificity
of these signals in TCR screening is still questionable. A
chemoenzymatic based platform called FucolID has been
developed to anchor fucosyltransferase on the surface of
dendritic cells (DCs). When DCs interacts with cognate
TCR, biotin in the substrate of GDP-fucosylated-biotin
can be transferred to T cell surface, enabling to distinct
TSA-reactive T cells from bystander T cells in TILs [94].
Furthermore, a microfluidic-based screening system is
used to encapsulate single TCR-T cell and single target
cell with NFAT/AP-1-regulated eGFP in a well. If TCR-T
cell interacts with its cognate antigen, fluorescence
changes can be observed by microscopy [95, 96] (Fig. 4).

(See figure on next page.)
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As the traditional TCR-T development process is time-
consuming and inefficient, it may not be suitable for
personalized therapy. With the help of scRNA-seq, TCR-
seq, cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) and other technologies, research-
ers are able to comprehensively characterize T cells
rapidly in a variety of tumors using a panel of CXCL13,
ENTPD1(CD39) and CD200, the high-frequency molec-
ular features of tumor neoantigen specific T (Tas) cells.
Obtaining neoantigen-specific TCRs directly from
patients can greatly accelerate the personalized T cell
therapy [97-99]. For example, He et al. have established
a complete technical platform for rapid TCR cloning and
a personalized TCR-T therapy in phase I (NCT03891706)
[97].

All these strategies are based on different principles
and provide creative tools for screening of tumor neoan-
tigen-responsive T cells.

Neoantigen-targeted TCR-T therapy in clinical trials
Mutation neoantigens have greater individual differences
and less potential epitopes than TAA or oncoviral anti-
gens. Even the different types and quantities of neoanti-
gens in different individuals of the same tumor caused by
specificity of mutations showing obvious individual het-
erogenity. More and more neoantigen-based TCR-T clin-
ical trials appear using "hot spot” mutants of oncogene or
tumor suppressor gene [100]. For example, high affini-
ties of TCRs against KRASS1?P and KRASS'?V variants
have successfully been studied [101, 102]. After stimu-
lation with mutated KRASS!?® and KRASS'?Y in vitro,
CD4* and CD8" memory T cells were identified in 3
of 6 metastatic cancer [103]. Leidner et al. reported the
benefit of a single infusion of KRASS*-based TCR-T
therapy in a patient with refractory recurrent pancreatic
cancer. Although the patient failed to respond to sur-
gery, neoadjuvant chemotherapy and autologous TILs
therapy, produced regression of visceral metastases after
treatment with HLA-C*08:02-restricted TCR-T cells for
more than 6 months [104]. Similarly, P53 mutants, such
as R175H, Y220C and R248W are also immunogenic and

Fig. 4 Schematic overview and validation of neoantigen and cognate TCR discovery technology. Tumor and/or peripheral blood mononuclear
cell (PBMC) derived DNA/RNA are used to perform WES/RNA-seq to identify non-synonymous variants. Through deep learning-based

prediction of neoantigen epitopes, select candidate epitopes to synthesize TMG/long peptides. The monocyte-derived APCs should be
engineered to promote antigen presentation and T cell activation. Then, immortalized/engineered APCs were loaded with antigen library.

When APCs co-cultured with tumor-infiltrating lymphocytes, neoantigen-reactive T cells will be labeled and selected by flow cytometry. The
neoantigen-specific TCR are screened by scTCR-seq, and clone candidate TCRs to PBMC derived T cells. Finally, the recognition of neoantigens by T
cells is verified by several screening experiments, such as neoepitope tetramers/4-1BB staining, IFN-y ELISPOT, cytotoxic activity of tumor killing,
degranulation. Meanwhile, neoantigen-specific TCRs could be rapid cloned through T cell characterizing by a panel of CXCL13, ENTPD1(CD19)

and CD200 etc.



Pang et al. Biomarker Research (2023) 11:104 Page 16 of 27

DNA/RNA ’
/_ Tumor\
Blood
/Tumor N Y
= 3,
€90,0

WES/RNAseq

[

Non-synonymous variants

(

9 Immortalized/ l Bulk RNA-seq I
Engineered APC |
AR
N Single-cell TCR profiling 6%)‘ %
° @

In vitro expanded TILs
(tumor antigen-specific T/bulk T cells)

Sorting
CD3+ T cells

Co-culture l

Y > S

o
Neoepitope prediction %
@
o
I Trangfect into APCs 3 clone1 clone2
g TMG CD4/CD8
‘e==ne=me==- Long peptide FASC&orting Single-cell RNA-seq g

ICITE-seq

Neoantigen-specific T cells

2%

l ScTCR-seq
Antigen-specific reactive T cells signature:

CXCL13, ENTPD1(CD39), CD200

eep learnifpg

AR
Select candidate
neoantigen-reactive TCRs

g

3

\
\

Count

2 4 6 8 1012

CD107a Time

o

Tumor cell killing

MTCRG
DR TCRB

Clone candidate TCRs =———> i
Assays for T cell |

activation

ELISPOT

CD4/CD8

4-1BB/Tetramers

Fig. 4 (Seelegend on previous page.)



Pang et al. Biomarker Research (2023) 11:104

can be recognized by T cells [105]. Kim et al. reported
97 of 163 patients with metastatic solid tumors had non-
synonymous mutations of P53 gene, 39 TCRs against
21 distinct P53 mutants were raised in TILs, and even-
tually, 2 of 12 individuals were in partial responses for
4 and 6 months respectively after treatment with P53
mutant reactive TILs. When treated with autologous
peripheral blood lymphocytes pre-transduced with
an allogeneic HLA-A*02-restricted TCR specific for
p5387H the patient with chemorefractory breast can-
cer experienced an improved immunophenotype, objec-
tive tumor regression (~55%) and prolonged survival
over 6 months [106]. Diffuse intrinsic midline glioma
(DIPG) is an aggressive childhood tumor of brainstem
with no curative treatment available currently. Majority
of DIPG’s often harbor an amino acid substitution from
lysine(K) to methionine(M) at position 27 of histone 3
variant 3 (H3.3K27M mutation) which disrupts bivalent
chromatin domains and drives neural stem cell-specific
gliomagenesis [107, 108]. A TCR-T with HLA-A*02:01-
restriction has been successfully constructed to recog-
nize H3.3K27M. Adoptive transfer of these TCR-T cells
significantly suppressed the progression of glioma xeno-
grafts in mice [107]. An early phase clinical study using
TCR-T cells against H3.3K27M (NCT05478837) has
been initiated in glioma patients (Table 3). At the same
time, some clinical trials targeting personalized neoan-
tigen TCR-T for different individuals in different solid
tumors are also being recruited and conducted, such as
NCT05194735, NCT03412877 (Table 3). Several per-
sonalized therapies against multiple targets are also
being developed. In chemorefractory HR-positive meta-
static breast cancer, mutated proteins identified by RNA
sequencing and adoptive TILs transfer against mutant
SLC3A2, KIAA0368, CADPS2 and CTSB with IL-2 and
checkpoint blockade achieved complete tumor regres-
sion over 22 months [109]. Currently a clinic trial of
engineered TCR-T cells targeting one to five neoantigens
(NCT05349890) is going on with PD-1 inhibitors and
CD4 agonists (Table 3). Although most TCR-T studies
are still in the preclinical stage, it shows great potential to
cancer patients with tumor-specific mutations.

In addition, single nucleotide variants (SN'Vs), antigens
derived from frameshifts, splice variants, gene fusions,
and endogenous retroelements have been recently evalu-
ated (Table 1). And several personalized therapies against
non-coding genes-derived peptides are also being devel-
oped as an alternative source of neoantigens [110].

Challenges of neoantigen-based TCR-T therapies

Although less cytokine release syndrome and neurotoxic-
ity were expected in TCR-T cell therapy than CAR-T cell
therapy due to its specific expression of neoantigens in
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tumor tissue, many challenges and limitations remain in
its practical application, such as tumor cell heterogene-
ity, the mismatched pair of exogenous TCRs with endog-
enous TCRs, the durability of engineered TCR-T cells
in vivo and the untoward effects of immunosuppressive
tumor microenvironment.

Tumor heterogeneity
Intratumor heterogeneity (ITH), that is, clonal diversity
of subclonal cell populations within a tumor. The higher
ITH tumors have weaker antitumor immune responses
and more susceptibility to progression. In more hetero-
geneous tumor cell populations, tumor cells could have
a better chance of escaping immune surveillance because
the reactive neoantigens undergo “dilution” within the
tumor relative to other neoantigens [111, 112]. On the
one hand, this results in a more complex neoantigen pre-
diction progress, and the frequency of neoantigen-spe-
cific T cells in TILs is lower. On the other hand, antigen
loss and down-regulation of MHC-I/II molecules in some
subclonal populations often occur with the tumor pro-
gression or after targeted immunotherapy. At the same
time, cytotoxic T cell loss the capacity to kill tumor cells
that are deficiencies in antigen-presentation process [113,
114]. The implication, however, is that TCR-T therapy for
a single target may not be effective in tumor killing.
There have some strategies to target ITH in TCR-T
therapies. Oncolytic viruses, chemotherapeutic drugs
and radiation therapy could induce immunogenic cell
death (ICD) [115]. Lysis of tumor cells can release abun-
dant amounts of antigens and cytokines within the
TME, resulting in the activation of potent, multiepitope
immune response [116]. In the selection of TCR-T tar-
gets, the neoantigens encoded by hotspot mutations in
driver genes may be prioritized. Such antigens are usu-
ally necessary for tumor progression and are less prone
to natural loss (discussed in more detail in Sect. Neoanti-
gen-targeted TCR-T therapy in clinical trials). Moreover,
the natural TCR structure were modified to overcome
the down-regulation of MHC molecules (discussed in
more detail in Sect. Recombinant TCRs). And unlike
classical aPT cells, y8T cells are not restricted to pMHCs,
and the natural killer cell receptors (NKRs) expressed
can identify stress antigens that are upregulated in many
tumor types [117]. Recently, a study by de Vries et al.
revealed that y8T cells are effector cells of immunother-
apy in DNA mismatch repair-deficient (MMR-d) cancers,
and B2M inactivating mutations can activate yO0T cells.
What’s more, these yOT cells are mainly composed of
V& 1 and V9 3 isoforms with strong killing activity [118].
These researches indicated that y8T cells may be suitable
for the treatment of MHC-deficient tumors, as well as for
their application in allogeneic cell therapy.
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Limitations of neoantigen prediction accuracy

Over the past few decades, the process of identifying
neoantigens has continually evolved and improved, and
it has also found widespread application in clinical trials.
But developing a precise and robust pipeline for iden-
tifying neoantigens is often complex, requiring high-
quality DNA/RNA sequencing data and corresponding
mass spectrometry data, as well as rigorous testing and
training of high-precision algorithms. Previous stud-
ies indicate that only about 1% of mutations give rise
to neoantigens that elicit spontaneous TIL responses
[119]. Among the reasons why T cells may not recognize
enough neoantigens are the similarities between mutant-
peptides and wild- peptides, as well as between the func-
tional T-cell receptor repertoire induced by central or
peripheral tolerance mechanisms [120]. Furthermore,
the currently developed neoantigen prediction pipelines
lack specific prediction tools to support neoantigen pre-
diction beyond SNVs and Indels, such as RNA splicing
and transcriptome alternative splicing. At present, the
accuracy of neoantigen prediction is less than 50% [121].
Therefore, how to quickly verify whether the predicted
tumor epitopes are clinically applicable neoantigens will
still remain a bottleneck in the near future.

Delivery system

Currently most engineered TCR are delivered by lenti-
virus whose biosafety is not fully understood in patients.
Insertion mutations, shedding and immunogenicity may
occur due to its random integration in chromosomes,
resulting in defective gene expression and even onco-
gene activation in T cells [122]. Therefore, it is critical
to find more effective and safer vectors instead of lenti-
virus. Through a molecular cut-and-paste mechanism,
the Sleeping Beauty (SB) transposition system has be
used in specific-site genetic operation by recognizing
inverted terminal repeats (ITRs) [123]. A clinical trial of
SB-modified CAR-T cells against B-cell malignant lym-
phomas has been reported [123]. Constructed TCR-T
cells using SB transposon system did elicit immune reac-
tion against mutated neoantigen in tumor cell lines [124].
Specific TCR modified by SB has a good prospect for per-
sonalized T cell immunotherapy, considering its low cost,
fast in production, non-viral vector and high biosafety
(Table 3). Other technologies as CRISPR/cas9 and nucle-
ases are also trying as non-viral vectors in TCR-T con-
struction [125, 126].

However, the complexity of customizing engineered
T-cells ex vivo and the resulting reduction in T-cell via-
bility and efficacy can be prohibitive for extending to dif-
ferent types of tumors and diverse patient populations.
Researchers have found that combining nanotechnol-
ogy approaches can help mitigate these limitations in
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TCR or costimulatory signals delivery. Multifunctional
nanoparticles can directly modulate receptor clusters
to enhance the delivery efficiency of TCR while reduc-
ing off-target toxicity [127]. Parayath et al. demonstrated
the use of biodegradable polymer nanocarriers to deliver
in vitro-transcribed (IVT) CAR or TCR mRNA for
transiently reprogramming circulating T-cells to recog-
nize disease-related antigens [128]. Perica et al. showed
that stimulating anti-tumor activity can be achieved
by presenting pMHC to relevant TCRs, with magnetic
nanoparticle carriers enhancing the strength of antigen-
specific T-cells [129]. In addition, nanotechnology can
achieve high drug loading and controlled drug delivery at
tumor sites. For example, Tang et al. developed protein-
based nanogel particles (NGs) that can precisely control
cytokine release and selectively activate immune cells
in tumor microenvironment. These NGs function as
"nanoscale backpacks" comprised of many copies of the
protein crosslinked to itself (self-assembled nanoparti-
cles), thereby achieving carrier-free cytokine delivery that
increase the efficacy and safety [130]. Moreover, several
recent developed nanomaterial-based strategies could
control the nanoscale distribution of immunoregulatory
agents and regulate T cell behavior, such as biomimetic
modified nanoparticles [131], deformable nanoparticles
[132], photothermal effect nanoparticles [133], stimuli-
responsive nanoparticles [134], etc. Linking drug delivery
to TCR activation through nanotechnology holds great
promise for T cell-based immunotherapy in the field of
cancer immunotherapy.

TCR mismatch

As mentioned above, most T cells express af TCR and
few express yYOTCR [6]. When T cells engineered with
exogenous offTCR, mismatched TCRs between exog-
enous and endogenous alpha/ beta chains may occur,
and vice versa [135]. In mice studies, infusing TCR-T
cells with mismatched novel TCRs may lead to severe
graft versus host disease (GVHD) [136]. In addition,
exogenous TCRs, endogenous TCRs and mismatched
TCRs will compete with CD3 molecules for T cell sign-
aling, resulting in a decrease expression of exogenous
TCR, inefficient T cell activation and reduced T cell
cytotoxicity [137]. Therefore, mismatch of TCRs must be
prevented.

CRISPR/CAS9 has been used to edit TRAC and TRBC
gene loci, to knockout endogenous a and  encoding
genes and to increase the expression of exogenous TCR.
A pre-clinical study revealed an enhanced T cell recogni-
tion of multiple myeloma and prolong survival of tumor-
burdened mice using these modified T cells [138]. More
recently, another clinical-grade approach with CRISPR/
Cas9 system to knockout the endogenous TRAC and
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TRBC genes and insert transgenic neoantigen-specific
TCR (neoTCR) into the TRAC locus was described by
Foy et al. The dose escalation of neoTCR-T cells was ini-
tiated presently in phase I clinical trial (NCT0370382)
[139].

Introducing affTCR into y8T cells can significantly
reduce TCR pairing errors. No mismatch between
Y8TCR and afTCR and no cytotoxic activity of normal
cells were found in Y481 T cells transferred with TCRaf
[140]. Moreover, the constant region of human TCR can
be replaced by that of the mouse. Additionally, a cysteine
mutation is introduced to stabilize the entire TCR recep-
tor through disulfide bonds which can reduce the binding
affinity to the endogenous TCRa/p chain [10].

Immunosuppressive tumor microenvironment

Tumor microenvironments (TME) have been confirmed
to play a pivotal role not only in tumorigenesis and pro-
gression but also on T cell proliferation and function. The
dysfunction of T cells in TME usually lead to the failure
of TCR-T therapy. Therefore, remodeling the immune
microenvironment is an important strategy to improve
the efficacy of immunotherapy. The following factors
should be especially considered during TCR-T therapy:

1) Chemokines

Increasing chemotaxis and its signaling of immuno-
reactive cells is a major strategy in TME remodeling.
Highly expressed CXCL9/10 /11 may help effector T cell
migration and infiltration into tumor tissues [141]. Up-
regulation of CXCR2 can improve migration of TCR-T
cells to tumor tissues [142, 143]. Chemokine-antibody
fusion proteins enhances intratumoral recruitment of
effector T cells by directly targeting the chemokine of
tumor cells. For example, a glioma targeting fusion pro-
tein of CXCL10-EGFRVIII scFv was constructed and
tested in combination with tumor antigen-specific CD8"
T cells [144]. More recently, Tian et al. generated OV-
Cmab-CCL5 by oncolytic herpes simplex virus type 1
(oHSV), in which a secretable single-chain variable frag-
ment of the EGFR antibody (cetuximab) was linked to
CCL5 using Fc knob-into-hole strategy. Due to the con-
tinuous production of CCL5 in TME, OV-Cmab-CCL5
significantly enhances the migration and the activation
of natural killer cells, macrophages and T cells [145]. The
synergistic effects of chemokines may enhance the thera-
peutic efficiency of TCR-T cells in clinic.

2) Metabolites

Metabolites in TME can moderate the anti-tumor
immune response. Notarangelo et al. recently reported
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that D-2-hydroxyglutarate (D-2HG), a metabolite of
tumors with mutated isocitrate dehydrogenase (IDH),
impairs CD8" T cell mediated tumor cell cytotoxic-
ity. Overaccumulation of D-2HG in TME would inhibit
lactate dehydrogenase (LDH) activity and glucose metab-
olism, thus damage the activation, proliferation and cyto-
toxicity CD8" T cells [146]. Cheng et al. reported that
mutation or depletion of fumarate hydratase (FH) in
tumor cells accumulated fumarate in tumor interstitial
fluid, impairing TCR signaling by succinating ZAP70 at
C96 and C102, and subsequently, dampening the anti-
tumor responses of infiltrating CD8" T cells. Removal of
fumarate by FH reexpression significantly enhanced anti-
CD19 CAR-T efficiency in xenograft tumor model [147].
Therefore, modulation of oncometabolites in TME may
be an important strategy to improve tumor immunother-
apy. As metabolites are numerous and dynamic, it is difficult
to specify which one is most suitable in TME remodeling.

3) Checkpoint molecules

Immune checkpoints refer to the receptors and corre-
sponding ligands that can positively or negatively regu-
late T cell activation. For example, CD40 is expressed
in a variety of immune system cells including antigen-
presenting cells and its ligand, CD40L, is transiently
expressed on the surface of activated T cells. CD40/
CD40L signaling "permits" dendritic cells to mature and
then trigger T cell activation and differentiation. Inhibi-
tory receptors such as PD-1, CTLA-4 in activated T cells
interact with PD-L1, CD80/86 respectively in tumor
cells or stromal cells, transmit immunosuppressive sig-
nals, induce T cell apoptosis and inhibit T cell function
[148]. Most recently, a clinical trial has begun to deter-
mine the safety and the objective response of adoptive
TCR-T transfer against TSA in combination with CD40
(CDX-1140) and PD-1(pembrolizumab)(NCT05349890).
A number of bispecific antibodies which block PD-L1/
LAG-3 and other targets (e.g, PD-1/VEGF) have
emerged [149, 150]. Of course, more clinical trials are
needed to explore the efficacy and side effects of these
modulators in different panels of combinations.

Future directions

It is well known that T cells are composed of multiple
subpopulations, including CD8* T cells, CD4" T cells
and Tregs. By lineage analysis, T cells can also be divided
into naive T cells (Ty), stem cell memory T cells (Tgcpp),
central memory T cells(Ty;) and effector T cells(Tgp)
[151]. The synergistic effects of a combined use of appro-
priate T subsets might improve efficacy of TCR-T immu-
notherapy. In a clinical trial, 32 patients of non-Hodgkin
B-cell lymphoma treated with CD19 CAR-T cells in a
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1:1 ratio of CD8*/CD4" T cells exhibit long duration of
CAR-T cells and have slow disease progression [152].
Cachot et al. showed the dual functions of cytotoxicity
and immunoregulation of tumor-specific CD4" T cells,
especially on MHC-I loss or down-regulation tumor cells
[153]. Theoretically, recruiting an appropriate proportion
of CD4™ cells may improve therapeutic effects of TCR-T
cells. In addition, memory T cells are confirmed to have
superior anti-tumor effects because of their long dura-
tion, strong homing ability to lymph nodes and lower
threshold for antigen activation than naive T cells [151].
Adding IL-15 and IL-21 can elevate gplO0 targeting
TCR-T effects by 10-100 times due to a successful induc-
tion of Tgcy or Ty, from Ty cells [154—156]. Glycogen
synthase-3p inhibitor TWS119 can better induce T\ and
obtain Ty, of clinically available magnitude [157]. And
mitochondrial pyruvate carrier (MPC) inhibitor favors
memory T cell differentiation with a superior and long-
lasting anti-tumor activity in tumor model [158]. Cur-
rently, the generation of a massive number of T cells that
provide long-lasting immunity is challenged not only by
the quality of patient tissue source, but also the exhaus-
tion and differentiation-associated senescence which
arise during in vitro cloning and expansion. To address
these problems, several studies have developed a strat-
egy to regenerated cytotoxic T lymphocytes (CTL) from
induced pluripotent stem cells (iPSCs) through transduc-
tion of TCR to clinical-grade HLA-haplotype homozy-
gous iPSCs [159, 160]. Kawai et al. demonstrated that the
modified iPSC-CTLs exhibited early memory phenotype,
including high replicative capacity and the ability to give
rise to potent effector cells [161].

Recently, myeloid cells have been found to promote T
cell functions in tumor immunotherapy. Anti-tumor neu-
trophil subsets were observed both in mouse and human
biopsies after immune therapies [162, 163]. Hirschhorn
et al. showed that melanoma-specific CD4* T cells in
combination with OX40 co-stimulation or CTLA-4
blockade can eradicate melanomas containing antigen
escape variants. In this scenario, CD4% T cells play on-
target cytotoxicity of melanoma while neutrophils are
responsible for killing antigen loss variants [163]. Linde
et al. also demonstrated that neutrophils can be activated
and kill tumor cells in combined of tumor necrosis factor,
CD40 agonist and tumor-binding antibody in vitro and
in vivo model [164]. All these data suggest the auxiliary
role of neutrophils in improving adoptive T cell therapy.
Besides, as discussed above, the heterogeneity of solid
tumors, loss of neoantigen expression or dysfunction of
tumor antigen presentation usually lead to the failure of
T cell immunotherapy [165, 166], which can be partially
reversed by chemoradiotherapy [167, 168]. Furthermore,
adoptive T cell therapy combined with anti-angiogenic
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drugs [169], oncolytic viruses [170], neoantigen vaccine
[171],etc., should be considered and tested in the future.

Conclusion

Discovery of neoantigens and their specific TCR reper-
toires is the key step for a successful TCR-T based immu-
notherapy. With the great advances of omics research
technologies, more and more neoantigens are available
for personalized immunotherapy through experimen-
tal and bioinformatic analysis. A combined strategy of
computational prediction and experimental validation in
neoantigens and their cognate TCR screening is encour-
aged for its time-saving, efficient and practiced in clinic.
Tumor heterogeneity and tumor immunosuppressive
microenvironment are still the two main challenges in
neoantigen based TCR-T therapies in use for a relatively
long period. And finally, TCR-T cells with other therapies
should be a right direction in the future.

Abbreviations

TCR-T T cell receptor-engineered T cell therapy
ACTs Adoptive cell therapies

TAAs Tumor-associated antigens

TSAs Tumor-specific antigens

CcD3 Cluster of differentiation 3

MHC Major histocompatibility complex

ITAM Immunoreceptor tyrosine-based activation motif
cs Cholesterol sulfate

pMHCs Peptide major histocompatibility complexes

APCs Antigen-presenting cells

1K Immunological kinapse

IS Immunological synapse

CAR Chimeric antigen receptor

STAR-T Synthetic T cell receptor and antigen receptor-T

hSTAR Human TCR constant region-based STAR

TRuCs T cell receptor fusion constructs

scFv Single-chain variable fragment

TCRm TCR mimic

AbTCR Antibody-T cell receptor

Glypican-3 GPC-3

ImmTACs Immune-mobilizing monoclonal T cell receptors against
cancer

ROC Receiver operating characteristic

MS Mass spectrometry

CDR TCR complementarity determining region

NLP Natural Language Processing

AE Autoencoder

LSTM Long short-term memory

imRex Interaction map recognition

TAP Transporter associated with antigen processing

WES Whole-exome sequencing

SLP Synthetic long peptide

ELISPOT Enzyme-linked immunospot

ccRCC Clear cell renal cell carcinoma

T™G Tandem minigene

TiLs Tumor infiltrating lymphocytes

HANSolo HLA-Agnostic Neoantigen Screening

sCRNA-seq Single-cell RNA sequencing

SABRs Signaling and Antigen-presenting Bifunctional Receptors
pMHC tetramers  Peptide MHC tetramers

FRET Fluorescence resonance energy transfer

DCs Dendritic cells
CITE-seq Cellular indexing of transcriptomes and epitopes by sequencing
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Tas Tumor neoantigen specific T
DIPG Diffuse intrinsic midline gliomas
SNVs Single nucleotide variants

ITH Intratumor heterogeneity

ICD Immunogenic cell death

NKRs Natural killer cell receptors
MMR-d DNA mismatch repair-deficient
SB Sleeping Beauty

[TRs Inverted terminal repeats

VT In vitro-transcribed

NGs Protein-based nanogel particles
GVHD Graft versus host disease
neolCR Neoantigen-specific TCR

TME Tumor microenvironment
oHSV Oncolytic herpes simplex virus type1
IDH Isocitrate dehydrogenase

LDH Lactate dehydrogenase

FH Fumarate hydratase

TN Naive T cells

Tsem Stem cell memory T cells

Tem Central memory T cells

Tere Effector T cells

MPC Mitochondrial pyruvate carrier
CTL Cytotoxic T lymphocytes

iPSCs Induced pluripotent stem cells
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