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Low-density lipoprotein receptor promotes 
crosstalk between cell stemness and tumor 
immune microenvironment in breast cancer: 
a large data-based multi-omics study
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Abstract 

Background  Tumor cells with stemness in breast cancer might facilitate the immune microenvironment’s sup-
pression process and led to anti-tumor immune effects. The primary objective of this study was to identify potential 
targets to disrupt the communication between cancer cell stemness and the immune microenvironment.

Methods  In this study, we initially isolated tumor cells with varying degrees of stemness using a spheroid forma-
tion assay. Subsequently, we employed RNA-seq and proteomic analyses to identify genes associated with stemness 
through gene trend analysis. These stemness-related genes were then subjected to pan-cancer analysis to eluci-
date their functional roles in a broader spectrum of cancer types. RNA-seq data of 3132 patients with breast cancer 
with clinical data were obtained from public databases. Using the identified stemness genes, we constructed two 
distinct stemness subtypes, denoted as C1 and C2. We subsequently conducted a comprehensive analysis of the dif-
ferences between these subtypes using pathway enrichment methodology and immune infiltration algorithms. 
Furthermore, we identified key immune-related stemness genes by employing lasso regression analysis and a Cox 
survival regression model. We conducted in vitro experiments to ascertain the regulatory impact of the key gene 
on cell stemness. Additionally, we utilized immune infiltration analysis and pan-cancer analysis to delineate the func-
tions attributed to this key gene. Lastly, single-cell RNA sequencing (scRNA-seq) was employed to conduct a more 
comprehensive examination of the key gene’s role within the microenvironment.

Results  In our study, we initially identified a set of 65 stemness-related genes in breast cancer cells displaying 
varying stemness capabilities. Subsequently, through survival analysis, we pinpointed 41 of these stemness genes 
that held prognostic significance. We observed that the C2 subtype exhibited a higher stemness capacity com-
pared to the C1 subtype and displayed a more aggressive malignancy profile. Further analysis using Lasso-Cox 
algorithm identified LDLR as a pivotal immune-related stemness gene. It became evident that LDLR played a crucial 
role in shaping the immune microenvironment. In vitro experiments demonstrated that LDLR regulated the cell 
stemness of breast cancer. Immune infiltration analysis and pan-cancer analysis determined that LDLR inhibited 
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Background
Breast cancer ranks among the most prevalent malignan-
cies affecting women and typically originates in the glan-
dular epithelial tissue of the breast. It accounts for 7–10% 
of the overall cancer incidence. The occurrence of breast 
cancer often correlates with a patient’s genetic predis-
position, with a higher incidence observed in women 
between the ages of 40 and 60, typically around the time 
of menopause. However, due to escalating societal pres-
sures and evolving dietary habits, the onset of breast 
cancer is occurring at increasingly younger ages. Cur-
rently, the primary clinical treatments for breast cancer 
continue to be surgery, radiotherapy, and chemotherapy, 
despite their associated adverse effects. In recent years, 
advancements in targeted therapy, endocrine therapy, 
and immunotherapy have diversified breast cancer treat-
ment approaches. Nevertheless, breast cancer still pre-
sents a significant challenge due to its high incidence and 
recurrence rates.

Tumor cell stemness, as defined in our study, refers to 
the capability of a small subset of cells within the tumor 
tissue to undergo differentiation and give rise to the 
entire tumor. Tumor tissues are malignant tissues with 
unlimited proliferative potential, in which there are more 
tumor stem cells. Meanwhile, less cells in tumor tissues 
also have the function of tumor stem cells, which is the 
stemness characteristic of tumor cells. The augmentation 
of tumor cell stemness stands as a primary contributor 
to unfavorable tumor prognoses and the recurrence of 
tumors. Investigating targets for inhibiting tumor stem 
cells and diminishing tumor cell stemness remains a cru-
cial and active research focus.

The tumor immune microenvironment (TIME) 
encompasses the microenvironment surrounding 
tumor cells, comprising nearby blood vessels, immune 
cells, fibroblasts, bone marrow-derived inflammatory 
cells, various signaling molecules, and the extracel-
lular matrix. Tumors and their surroundings engage 
in ongoing interactions. Tumors have the capacity to 
shape their microenvironment by releasing cell signal-
ing molecules, and conversely, immune cells within the 
microenvironment can impact cancer cell growth and 

development, resulting in intricate crosstalk within 
this milieu. Tumor cells exhibiting stemness charac-
teristics engage in multiple crosstalk interactions with 
components of the immune microenvironment. These 
interactions enable these tumors to evade the immune 
response, ultimately resulting in the onset of metas-
tasis and tumor recurrence. The interaction between 
tumor cell stemness and TIME exists in numerous 
types of tumors, and in breast [1], lung [2], esopha-
geal [3], gastric [4, 5], colon [6], head and neck squa-
mous cell carcinoma [7], and various pediatric tumors 
[8]. There exists a reciprocal relationship wherein cells 
within the immune microenvironment can augment 
tumor stemness, and conversely, cells possessing tumor 
stemness can impede the functionality of immune cells. 
This dual interaction ultimately fosters tumor metas-
tasis and recurrence. In lung adenocarcinoma, the 
immune stemness genes Interleukin-6 (IL-6), Formyl 
peptide receptor 2 (FPR2) and Relaxin-3 (RLN3) can 
play an important role in tumor development through 
cytokine-cytokine receptor interactions and neuroac-
tive ligand-receptor interactions [9]. RAD51-associ-
ated protein 1 (RAD51AP1) not only enhances tumor 
stemness but also exerts an influence on the tumor 
immune microenvironment. This dual impact repre-
sents a critical oncogenic mechanism associated with 
this gene. Subsequent investigations have substanti-
ated the presence of such crosstalk involving this gene 
in various specific cancer types [10]. Likewise, Insulin-
like growth factor 2 mRNA-binding proteins (IGF2BPs) 
have been linked to the tumor immune microenviron-
ment and stemness across various human cancers. A 
noteworthy member of this family, IGF2BP3, plays a 
pivotal role in the maintenance and self-renewal of 
glioma stem cells [11]. All the aforementioned studies 
have underscored the existence of crosstalk between 
cellular stemness and the TIME, revealing the involve-
ment of numerous genes in regulating this intricate 
process. In our current study, we leveraged extensive 
breast cancer histology data and experimental stemness 
data specific to breast cancer. Our aim was to eluci-
date the immune stemness genes associated with breast 

the proliferation of immune cells and might promote tumor cell progression. Lastly, in our scRNA-seq analysis, we 
discovered that LDLR exhibited associations with stemness marker genes within breast cancer tissues. Moreover, LDLR 
demonstrated higher expression levels in tumor cells compared to immune cells, further emphasizing its relevance 
in the context of breast cancer.

Conclusion  LDLR is an important immune stemness gene that regulates cell stemness and enhances the crosstalk 
between breast cancer cancer cell stemness and tumor immune microenvironment.

Keywords  Breast cancer, Cell stemness, Tumor immune microenvironment, LDLR, Multi-omics study
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cancer, thereby offering novel targets for advancing 
breast cancer treatment strategies.

Materials and methods
Cell line construction and data source
The breast cancer cell line used in this study was the 
MDA-MB-231 cell line, a human breast cell line estab-
lished from the pleural effusion of a 51-year-old white 
female with metastatic breast cancer, which had some cell 
stemness and was therefore selected as the experimental 
cell line for this study. Also in this study, a MDA-MB-231 
cell line (named as LDLR) with stable high expression of 
low-density lipoprotein receptor (LDLR) and a MDA-
MB-231 cell line with stable low expression of LDLR 
(named as shLDLR-1 and shLDLR-2) were constructed 
using cell transfection technology. The MDA-MB-231 
cells were stably cultured at 37 °C in a CO2 incubator 
with 5% CO2 using DMEM medium containing 10% fetal 
bovine serum.

Autonomous sequencing data for this study were 
obtained from RNA-seq and Proteomics of four genera-
tion breast cancer cell lines (SP1–SP4). SP1–SP4 refer to 
four consecutive batches of breast cancer cells (i.e. 1st, 
2nd, 3rd, 4th) produced during the process of cell culti-
vation, with the tumor stemness level gradually increas-
ing. The RNA-seq of 3872 breast cancer cases and 113 
normal breast tissues from four public databases (TCGA, 
GEO, ICGC and Metabric) were also collected in this 
study. For the reliability of the data, only patients with a 
follow-up time from 30 days to 5000 days were retained 
in this study, and 3132 breast cancer patients were finally 
enrolled. The RNA-seq data of 3132 cases used in this 
study were de-batched using the sva package and nor-
malized in FPKM.

Spheroid formation experiment
The spheroid formation experiment is mainly used 
in cancer stem cell research and human tumor cell 
research. Cells were cultured into ultra-low adhe-
sion 96-well plates (Corning) at a density of 500 cells/
well. Cells were cultured in DMEM/F12 (Gibco) sup-
plemented with B27 (Invitrogen), 20 ng/ml epithelial 
growth factor (EGF, Sigma-Aldrich), 20 ng/ml basic 
fibroblast growth factor (bFGF, PeproTech) and 1% 
methylcellulose (Sigma-Aldrich). Cells were cultured 
for 10 days and each experiment was repeated three 
times. In serial sphere experiments, cells were cultured 
at a density of 5000 cells/well into ultra-low adhesion 
six-well plates (Corning) without methylcellulose dur-
ing culture. After 1 week, individual cells from the 
digested spheres were used for the formation of the 
next generation of spheres. All results were photo-
graphed and counted under an inverted microscope 

(Olympus) on the spheres. In this study, we conducted 
transcriptome sequencing and proteomic sequencing 
on cells from the first generation (1st) to the fourth 
generation (4th) in the spheroid formation experiment, 
at a total of four time points, in order to identify genes 
that influence cell stemness.

Western blotting experiment
Western blotting experiments in this study was mainly 
used to detect target proteins from protein mixtures and 
to quantitatively or qualitatively determine the expression 
of proteins in cells or tissues. Cells were lysed with RIPA 
buffer [150 mM NaCl, 0.5% sodium deoxycholate, 0.1% 
SDS, 1% NP40, and 50 mM Tris (pH 8.0)] and a protease 
inhibitor (Sigma-Aldrich) ice bath. Lysates were centri-
fuged at 12,000 rpm for 15 min. Proteins were then quan-
tified by the Coomassie bright blue dye method. After 
boiling for 5 min with the sample buffer, an equal amount 
of cellular proteins was supersampled and separated 
in SDS-PAGE, and then transferred to a nitrocellulose 
membrane (Millipore). After blocking, the membrane 
was incubated with primary antibody at 4 °C overnight. 
The membrane was then incubated with HRP-conjugated 
secondary antibody for 1 h at room temperature. Color 
was developed using an enhanced chemiluminescence kit 
(Advansta) according to the manufacturer’s instructions. 
Each experiment was repeated three times. Therefore, we 
determined the expression of stemness-related markers 
(Oct4, CD44, EpCAM and Vimentin) in breast cancer 
cells with different stemness degrees by this experiment 
and could verify the protein expression of LDLR in our 
constructed cell lines.

Clonogenic cell survival assay
In this study, the Clonogenic Cell Survival Assay was 
employed to assess cell proliferation capability. Cells were 
seeded at a density of 500 cells per well in 6-well plates. 
After 7–10 days of incubation, they were fixed using 4% 
paraformaldehyde, followed by staining with a 0.5% crys-
tal violet solution (Sigma-Aldrich). Subsequently, the 
cells were rinsed and allowed to air-dry. Images of the 
stained plates were captured. The bound crystal violet 
was then dissolved with 50% glacial acetic acid solution 
and the absorbance was measured at 570 nm using a 
multimode plate reader (Perkin Elmer). Alternatively, the 
number of clonal colonies was calculated using ImageJ 
software. Each experiment was repeated three times. In 
this study, we used Clonogenic Cell Survival Assay to 
detect the proliferation ability of breast cancer under dif-
ferent modifications in order to reflect the stem prolifera-
tion ability of this breast cancer cells from the side.
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Flow cytometry sorting assay
In this study, FACSAria flow cytometry was used for 
aseptic sorting of breast cancer cell lines. Four clusters 
of breast cancer cells were sorted based on the LDLR 
expression on the surface of the tumor cells. The P2 cell 
cluster was LDLR-negative, P3 cell cluster was low LDLR, 
P4 cell cluster was medium LDLR, and P5 cell cluster was 
high LDLR. Finally, the spheroid formation experiment 
was applied to study the cell stemness ability of different 
LDLR expressing cell populations.

Gene trend analysis and consistency clustering
In this study, we obtained gene and protein expres-
sion data from breast cancer cells at various time points 
spanning from SP1 to SP4, leveraging autonomously 
sequenced transcriptome and proteome data. Based on 
the built-in cutree_rows function in the pheatmap pack-
age [12], we performed clustering analysis on the tran-
scriptome and proteome data of SP1, SP2, SP3, and SP4 
and generated heatmaps. The specific analysis parameters 
used were as follows: scale = “row”, cluster_cols = FALSE, 
cutree_rows = 8. Using the aggregate function, we calcu-
lated the average expression values of SP1, SP2, SP3, and 
SP4 within each cluster separately, and then used the plot 
function to visualize the trend changes. Our objective 
was to identify clusters, from a macro perspective, that 
are most relevant to breast cancer stemness, meaning 
clusters where the average expression values of SP1, SP2, 
SP3, and SP4 show a gradual increase.

The molecules that exhibited an upward trend in 
both transcriptomic and proteomic trend analyses were 
retained for subsequent analysis. In total, we obtained 
65 molecules (Additional file 1: Table S1) that met these 
criteria and were considered as breast cancer stemness-
related genes. Based on the public RNA-seq data and 
survival data, 41 genes (Additional file 1: Table S2) were 
identified to be associated with breast cancer prognosis. 
Utilizing the ConsensusCluster package and the afore-
mentioned set of 41 genes, we conducted stemness sub-
type classification on publicly available RNA-seq data 
from breast cancer patients. This categorization resulted 
in the classification of breast cancer into two distinct sub-
types: one characterized by high stemness and the other 
by low stemness.

Differential gene expression analysis and pathway 
enrichment analysis
In this study, differential gene expression analysis was 
performed for two subtypes of breast cancer based on 
limma package [13, 14]. We also performed GSEA and 
GSVA enrichment analysis based on the differential 
genes, and analyzed the pathway differences in immu-
nity, metabolism, and cell death of different subtypes 

[15]. Specifically, the gene sets associated with immunity, 
metabolism, and cell death were obtained from Molecu-
lar Signatures Database (MSigDB database) and previ-
ous published articles (Additional file  1: Tables S3–S5) 
[16]. In this study, we compiled relevant pathway anno-
tations sourced from the MSigDB database and previ-
ously published articles utilizing keywords related to 
research aspects such as metabolism, immunity, and 
more. These compiled gene sets were then constructed 
for further analysis [16]. Furthermore, we employed the 
ssGSEA algorithm to generate stemness scores based on 
the expression patterns of the 41 stemness genes. This 
approach allowed us to assess and quantify the disparities 
in stemness levels between the two identified subtypes.

Gene pan‑cancer analysis
In this study, we sought to provide a comprehensive 
insight into the pivotal roles and functional distinctions 
of genes in cancer. To achieve this, we conducted a pan-
cancer functional analysis utilizing the TCGA pan-can-
cer data cohort. Our primary emphasis was placed on 
examining gene expression, methylation patterns, single 
nucleotide variations (SNV), and copy number varia-
tions (CNV). This holistic approach enabled us to gain 
a deeper understanding of how breast cancer stemness 
genes function across a spectrum of 33 known cancer 
types. The specific methods were similar with our pre-
vious studies [16, 17]. Notably, during the pan-cancer 
expression analysis and pan-cancer methylation analysis, 
we utilized TCGA’s adjacent non-tumor samples as con-
trol groups. We performed comparisons between each 
type of tumor sample and these controls to identify any 
abnormal increases or decreases in their transcription 
levels and gene methylation levels.

Immune infiltration analysis
In this study, we assessed the immune microenvironment 
profile of breast cancer by leveraging RNA-seq data and 
employing the Estimate algorithm. To further evaluate 
immune cell infiltration in breast cancer, we utilized the 
TIMER2 online analysis tool [18]. Additionally, we inves-
tigated disparities in the expression of immune check-
point molecules within various breast cancer subtypes. 
Ultimately, we delineated the immune characteristics 
associated with stemness genes using the aforementioned 
methodologies.

Analysis of LDLR protein levels
In this study, we utilized the CPTAC proteomics data-
base to conduct a differential protein expression analysis 
of LDLR [19]. Furthermore, we obtained immunohisto-
chemistry (IHC) experimental data for LDLR in breast 
cancer from the HPA database [20]. This allowed us to 
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perform a comprehensive protein-level analysis of LDLR 
expression in breast cancer.

Drug sensitivity analysis and clinical characterization
In this study, we predicted the sensitivity of commonly 
used breast cancer chemotherapeutic drugs across vari-
ous breast cancer subtypes using the oncopredict package 
[21] in conjunction with the GDSC2 pharmacogenetic 
dataset. We performed KM survival analysis to assess the 
impact of univariate gene expression on the prognosis of 
breast cancer patients. Subsequently, we conducted lasso 
regression analysis to identify nine immune stemness 
genes that exhibited higher significance. To ensure con-
sistency with prior studies [22, 23], we divided the breast 
cancer data from the Metabric database into two subsets 
comprising 660 and 659 cases using the caret package. 
A total of 660 samples from the Metabric database were 
utilized as the training dataset for the prognostic model. 
Subsequently, the remaining 659 samples from the Meta-
bric database were designated as internal validation 
dataset (1) All samples from the Metabric database were 
combined to form internal validation dataset (2) All sam-
ples from the TCGA database were used as the external 
validation dataset 1. Lastly, samples from GEO and ICGC 
database were combined and considered as the exter-
nal validation dataset2. In the training dataset, predict 
algorithm in R helps establish a novel 9-gene prognostic 
model. Similar method was utilized in internal validation 
datasets and external validation datasets to assess the risk 
scores of each sample. Importantly, samples derived from 
training dataset, internal validation datasets, and external 
validation datasets were all divided into two subgroups 
(i.e. high- and low-risk subgroup) based on the median 
risk score of training dataset. We constructed high and 
low risk scores based on gene expression and analyzed 
the prognosis of the two groups of patients with high and 
low risk scores with respect to the expression of immune 
stemness genes. This further demonstrates the predictive 
role of nine immune stemness genes on the prognosis of 
breast cancer patients.

Single‑cell RNA‑seq analysis
In our study, we utilized single-cell RNA-seq data from 
breast cancer, sourced from GSE161529 in the GEO data-
base, to investigate the role of LDLR within the immune 
microenvironment. This dataset encompassed a total of 
421,761 cells originating from 52 patients. To narrow our 
focus to the breast cancer component, we selected a sub-
set comprising 125,800 cells for subsequent analysis.

We conducted quality control procedures and cell 
clustering on the single-cell RNA-seq data, mirroring 
methods employed in previous studies [24]. Cellular 
annotation was performed using SingleR, and cell cycle 

prediction was executed using Tricycle [25]. Finally, we 
examined the expression patterns of stemness genes in 
conjunction with LDLR across different cell populations.

Statistical analysis
The data analyzed in this study were analyzed using R 
studio software. The correlation test was performed 
using the Spearman correlation test. Non-parametric test 
(Kruskal–Wallis test) was used for the analysis of differ-
ences between samples. p < 0.05 was considered as statis-
tically significant statistical results.

Results
Cell stemness‑related genes in breast cancer
In this study, we collected breast cancer cells at 1st, 2nd, 
3rd, and 4th which were numbered SP1, SP2, SP3 and 
SP4 in the spheroid formation experiment. Our find-
ings revealed a gradual increase in the mRNA expres-
sion levels of stemness-related markers, OCT4 and 
SOX2, in breast cancer cells over time (Fig. 1A). Concur-
rently, there was a gradual rise in the protein content of 
stemness-related markers, CD44 and OCT4, at the pro-
tein expression level (Fig.  1B). RNA-seq was performed 
on four clusters of cell lines, and the genes were clustered 
(Fig.  1C) and analyzed for gene trends (Fig.  1D). The 
results unveiled that 459 genes within cluster 2 exhib-
ited a progressive increase in expression levels over time. 
Proteomics was performed on four clusters of cell lines, 
and the proteins were clustered (Fig. 1E) and analyzed for 
protein trends (Fig.  1F). The results demonstrated that 
within cluster 4, 298 proteins exhibited a gradual increase 
in their protein expression levels as time progressed. In 
this study, we observed a certain association between 
the elevated expression of the mentioned genes and the 
growth of breast cancer spheroids. It can be assumed that 
these genes might play a role in promoting breast cancer 
stemness and could be considered as potential contribu-
tors to stemness in breast cancer.

Genetic characteristics of breast cancer stemness genes
The RNA sequencing data indicated that cluster2, com-
prising 459 genes, exhibited an increasing expression 
trend with the SP generation. Similarly, the proteomic 
sequencing data revealed a similar trend in cluster4, 
which contains 298 genes encoding proteins. Subse-
quently, an intersection analysis was conducted between 
the subgroups of cluster2 from RNA sequencing and clus-
ter4 from proteomic sequencing, resulting in a total of 65 
shared genes being considered as breast cancer stemness-
related genes (Fig. 3A, Additional file 2: Fig. S1). We per-
formed pan-cancer analysis of 65 genes. Most genes had 
lower CNV amplification (Fig. 2A) and deletion (Fig. 2B) 
and lower SNV (Fig. 2C) in multiple tumors, especially in 
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Fig. 1  Cell stemness-related genes CD44 and Oct4 promote the formation of breast cancer spheroid. A mRNA expression levels of stemness-related 
markers (MYC, NANOG, OCT4 and SOX2) in SP1–SP4. B Protein contents of stemness-related markers (CD44, OCT4, EpCAM and Vimentin) in SP1–
SP4. C The gene heatmap based on RNA-seq of four cell clusters. D Gene trend analysis based on RNA-seq of four cell clusters. E The gene heatmap 
based on proteomics of four cell clusters. F Gene trend analysis based on proteomics of four cell clusters
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Fig. 2  Gene pan-cancer analysis of breast cancer stemness genes.  A  CNV amplification of 65 stemness genes in pan-cancer.  B  CNV deletion of 65 
stemness genes in pan-cancer.  C  SNV of 65 stemness genes in pan-cancer.  D  Methylation between tumor and normal of 65 stemness genes 
in pan-cancer.  E  Gene expression of 65 stemness genes in pan-cancer.  F  Pathway enrichment analysis of 65 stemness genes in pan-cancer
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breast cancer. Additionally, we observed increased meth-
ylation (Fig. 2D) and reduced expression (Fig. 2E) of the 
majority of the 65 genes in cancer tissue in comparison to 
adjacent non-tumor tissue. The aforementioned findings 

indicated that the 65 stemness genes identified in breast 
cancer exhibited a more consistent gene expression pat-
tern within cancer tissue, suggesting their potential rel-
evance to the immune microenvironment.

Fig. 3  Stemness subtypes and key stemness gene in breast cancer.  A  65 genes were obtained by intersection of RNA-seq and Proteomics.  B  
Identification of C1 and C2 subtypes of breast cancer based on 41 stemness genes.  C  KM survival analysis of C1 and C2 subtypes.  D  The stemness 
scores of the C1 and C2 subtypes based on ssGSEA algorithm. E The expression of 41 stemness genes of the C1 and C2 subtypes. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.  F  Metabolic pathway enrichment analysis of the C1 and C2 subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.  G  Immune pathway enrichment analysis of the C1 and C2 subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.  H  Cell death 
pathway enrichment analysis of the C1 and C2 subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Stemness subtypes and key stemness gene in breast 
cancer
We performed KM survival analysis of 65 genes based on 
3132 breast cancer data from public databases, and we 
found that 41 genes were associated with the prognosis 
of breast cancer (Additional file 3: Fig. S2). Based on the 
41 stemness genes, we applied consensus clustering to 
classify breast cancer into C1 and C2 subtypes (Fig. 3B). 
KM survival analysis showed that the prognosis of C1 
subtype was better than that of C2 subtype (Fig.  3C). 
We incorporated 41 stemness genes expressions into 
the ssGSEA algorithm to calculate the stemness scores 
for each sample, and the stemness scores was higher 
in the C2 subtype than in the C1 subtype (Fig. 3D). We 
examined the expression of the 41 stemness genes in 
both subtypes, revealing that 36 of these genes exhib-
ited higher expression in subtype C2 compared to sub-
type C1 (Fig. 3E). Subsequently, we conducted a pathway 
enrichment analysis using breast cancer expression data 
from both subtypes. The outcomes indicated that the C2 
subtype displayed more attenuated metabolic responses 
than the C1 subtype, particularly in relation to lipid 
metabolism (Fig.  3F). Moreover, the C2 subtype exhib-
ited more pronounced cell cycle pathways than the C1 
subtype (Fig. 3G), suggesting a higher proliferative capac-
ity in the former. Furthermore, the C2 subtype showed a 
greater inclination towards specific cell death patterns, 
particularly those associated with the immune system. 
Conversely, the C1 subtype demonstrated a more robust 
autophagic pathway compared to the C2 subtype, hint-
ing at a reduced susceptibility to normal cell death in 
response to conventional treatments (Fig.  3H). Collec-
tively, these results strongly indicate that the C2 subtype 
displays an elevated level of malignancy compared to the 
C1 subtype, highlighting how alterations in stemness 
gene expression can contribute to the heightened malig-
nancy of breast cancer.

Effect of breast cancer stemness genes on immune 
microenvironment
The categorization of breast cancer into subtypes C1 and 
C2, based on the expression of 41 stemness-associated 
genes, provides valuable insights into the roles of these 
genes in breast cancer development and microenviron-
mental changes. In this study, we conducted an analysis 
of the immune microenvironment related to these two 
breast cancer subtypes. Utilizing the Estimate algorithm, 
we observed that the C2 subtype displayed a higher Esti-
mate score, indicating increased immune cell infiltration 
and lower tumor purity (Fig. 4A). This suggests that the 
C2 subtype exhibits greater immune infiltration com-
pared to the C1 subtype. Subsequently, we conducted 
immune cell infiltration analysis for both breast cancer 

subtypes using five different algorithms: Timer, Quan-
tiseq, xCell, EPIC, and MCPCOUNTER. The results 
consistently revealed higher levels of immune cell infil-
tration in the C2 subtype (Fig. 4B). Additionally, we com-
pared the expression of immune checkpoint molecules in 
the two subtypes and observed higher expression levels 
of CTLA4 and LAG3 in the C2 subtype (Fig.  4C). This 
implies a more pronounced suppression of the immune 
microenvironment in the C2 subtype. Collectively, these 
findings indicate that the C2 subtype exhibits greater 
immune infiltration and a more pronounced immune cell 
suppression when compared to the C1 subtype.

Moreover, we assessed the relationship between the 
41 stemness genes and immune cell infiltration in breast 
cancer using the ssGSEA algorithm. It was evident that 
the majority of stemness genes played a role in promot-
ing the development of immune cell infiltration (Fig. 5A). 
The stemness scores with 41 breast cancer stemness 
genes was generally associated with chemokine recep-
tor (CCR), Treg cell infiltration, Parainflammation, and 
immune checkpoints (Fig. 5B, C). Furthermore, our drug 
sensitivity analysis indicated that the C2 subtypes exhib-
ited greater sensitivity than the C1 subtypes to com-
monly used breast cancer drugs. This suggests that the 
C2 subtype may offer more therapeutic options for breast 
cancer treatment (Fig.  5D). In summary, 41 stem genes 
have shown strong immune functions and could be con-
sidered as immune stemness genes.

Establishment of an immune stemness‑based prognostic 
model
In this study, we screened 14 immune stemness genes by 
lasso regression analysis using 41 immune stemness genes 
(Additional file  4: Fig. S3A, B). We employed a training 
set comprising 660 breast cancer cases from the Metabric 
database to build a survival model utilizing the multivari-
ate Cox survival regression algorithm for the 9 immune 
stemness genes. Subsequently, we stratified the patients 
into two groups, categorizing them as either high or low 
risk, based on their median score (Additional file 5: Fig. 
S4A, B). The expression distributions of 9 model genes 
between different risk groups were shown in Additional 
file  5: Fig. S4C. The high-risk group exhibited a nota-
bly lower survival time compared to the low-risk group 
(Additional file  5: Fig. S4D). Based on the median risk 
score of training dataset, the samples in internal valida-
tion dataset 1 and 2 were similarly divided into high- and 
low-risk groups (Additional file 6: Fig. S5A, B, Additional 
file 7: Fig. S6A, B). Clearly, there are a higher number of 
deceased samples in the high-risk group of the internal 
validation datasets. Similarly, the expression traits of 9 
model genes in internal validation dataset 1 and 2 were 
also shown in Additional file 6: Fig. S5C and Additional 
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file 7: Fig. S6C. More importantly, in both internal valida-
tion sets 1 and 2, the low-risk group demonstrated a clear 
survival advantage (Additional file 6: Fig. S5D, Additional 
file 7: Fig. S6D). A truly exceptional prognostic model not 
only necessitates validation within internal datasets but 
also calls for rigorous testing across numerous external 
datasets. Only through this extensive validation can our 
immune stemness model achieve a wider range of appli-
cability and practicality. Subsequently, we conducted 
external validation of the model using previously estab-
lished external validation sets 1 and 2. In alignment with 

the training dataset, we categorized the patients into two 
risk groups, based on the median risk score of training 
dataset (Additional file  8: Fig. S7A, B, Additional file  9: 
Fig. S8A, B). In the external validation set, the model 
genes also exhibited distinct expression distribution 
characteristics between high- and low-risk groups (Addi-
tional file  8: Fig. S7C, Additional file  9: Fig. S8C). Like-
wise, compared to the high-risk group, the low-risk group 
demonstrates a significant survival advantage (Addi-
tional file 8: Fig. S7D, Additional file 9: Fig. S8D). Finally, 
we identified three immune stemness genes (LDLR, 

Fig. 4  Effect of breast cancer stemness genes on immune microenvironment. A Immune microenvironment assessment of the C1 and C2 subtypes 
based on Estimate algorithm. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. B Immune cell infiltration analysis for the C1 and C2 subtypes based 
on five algorithms: Timer, Quantiseq, xCell, EPIC and MCPCOUNTER. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. C Expression of immune 
checkpoints in the C1 and C2 subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Fig. 5  Immune stemness genes and immune function of LDLR. A Relationship between immune cell pathways and 41 immune stemness genes. 
*p < 0.05; ^p < 0.05. B Relationship between immune cell infiltration and Stemness scores. C Relationship between Stemness scores and CCR, 
Treg, parainflammation and checkpoint. D Drug sensitivity analysis between the C1 and C2 subtypes. E Relationship between expression of LDLR 
and the cellular infiltration of CD8_T cells, TIL cells, B cells, NK cells, T helper cells and neutrophils
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Fig. 6  Regulation of breast cancer cell stemness by LDLR. A Hazard ratio for 9 immune stemness genes in survival models. B Expression of LDLR 
in a variety of tumor tissues in CPTAC. C Protein expression of LDLR in breast cancer in HPA. D Construction of MDA-MB-231 cell lines with high 
and low expression of LDLR. E Sphere formation experiment in MDA-MB-231 cell lines with high and low expression of LDLR. F Clonogenic Cell 
Survival Assay MDA-MB-231 cell lines with high and low expression of LDLR. G Four clusters of cells were obtained by flow cytometry sorting: 
P2–P5. H Proportion of 4 clusters of cells obtained by flow cytometry. I The sphereroids diameter and sphereroids per 500 cells in P3–P5. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001
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CEBPB, CLMN) as the major risk genes for breast cancer 
(Fig. 6A). Among them, LDLR is an important membrane 
protein, which is associated with lipoprotein metabolism. 
In breast cancer, high expression of LDLR inhibits the 
cellular infiltration of CD8_T cells, TIL cells, B cells, NK 
cells, T helper cells and neutrophils (Fig. 5E). This study 
also identified LDLR as a predominant risk gene in vari-
ous cancers through pan-cancer analysis. Additionally, 
it was observed that LDLR was associated with reduced 
survival time in breast cancer patients across multi-
ple breast cancer cohorts (Additional file 10: Fig. S9). In 
addition, LDLR expression was increased in older breast 
cancers with poorer pathological subtypes and promoted 
lymph node metastasis and distant metastasis in breast 
cancers (Additional file  11: Fig. S10). In summary, we 
identified LDLR as a more malignant immune stemness 
gene in breast cancer, which can promote malignant pro-
gression of breast cancer. And due to the membrane pro-
tein properties of LDLR, LDLR also has some diagnostic 
and therapeutic value.

Regulation of breast cancer cell stemness by LDLR
Our study identified the role of LDLR in the development 
of breast cancer through lasso and complex clinical prog-
nostic analysis. At the proteomic level, LDLR has higher 
protein expression in a variety of tumor tissues (Fig. 6B). 
Furthermore, the results of IHC provided additional vali-
dation for the elevated protein expression of LDLR in 
breast cancer (Fig. 6C). To further explore the stemness 
function of LDLR, we constructed MDA-MB-231 cell 
lines with high LDLR expression (LDLR) and MDA-
MB-231 cell lines with low LDLR expression (shLDLR-1 
and shLDLR-2) (Fig.  6D). Sphere formation experiment 
showed that LDLR cell lines had stronger sphere-forming 
ability than normal cells, while shLDLR-1 and shLDLR-2 
cell lines had weaker sphere-forming ability than normal 
cells (Fig. 6E, Additional file 12: Fig. S11A, B). Clonogenic 
assay showed that the LDLR cell line had a stronger pro-
liferation ability than normal cells, while the shLDLR-1 
and shLDLR-2 cell lines had a weaker proliferation ability 
than normal cells (Fig.  6F, Additional file  12: Fig. S11C, 
D). In summary, gene expression of LDLR regulates the 
stemness ability of breast cancer cells. Since LDLR is a 
more common membrane protein receptor in various 
tissues, cell sorting of breast cancer cell lines were per-
formed by flow cytometry. In this study, we identified the 
target cell populations (P1) based on their characteris-
tics in SSC-A and FSC-A scatter plots. We distinguished 
four distinct cell clusters, which include a cluster with no 
LDLR expression (P2), a cluster with low LDLR expres-
sion (P3), a cluster with medium LDLR expression (P4), 
and a cluster with high LDLR expression (P5) (Fig.  6G, 
H). Sphere formation experiments were conducted on 

the three clusters of breast cancer cells (P3–P5), reveal-
ing that spheroid diameter and the number of spheroids 
per 500 cells were greater in P5 compared to P4 and P3. 
The sphere-forming capability of breast cancer cells was 
enhanced with increasing LDLR expression (Fig.  6I). 
This further confirms that LDLR promotes enhanced 
stemness of breast cancer cells and serves as an impor-
tant membrane protein to further classify breast cancer 
cells.

Gene function of LDLR in pan‑cancer
In this study, the function of LDLR was systematically 
analyzed and studied, based on the pan-cancer analysis. 
In terms of metabolic pathways, LDLR can inhibit drug 
metabolic processes in a variety of tumors (Fig.  7A). In 
terms of immune microenvironmental pathways, LDLR 
promoted immune inflammatory processes in most 
tumors, and in breast cancer LDLR promoted cell cycle 
processes and inhibits tumor immunogenesis (Fig.  7B). 
In terms of cell death, LDLR promoted many cell death 
processes in a variety of tumors (Fig. 7C). In breast can-
cer, LDLR promoted the ferropotosis and autophagy 
(Fig.  7C). In this study, we analysed the correlation 
between LDLR expression and the expression of com-
mon stemness genes (SOX2, CD44, MYC and KLF4) in 
the pan-cancer. The results showed a positive and statis-
tically significant correlation between LDLR expression 
and the expression of common stemness genes in breast 
cancer. Moreover, LDLR expression was positively corre-
lated with the expression of common stemness genes in 
most types of tumours (Fig. 7D, E). And LDLR was asso-
ciated with more immune cell infiltration, especially in 
breast cancer where LDLR inhibited more immune cell 
infiltration (Additional file  13: Fig. S12). In conclusion, 
we suggest that LDLR is a more obvious immune gene in 
tumors and has the ability to regulate the cell stemness 
and immune microenvironment in breast cancer.

The immune stemness function of LDLR in scRNA‑seq 
of breast cancer
In this study, the breast cancer data from the scRNA-seq 
were quality controlled and standardized (Additional 
file  14: Fig. S13A–C). The standardized single-cell tran-
scriptome has good homogeneity and can be used for 
subsequent data analysis (Additional file  15: Fig. S14A–
C). We applied the SingleR algorithm for cell clustering 
and cell annotation and obtained 18 cluster cell sub-
groups (Additional file  15: Fig. S14D, Additional file 16: 
Fig. S15). We applied the Tricycle algorithm for cell 
cycle classification of the 18 cell subgroups (Additional 
file 15: Fig. S14E). The results of this study showed that 
tissue cells with high LDLR expression in breast can-
cer tissues had higher expression of CD44, KLF4, and 
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Fig. 7  Gene function of LDLR in pan-cancer. A Metabolic pathways enrichment analysis of LDLR in pan-cancer. B Immune microenvironmental 
pathways enrichment analysis of LDLR in pan-cancer. C Cell Death pathways enrichment analysis of LDLR in pan-cancer. D The correlation 
of common stemness markers (SOX2, CD44, MYC and KLF4) and LDLR in pan-cancer. E The correlation of common stemness markers (SOX2, CD44, 
MYC and KLF4) and LDLR in different cancers. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Fig. 8  The immune stemness function of LDLR in scRNA-seq. A The correlation between common stemness markers (CD44, MYC and KLF4) 
and LDLR in scRNA-seq. B Seven class cell subgroups in scRNA-seq of breast cancer. C Distribution of 7 class cell subgroups in the scRNA-seq based 
on UMAP. D Distribution of cell cycle cells in the scRNA-seq based on UMAP. E The distribution of LDLR and stemness marker (CD44, KLF4, and MYC) 
expression in scRNA-seq based on UMAP
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MYC, demonstrating that tissue cells with higher LDLR 
expression had stronger stemness (Fig.  8A). We then 
annotated the 18 cell subgroups and grouped the 18 cell 
subgroups into 7 class cell subgroups (Fig.  8B). These 7 
class cell subgroups were T cells, B cells, epithelial cells, 
fibroblasts, endocrine cells, macrophages, and tissue 
stem cells (Fig. 8C). In this study, the majority of epithe-
lial cells were considered to be tumor cells and cell cycle 
analysis showed more cells in the epithelial tissue in the 
dividing phase of the cell cycle (M phase) (Fig. 8D). Our 
results also revealed that there were more cells with high 
LDLR expression in epithelial cells and less in T and B 
cells. Moreover, some of the epithelial cells with high 
LDLR expression were highly expressed in stemness 
marker genes (CD44, KLF4, and MYC), and there is a 
certain correlation (Fig. 8E). The above results indicated 
that most of the tumor cells in tumor tissues had highly 
expression of LDLR and strong cell stemness. In contrast, 
the majority of immune cells in tumor tissues did not 
express more LDLR, which might be an important rea-
son for the immunosuppression of breast cancer tumor 
microenvironment, suggesting from the side that LDLR 
as a breast cancer immune stemness gene can promote 
the deterioration of immune microenvironment in breast 
cancer.

Discussion
Breast cancer is currently the most prevalent malignancy 
with a low survival rate and a high recurrence rate. Breast 
cancer cells have different metabolic patterns and energy 
requirements compared to normal breast cells. Usually 
breast cancer cells are surrounded by a large number of 
adipocytes and can obtain more adipose from adipocytes 
for cancer cell proliferation and metastasis [26]. There-
fore, obesity and hyperlipidemia are important risk fac-
tors for the development of breast cancer and predispose 
breast cancer cells to develop some drug resistance [27, 
28]. Breast cancer patients often show increased levels of 
cholesterol, low-density lipoprotein (LDL), and triglyc-
erides in the blood, which makes targeting lipid metabo-
lism an important potential targeting pathway [29, 30]. 
Key metabolic enzymes involved in fatty acid synthesis 
and oxidation can inhibit breast cancer cell proliferation, 
invasion, and metastasis by affecting tumor cell viability 
[31]; control breast cancer cell proliferation by affect-
ing apoptosis, arresting the cell cycle, and preventing 
migration [32]; and activate oncogenic signals by affect-
ing some metabolite formation. And lipid metabolism in 
tumor cells interacts extremely closely with the tumor 
microenvironment, and exogenous fatty acids promote 
cancer progression and survival [33]. In addition LDL, a 
common lipoprotein in the blood, can also affect the sen-
sitivity of breast cancer to radiotherapy [34]. And LDL 

can affect a variety of malignant biological behaviors of 
breast cancer cells, in addition different phenotypes of 
breast cancer cells have different lipoprotein input and 
storage differences [35]. Ox-LDL is also present at high 
levels in the blood of tumor patients and can induce 
DNA structural changes and decreased DNA repair in 
breast cancer cells, resulting in altered breast cancer phe-
notypes [36]. This all suggests that elevated blood LDL 
and enhanced adipose metabolism in breast cancer con-
tribute to increased malignancy of breast cancer.

LDLR, a common LDL receptor, binds to LDL and 
transports it into cells via endocytosis, which facilitates 
the adipose metabolism of cancer cells. More studies 
have found that LDLR has high expression in breast can-
cer, which promotes elevated blood cholesterol in breast 
cancer patients and leads to poor prognosis in breast can-
cer patients [37, 38]. High expression of LDLR results in 
higher uptake of LDL in the blood by breast cancer cells, 
which facilitates increased metabolism and increases 
the malignancy of breast cancer [39]. Ingested LDL pro-
motes an increase in cholesterol in cancer cells and an 
increase in 27-hydroxycholesterol, which facilitates the 
proliferation of breast cancer cells and epithelial mesen-
chymal transition (EMT) [40, 41]. All of these indicate 
that an increase in LDLR is an important marker of poor 
prognosis in breast cancer. In the present study, LDLR 
was found to have a crosstalk role in promoting breast 
cancer cell stemness as well as inhibiting the immune 
microenvironment of breast cancer. As an important 
lipid metabolism receptor, LDLR has a certain amount 
of expression on the surface of immune cells in breast 
cancer and microenvironment. Our findings revealed 
that LDLR has high expression in breast cancer and can 
promote the stemness ability of breast cancer. Moreover, 
breast cancer cells with high LDLR expression can affect 
the tumor immune microenvironment and lead to immu-
nosuppression in the tumor microenvironment, which 
are high expression of immune checkpoints and reduced 
infiltration of immune killer cells. In summary, we sug-
gest that LDLR is an important immune stemness gene 
with the dual function of inducing stemness to suppress 
immunity. High expression of LDLR in breast cancer 
induces increased malignancy of breast cancer, which in 
turn leads to metastasis and recurrence. It is also note-
worthy that the breast cancer microenvironment also has 
a small number of immune cells with high LDLR expres-
sion, suggesting that high LDLR expression in immune 
cells can promote the function of immune cells. However, 
tumor cells have higher LDLR expression, which makes 
immune cells lack less energy source in the tumor micro-
environment. Therefore, reversing LDLR distribution 
in the tumor microenvironment may be an important 
approach to treat breast cancer.
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Among LDLR, the common giant receptors are LRP1, 
LRP1B and LRP2, three proteins with strong structural 
homology but with large differences in cellular dynam-
ics and expression [42]. The low expression of LRP2 in 
some breast cancers leads to a decrease in the activation 
of its nuclear receptor VDR, which promotes the prolif-
erative process of breast cancer [43]. And LRP2 mRNA 
has been detected at considerably high levels in inva-
sive tumors. Considerably high levels were detected in 
invasive breast cancer with high variability [44]. LRP1 
is an important LDLR-related protein expressed in a 
large number of immune cells. LRP1 reduces the abun-
dance of TNF receptors on the cell surface to suppress 
macrophage-induced inflammation [45] and free LRP1 
induces pro-inflammatory factor synthesis, which has the 
function of amplifying inflammation [46]. LRP1 also pro-
motes the antigen-presenting function of macrophages 
and dendritic cells [47]. All of these suggest that LDLR 
and LDLR-related proteins have strong immune func-
tions in the tumor immune microenvironment. And the 
high expression of LDLR in immune cells can promote 
the enhanced function of immune cells and facilitate the 
anti-tumor effect of immune cells. Therefore, targeting 
LDLR in the microenvironment and reversing the distri-
bution of LDLR in the tumor immune microenvironment 
has some therapeutic significance.

Conclusions
Transcriptomic and proteomic analysis revealed a novel 
tumor stem-associated gene set involving 65 genes. 
Pan-cancer analysis highlighted the multi-omics char-
acteristics of the tumor stem-associated gene set. Breast 
cancer patients with high stemness scores showed the 
worse prognoses, accompanied by dysfunction of tumor 
immune microenviroment, metabolic remodeling, and 
cell death status. Among the tumor stem-associated 
genes, LDLR had the potential to promote the crosstalk 
between tumor stemness and immune microenviron-
ment, which further contributed to the poor prognosis 
through scRNA-seq, bulk RNA sequencing, and experi-
mental validation.
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