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Abstract 

In recent single-cell -omics studies, both the differential activity of transcription factors regulating cell fate deter-
mination and differential genome activation have been tested for utility as descriptors of cell types. Naturally, 
genome accessibility and gene expression are interlinked. To understand the variability in genomic feature activa-
tion in the GABAergic neurons of different spatial origins, we have mapped accessible chromatin regions and mRNA 
expression in single cells derived from the developing mouse central nervous system (CNS). We first defined a refer-
ence set of open chromatin regions for scATAC-seq read quantitation across samples, allowing comparison of chro-
matin accessibility between brain regions and cell types directly. Second, we integrated the scATAC-seq and scRNA-
seq data to form a unified resource of transcriptome and chromatin accessibility landscape for the cell types 
in di- and telencephalon, midbrain and anterior hindbrain of E14.5 mouse embryo. Importantly, we implemented 
resolution optimization at the clustering, and automatized the cell typing step. We show high level of concordance 
between the cell clustering based on the chromatin accessibility and the transcriptome in analyzed neuronal lineages, 
indicating that both genome and transcriptome features can be used for cell type definition. Hierarchical clustering 
by the similarity in accessible chromatin reveals that the genomic feature activation correlates with neurotransmitter 
phenotype, selector gene expression, cell differentiation stage and neuromere origins.
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Background
Clustering single cells by their transcriptome or chroma-
tin accessibility allows to identify cell types and measure 
molecular distances between the cell types [1, 2]. In the 
embryonic mammalian brain, the diversity of differenti-
ating cell types is immense and largely unknown. Here, 

the topology of the cell type tree can provide a measure 
of developmental and evolutionary relatedness of cell 
types [3–5]: Specific patterns of genomic feature expres-
sion—or enhancer use—along the branches of a cell type 
tree can reveal genetic regulatory logic. For example, it 
has been shown that neurotransmitter phenotype can be 
associated with multiple TF combinations in D. mela-
nogaster and C. elegans, and that the expression pattern 
of neural differentiation genes are better explained by a 
model where each gene can be regulated by several TFs 
[6, 7]. The examples of such phenotypic convergence are 
still rare in vertebrates, however, the divergence between 
lineage relatedness and final acquired cellular pheno-
type has been demonstrated in zebrafish lineage tracing 
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studies [8, 9]. Thus, similar molecular identity can be 
derived from molecularly and physically distinct lineage. 
The genetic elements underlying phenotypic convergence 
have this far only been studied in detail in C. elegans [10, 
11].

Comparative analysis of genomic features is not always 
straightforward. While in RNA-sequencing features are 
defined by the consensus set of genes, this is not the case 
for the ATAC-sequencing today. In ATAC-sequencing, 
essentially reads could originate from any genomic area. 
In ATAC-seq data processing, features are formed de 
novo based on either i) fixed genomic windows or ii) 
locations of aggregated peaks of reads along the genome. 
The latter approach has clear benefit in increased reso-
lution, but the results vary between samples. After suc-
cessful feature definition, cell clustering and subsequent 
classification into cell types or transcriptomic classes is 
complicated by the variety of available clustering meth-
ods, as well as the lack of established cell type definitions 
and lack of comprehensive databases of marker genes for 
existing cell types. Additionally, correspondence between 
cell types defined based on transcriptome and chroma-
tin accessibility profile should be considered. The within-
cell-type diversity in gene expression and chromatin 
accessibility can and probably does have different scales. 
It has been shown that clustering results using these dif-
ferent modalities do not perfectly match, however both 
yield valid classifications [3]. Finally, as in any cluster-
ing, cell type detection by single-cell data clustering is 
prone to bias due to under- or overclustering [12]. This 
risk can be mitigated by an iterative search for the reso-
lution parameter that yields highest statistical confidence 
of clustering as well as by exploring biological interpreta-
tion for defined clusters.

Gamma-aminobutyric acid (GABA) is a small-mole-
cule neurotransmitter and GABAergic neurons are the 
principal type of inhibitory neurons in the mouse brain. 
Consistent with the ubiquitous presence in the brain, 
GABAergic neuron precursors are found in all ante-
rior–posterior divisions of the mouse neural tube, where 
they, interestingly, express and require distinct transcrip-
tion factors (TFs) for acquiring GABAergic identity. TFs 
Dlx1/2/5 function as GABAergic fate selectors in the 
telencephalon, Gata2 and Tal2 in midbrain and Tal1 in 
ventral hindbrain [13]. The binding sites for the above-
mentioned fate selectors have been found in the regula-
tory regions of GABAergic neuron marker genes Gad1 
and Gad2 (encoding glutamic acid decarboxylases 1 and 
2 that convert glutamate to GABA in neurons) [14, 15]. 
However, the gene regulatory elements underlying the 
flexibility to respond to various mutually exclusive devel-
opmental signals are not fully understood, neither the 
terminal differentiation genes possibly co-regulated with 

the canonical GABAergic neuron marker genes. To com-
pare the gene regulatory landscape in different GABAe-
rgic neuron types arising from spatially distinct lineages 
during mouse embryonic development, we collected sin-
gle cells from the embryonic day (E) 14.5 (E14.5) mouse 
telencephalon, diencephalon, midbrain and rhombomere 
1. In the analysis workflow, we first define an ATAC-seq 
feature set by allowing separately collected single-cell 
populations to contribute into peak aggregation sepa-
rately, then pool the peaks and finally use the resulting 
E14.5 common features to call accessibility of chromatin 
features per cell [16, 17]. Next, we integrated scATAC-
seq and scRNA-seq modalities and used the dataset to 
study transcriptional and chromatin accessibility varia-
tion among matched cells. Using the integrated dataset, 
we also studied the distribution and relatedness of cells in 
correlation with clustering, brain region, neurotransmit-
ter phenotype and selector gene expression. The expres-
sion of previously known regional markers in mouse 
brain as well as known GABAergic neuron fate selec-
tor genes aligned remarkably well with the scATAC-seq 
based clustering and could be correlated with novel regu-
latory DNA elements and RNA expression.

In summary, in this study we aimed to understand 
whether combined modalities of scATAC-seq and 
scRNA-seq allow detailed cell type definitions. We 
then mapped the variability in the genomic accessibil-
ity and correlated it to known selector gene expression 
to describe in more detail how the epigenomic context 
affects fate decisions in developing GABAergic neuron 
sublineages. Finally, we show that genome accessibil-
ity up- and downstream to the sequences of Gad1/2 
and Slc32a1 varies more than the known selector gene 
expression in GABAergic neurons. Our data suggests 
that, in mouse GABAergic neurons, commonly expressed 
genes are regulated by several alternative TF-enhancer 
interactions.

Results
Definition of open chromatin features in E14.5 mouse 
neural cells
To study transcriptional regulation of cell fate determi-
nation during neurogenesis, we first collected a diverse 
sample of neuroepithelial cells. Single cells were derived 
from the ventral telencephalon, diencephalon, mid-
brain and rhombomere 1 regions of a developing mouse 
embryo (Fig.  1A). To map the open chromatin areas 
and the mRNA molecules expressed in the cells, we 
performed scATAC-seq and scRNA-seq on stage- and 
region -matched samples (Fig. 1B, Methods).

The sampled brain regions are enriched in vari-
ous subtypes of GABAergic neurons (see Methods). 
In addition to GABAergic neurons, the sampled brain 
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regions contain neuroepithelial progenitors, gluta-
matergic and cholinergic neurons, and monoaminer-
gic neuron types. To compare the gene expression and 
regulation across all the cell types, we decided to pool 
the samples. Analysis of the set of pooled cells originat-
ing from different scATAC-seq experiments required 
features applicable to all the samples. We addressed 
this by merging the reads from the separate scATAC-
seq experiments, and then defining features stepwise: 

we first used the reads from cells that formed high-level 
clades separately [16]. To determine optimal cutting 
level for clade detection we used Dunn2 and Silhouette 
statistics [18] (Supplementary Fig. 1A, B, Fig. 1A). After 
clade definition, we performed separate peak detec-
tion in each of the clades. Clade level peak definition 
was followed by peak merging (Methods) resulting in a 
final set of n = 470 578 features (Fig.  1A, E14.5 ATAC 
features).

Fig. 1  Graphical overview of the presented workflows. A. Accessible chromatin feature definition. The analysed brain regions are listed and shown 
in colour on the schematic of mouse embryo. Samples were collected from the telencephalon (Tel) and diencephalon (Di), midbrain (MB) 
and rhombomere 1 (R1) regions of E14.5 mouse embryos and used as indicated in each workflow. The process for defining the ATAC feature 
space across studied brain regions is described, showing the methods and steps of the workflow. See Methods for details. The circosplot shows 
the density of features (yellow) across the mouse karyotype. Boxplot shows the distribution of features by feature length in base pairs (bp). 
Outliers (> Q3 + 1.5*IQR) were excluded from the boxplot. B. Schematic of the scRNA-seq and scATAC-seq data processing and integration 
workflow. Samples (number of replicates indicated) were subjected to single-cell mRNA-seq (scRNA-seq) or single-cell ATAC-seq (scATAC-seq). 
Each replicate consists of ca 5000 cells (scRNA-seq) or nuclei (scATAC-seq) from a single embryo. The sequencing reads from scRNA-seq (red 
outlines) or scATAC-seq (black outlines) are first processed in parallel, then combined into an integrated object. The scATAC-seq data is scored 
along the previously defined E14.5 ATAC features. scRNA-seq data is scored along the mouse genes. After clustering resolution optimisation using 
ChooseR, the scRNA-seq data is integrated with scATAC-seq using Seurat/Signac so that scATAC cells are linked to expression values interpolated 
from scRNA and scRNA cluster labels are label transferred as additional metadata to scATAC-object. Integration is followed by the optimisation 
of the clustering based on ATAC features (ChooseR). Cell type classification (scType) and marker definition (CombiROC) is done after the integration 
of scATAC-seq and scRNA-seq data. Tel, telencephalon (yellow); Di, DI, diencephalon (yellow); MB, midbrain (green); R1, rhombomere 1 (blue). 
LSA, Latent Semantic Analysis; QC, Quality Control; PCA, Principal Component Analysis; scATAC, scATAC-seq, single-cell ATAC-sequencing; scRNA, 
scRNA-seq, single-cell mRNA-sequencing
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We further characterized the defined features in terms 
of feature length, density, and localization to genomic con-
text. Features were found to be mostly under 1000 bp long 
and covered entire mouse genome (mm10) with numer-
ous hotspots throughout the studied genome (excluding 
X- and Y-chromosomes) (Fig. 1A). Altogether, the defined 
features cover approximately 8.7% of the mouse genome 
sequence (236 594 772 bp out of total of 2 730 855 475 bp). 
Nearly 30% of the features are located within ± 10  kb 
around TSS, which altogether is a relatively narrow part 
of the genome. Approximately 80% of the features locate 
within ± 100  kb around TSS, containing both genes and 
intergenic regions (Fig.  2A). Average distribution of the 

feature locations over gene models from TSS to TTS 
(transcript termination site) clearly peaks at the TSS but 
also shows that regions downstream of TTS have slightly 
more features (Fig.  2B). This highlights that while TSS 
regions are, as expected, the most dynamically regulated 
areas of chromatin, significant stretches of intergenic 
chromatin are accessible in at least some cellular clade. 
We annotated the features by the genomic region and 
compared with randomized positions of equal-length 
fragments (Fig.  2C), confirming highest enrichment of 
features in proximal promoter regions (< 1 kb of TSS) and 
introns (Supplementary Table 1, Fig. 2C). Features are sig-
nificantly less often found in intergenic regions (Fig. 2C, 

Fig. 2  Characterisation of the E14.5 ATAC features. A. Distribution of the E14.5 ATAC features relative to the TSS (transcription start sites) of genes 
in mouse genome. X-axis shows cumulative percentage of features locating upstream or downstream of the TSS. Colors indicate distance intervals 
from TSS in kb. B. Count frequency of feature peak locations along the average profile of gene from TSS to TTS (5´- > 3´ direction). C. Bar chart of all 
E14.5 ATAC features (blue) annotated for the genomic position relative to genes. Random position (red) is the average proportion for randomly 
positioned features, calculated using 1000 random shuffles of peak locations, per annotation category. D. Overlap between the features 
in the E14.5 mouse forebrain, midbrain and hindbrain according to ENCODE (ENCODE cCREs) and the expression-filtered E14.5 ATAC features used 
in the downstream analysis. E. Genomic regions of the expression-filtered E14.5 ATAC features and their overlap with the ENCODE features (blue). 
The features not overlapping with the ENCODE features are shown in red
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Supplementary Table 1). In total, 45% of the E14.5 ATAC 
features are found in intergenic regions while 55% are 
located within gene structures.

To assess how each sample can be represented using the 
E14.5 ATAC features, we compared the open chromatin 
features defined in each brain region separately with the 
common E14.5 ATAC features. 94–99% of the features 
present in the separately analyzed samples fully overlap a 
feature from the common E14.5 ATAC features (Supple-
mentary Fig. 1C for E14.5 DI). In all brain regions, 0.4—
3% features remained region specific (Supplementary 
Fig. 1E). The common E14.5 ATAC features also contain 
features not found in any brain region alone (Supplemen-
tary Fig. 1D-E). Likely, combining reads from the samples 
enhances the signal from weakly detected common fea-
tures. We did not detect significant differences in the con-
tribution of reads from individual samples to E14.5 ATAC 
features (Supplementary Table 2). In conclusion, we can-
not see meaningful bias between samples in their contri-
bution to defined E14.5 ATAC features.

Features used in the downstream analysis were further 
filtered based on detected accessibility in at least 1% of 
the cells and in maximum of 97.5% of the cells, resulting 
in 330 384 chromatin features. This set of expressed E14.5 
ATAC features was compared to the functional DNA ele-
ments available from ENCODE [19] for E14.5 forebrain, 
midbrain and hindbrain (See methods for ENCODE sam-
ple ID-s). 93.1% of the ENCODE elements are found in 
our feature set (60,533/65027 elements). However, our 
E14.5 features contain 269,839 additional features, mak-
ing the ENCODE elements a minority (15.48%) of the 
defined features. Aside from the noise inherent to single-
cell data, our feature set may be enriched for rare features 
that are expressed transiently and not to a significant 
extent in the cell type level. The features overlapping 

with ENCODE are more often found in promoters 
(Fig. 2E), for example 28.51% of features overlapping with 
ENCODE are ≤ 1  kb from promoters versus 4.58% of 
non-overlapping features.

Cell type identification and comparison between brain 
compartments
We next used the defined chromatin features to analyse 
the scATAC-seq data from E14.5 DI, MB and R1 together 
(Fig. 1B). After filtering the scATAC-seq cells by having at 
least 2.5% of features and maximum of 97.5% of features 
accessible, the E14.5 scATAC-seq dataset comprised 330 
384 chromatin features in 28 505 cells (Fig. 1B, left side). 
Subsequently, we integrated the E14.5 scATAC-seq data 
with E14.5 scRNA-seq data (Fig. 1B, right side). First, the 
cells from the scRNA-seq samples from E14.5 DI, MB 
and R1 were combined, expression was scored across 
mouse genes and cells were clustered (Methods). The 
resolution parameter for cluster detection was estimated 
by iterating cluster detection over range of resolution val-
ues and selecting the highest statistically supported reso-
lution using chooseR [12]. The clustering resulted in 87 
clusters at the optimal resolution (Supplementary Fig. 2, 
Methods). We did not observe significant batch effect 
in the scRNA-seq samples (Supplementary Fig.  2). The 
scATAC-seq and scRNA-seq data integration was per-
formed as described by Hao et  al. [20] and Stuart et  al. 
[17]. The final integrated dataset contains 20 606 cells.

After the modality integration, we proceeded to clus-
ter the E14.5 cells based on their scATAC-seq profile. 
The optimal resolution parameter for cluster detection 
was res = 16, as defined using chooseR [12] (Supplemen-
tary Fig.  3, Supplementary Table  3). The scATAC-seq 
dataset was divided into 189 cell clusters (Fig.  3A). The 
cells from the replicate embryos were distributed evenly 

Fig. 3  Clustering of the E14.5 Di/Tel, MB and R1 cells based on the scATAC-seq feature expression. A. UMAP projection of the clusters of E14.5 
cells. Clustering is based on the scATAC-seq feature accessibility. B. UMAP of the clusters showing the brain region of origin of each cell. C. UMAP 
of the clusters showing the identified neurotransmitter phenotype of the cells
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across the clusters (Supplementary Fig.  4C, G). We did 
not observe clustering by the genotype or by the collec-
tion date of cells (Supplementary Fig. 4D, H), indicating 
the lack of significant batch effect. The”Di” samples from 
batch 2 (06.10.20) contain diencephalic and telencephalic 
cells and therefore may group by brain region separately 
from the diencephalon samples from batch 1 (06.08.20, 
embryo 1). This sample group is referred to as Di + Tel in 
further text and Figures. The cells from each brain region 
mostly formed coherent clusters (Fig. 3B, Supplementary 
Fig.  4B, F), with some mixed clusters that may contain 
migratory cells present near midbrain-hindbrain bound-
ary, or cells near regional borders that may be found in 
differently labelled samples.

To characterize the cells in each cluster further, we 
assigned a neurotransmitter phenotype or progenitor 
cell identity to each cell, implementing ScType [21]. We 
first defined a set of positive and negative marker genes 
for the cell types present in the diencephalon, mid- and 
hindbrain at E14.5 (Supplementary Table  4). Those 
include GABAergic and glutamatergic neurons that are 
derived from ventrolateral and lateral neural tube, dopa-
minergic, serotonergic and cholinergic neurons lineages 
derived from floor plate and basal plate, and adrenergic 
neurons of the R1. The definition of glial cells (astrocytes 
and oligodendrocytes) was not included in ScType and 
thus the possible glial cells present in the sample were 
likely placed in unknown category (1631/20606 cells, 
7.9%, Supplementary Table 4). Overall, we observed high 
level of concordance between cluster identity and neuro-
transmitter phenotype (NT-type, Fig. 3C), with NT-type 
purity value [22] being 0.87 (Methods). To analyze the 
enrichment of known neuronal marker genes or house-
keeping genes among the differentially expressed genes 
in the clusters, we calculated Gini index [23]. Mean Gini 
index was 0.81 for the neuronal marker genes and 0.12 
for the housekeeping genes, indicating that housekeeping 
gene expression is relatively uniform, whereas expression 
of neuronal marker genes is variable across the clus-
ters. Consistent with the NT-type results, the markers 
for the cell types present in the diencephalon, mid- and 
hindbrain at E14.5 were differentially expressed in clus-
ters (Fig.  4). The final number of scATAC-seq cell clus-
ters (n = 189) matches well with the expectation to find 
the 6 neuron classes as well as the neuronal progenitors, 
while each neuron type can be present in several stages 
of neurogenesis and maturation in E14.5 mouse brain, 
which is further divided into dorso-ventral (7 domains) 
and anterior–posterior (4–5 domains) molecularly dis-
tinct domains and may give rise to temporal sublineages 
[24–26]. Importantly, the categorization by neurotrans-
mitter identity reveals broad classes of neurons, while 
distinguishing the whole range of molecular identities 

would require an improved set of markers. ScType also 
do not directly support dual neurotransmitter identities, 
which therefore may have been placed in the "unknown" 
category or receive a poor NT-type score. This may be 
the case for GABA and acetylcholine dual neurotrans-
mitter cell clusters in the diencephalon scRNA-seq sam-
ples (Supplementary Fig.  5A, Supplementary Fig.  6B-C, 
see below). As we had sampled several cell lineages per 
neurotransmitter identity in each brain region (Supple-
mentary Table 5), we defined the clusters further, finding 
combinatorial marker gene sets using CombiROC [27] 
(Methods, Supplementary Table  6). In all brain regions, 
the cell clusters classified as the same neurotransmitter 
phenotype, were characterized by a unique marker gene 
combination (Supplementary Table  6). To validate the 
specificity of the marker gene combinations, we analysed 
the sampled cells for the co-expression of all genes in the 
found cluster marker lists (152/189). Considering each 
marker combination, the averaged expression of all genes 
in the marker list was calculated per cell. In the calcula-
tions of average expression, the cells were filtered so that 
only cells showing expression value > 0.98 quantile of the 
given gene over all cells were considered. This was done 
to reduce background and visualise cells expressing the 
marker genes at high level. The expression of each clus-
ter marker combination was visualised and can be found 
at the linked github site (see Methods) as Combi​roc_​avg_​
plots.

We next wanted to explore the relationships between 
the cell types. For that aim, we calculated average chro-
matin accessibility profile for each cell cluster and 
subjected those to hierarchical clustering (Fig. 5, Meth-
ods). Interestingly, hierarchical clustering by chromatin 
accessibility revealed some segregation of clusters by 
brain region of origin as well as by neurotransmitter 
type (Fig. 5). However, the brain region and NT-type do 
not correlate fully, and there seems to be no clear pref-
erence to group by either characteristic. Surprisingly, 
several cluster groups comprised of a single cell type 
segregate very early: a branch of Di + Tel glutamatergic 
neurons (Di Glut; Group 9) appeared at 3th branching 
event (Fig. 5C, and Supplementary Fig. 5A-C), and mid-
brain glutamatergic neurons (MB Glut, Group 2) at 4th 
branching event (Fig. 5C, and Supplementary Fig. 5). A 
midbrain GABAergic neuron group appears at branch 
6 (MB GABA, Group 5, Supplementary Fig.  5). Dien-
cephalic ACh + GABA neuron group at branch 7 
(Supplementary Fig.  5A, Group 5). A dopaminergic 
neuron group (DA) of mixed sample origin (Di and MB) 
appears at 8th branching event (Fig. 5; Supplementary 
Fig.  5, Group 6). The DA neurons locate in dienceph-
alon and midbrain in the mature brain, while the DA 
neuron progenitor domain is in ventral midbrain, and 

https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace/blob/main/analysis/Combiroc_avg_plots110923_comp.pdf
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace/blob/main/analysis/Combiroc_avg_plots110923_comp.pdf
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thus the genetic regulation of dopaminergic fate is sim-
ilar. The first branching event in cluster tree is clearly 
associated with the separation of progenitor cells from 
the other, more differentiated groups (Fig.  5, Supple-
mentary Fig. 5A, prog), however some progenitors are 
retained in both branches. Branches of mixed cell types 
of single brain region origin can be seen (Fig. 5), how-
ever at least in early branching the mixed clusters tend 
to remain mixed both in cell types and regions. It would 

be interesting to study how the chromatin accessibil-
ity signature is predictive of cell type or region. Most 
interestingly, similar cell types appeared at multiple 
locations in the hierarchical tree. Such branches may 
represent cell types with different chromatin accessibil-
ity configuration that yet can acquire a similar cellular 
phenotype. We explored this phenomenon further by 
analysing the clusters comprising GABAergic neurons 
(see below).

Fig. 4  Neurotransmitter phenotypes (NT-type) and the related marker gene expression in the E14.5 mouse brain. Expression of known neuronal 
marker genes and selected transcription factors plotted over the UMAP projection of cell clusters. Intensity of blue color indicates the relative level 
of gene expression. The shown marker genes were used in the NT-typing (see Supplementary Table 3). The respective cell type is indicated at each 
plot. prog, progenitor cells; GABA, GABAergic neurons; D, dopaminergic neurons; Ch, cholinergic neurons; Adr, adrenergic neurons; S, serotonergic 
neurons; GLU, glutamatergic neurons; MB, midbrain; R1, rhombomere 1; DI, diencephalon
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Similar cluster identities are found using transcriptome 
and chromatin accessibility as distance measure
The accessible chromatin areas affect gene expression 
and thus largely define boundaries for RNA expression 
in the cells. To explore the similarity between the cell 
clusters formed based on accessible chromatin regions 
or based on mRNA expression, we calculated the cluster-
to-cluster matches between the scATAC-seq and scRNA-
seq cell clusters (Methods, Supplementary Fig.  6D). We 

then compared the distribution of neurotransmitter phe-
notypes between the clusters (Supplementary Fig. 6C-D, 
Supplementary Table 5). In the matching clusters, the cell 
types and the brain region of origin were mostly similar 
(Supplementary Fig. 6D). There are some important dif-
ferences between the modality specific clustering results 
[2]. As our scATAC-seq data contains more clusters, the 
cells clustering by scRNA-seq often matched cells from 
several scATAC-seq clusters (Supplementary Fig. 6D). It 

Fig. 5  Analysis of the clustering by cell attributes. A. Circosplot, showing, starting from inside: the dendrogram of E14.5 cell clusters (n = 189) based 
on E14.5 ATAC feature accessibility, the neurotransmitter type per cell (NT), the brain region of origin (Reg.), and cluster numbers. Stacked barplots 
show the proportion of the cells derived from different brain regions or the proportion of cells of different neurotransmitter identity per cluster. 
Labelling in text indicates the branching events where a cluster of cells of single cell type or region of origin emerges. NT, neurotransmitter type; 
Reg, brain region identity. Brain regions: Di + Tel, diencephalon and telencephalon; MB, midbrain; R1, rhombomere 1. GLUT, glutamatergic neurons; 
GABA, GABAergic neurons; DA, dopaminergic neurons; prog, progenitor cells
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is likely that the resolution reached here does not allow 
definition of all the cell types or cellular stages. For exam-
ple, we did not identify dominantly adrenergic or cholin-
ergic clusters in the scRNA-seq (Supplementary Table 5). 
This might be improved by sampling more cells.

Clustering of GABAergic neuron precursors in E14.5 
mouse brain correlates with the selector gene expression 
and differentiation stage
We next focused our analysis on the GABAergic neu-
ron subtypes. The predominantly GABAergic clusters 
were defined as clusters containing > 75% of cells with 
NT-type = GABAergic and cluster mean silhouette reli-
ability score > 0.5. We selected these clusters (n = 52) and 
studied their relatedness in terms of chromatin accessi-
bility profiles in isolation. Hierarchical clustering of the 
GABAergic neurons resulted in a complex tree structure 
in terms of brain region of origin (Fig. 6A). We then asked 
how the clustering correlates with the known GABAe-
rgic neuron marker gene expression. As expected, the 
GABAergic neuron marker genes Gad1 and Gad2 were 
expressed in all the identified GABAergic neuron clusters 
(Fig. 6A). During development, GABAergic neuron pre-
cursors express proneural transcription factor Ascl1 and 
a combination of selector transcription factors Dlx1/2, 
Gata2/3 and Tal1/2 that are required for the acquisition 
of GABAergic phenotype. We observed clear differential 
expression of Ascl1, Tal1, Tal2, Gata2, Gata3, Dlx1 and 
Dlx2 correlating with the clustering (Fig. 6A). Consistent 
with previous studies, the clusters originating from dien-
cephalon and telencephalon (Di + Tel) expressed Dlx1 
and Dlx2, with the exception of cluster 10 that expresses 
Gata3 and thus represents the derivatives of the rostral 

prosomere 2 (P2R) or prosomere 1 (P1) region of the 
diencephalon [28]. The cells originating in midbrain and 
rhombomere 1 expressed Tal1, Tal2, Gata2 and Gata3 
in various combinations. The selector genes for the dor-
sal and dorsolateral (D/DL) R1 GABAergic lineages are 
unknown [29]. Interestingly, while the GABAergic clus-
ters of Di, MB and the D/DL R1 appear to group, the 
branches also share similarity in differentiation stage. 
We find two mixed groups of differentiating neurons 
(expressing MAPT and Tubb3), early GABAergic neu-
ron precursors (expressing Tal2, Tal1, Ascl1) of MB and 
two branches of Tal1/2, Gata2/3 positive intermediate 
GABAergic neuron precursors of mixed origin in MB or 
R1. Finally, clusters from all three brain regions are found 
in the MAPT + differentiated neuron branch. In conclu-
sion, the grouping of the GABAergic neuron clusters 
shows a loose correlation with the region of origin, dif-
ferentiation stage and selector gene expression. While 
early precursors group according to the positional iden-
tity, at the transition to committed precursor stage, the 
cells of distinct lineages may display a transient variation 
in genome accessibility, which leads to similar priming of 
GABAergic differentiation genes. This phenomenon has 
earlier been characterized as phenotypic convergence 
[30].

To further study the open chromatin features asso-
ciated with the cell types and with the transition from 
early precursor to late precursor and differentiating neu-
ron stage, we applied pseudotime analysis using VIA 
[31]. We focused on the Dlx1, Dlx2 expressing GABAe-
rgic clusters (n = 6; Fig.  6A, Di, Tel GABAergic). The 
Dlx1/2 + clusters 45, 3, 136, 140 and 179 form one branch 
of the DA feature -based hierarchical clustering tree, with 

(See figure on next page.)
Fig. 6  Differential chromatin accessibility associated with the GABAergic neuron lineages in different brain regions. A. Circosplot showing 
the hierarchical clustering dendrogram of dominantly (> 75%) GABAergic clusters (n = 52) in E14.5 mouse brain, barplots of the proportion of cells 
by the brain region of origin, and the heatmap of the average expression of proneural gene Ascl1, GABAergic fate selector genes Dlx1, Dlx2, 
Gata2, Gata3, Tal2 and Tal1 and the GABAergic neuron marker genes Gad1 and Gad2. The clustering by chromatin accessibility loosely correlates 
with the brain region and the selector gene expression. D/DL R1, dorsal/dorsolateral R1; VL, ventrolateral. Asterisk indicates the cell clusters 
where MAPT and Tubb3 are found among the top 25 of differentially expressed genes. B. Chromatin accessibility based pseudotime trajectory 
and placement of the Dlx1 and Dlx2 expressing GABAergic cell clusters and progenitor cell clusters 80, 150 and 48. Cluster subdivision performed 
internally by VIA are shown on the left side, with colored pie charts indicating composition of each subcluster, where the numbers indicate original 
cluster number having majority in the corresponding subcluster. Lines with arrows indicate lineage relations and direction between nodes. The 
image on the right side shows the same lineage structure, with each subcluster colored according to estimated pseudotime. The red-framed 
circles indicate the lineage end points. The size of the circles is proportional to the number of cells in the cluster. The lineages representing 
the diencephalic prosomere 3 (P3), medial ganglionic eminence/ preoptic area (MGE/POA) and lateral and caudal ganglionic eminence 
of telencephalon (LGE/CGE) GABAergic neurons are indicated, along with the relevant marker gene expression. C. Heatmap of the inferred RNA 
expression in Dlx1/2 expressing GABAergic neuron clusters. Hierarchical clustering is based on the expression of top 1400 most variable genes. 
Both axes have been clustered with Euclidean distance and ward.D2 linkage. scATAC-seq cluster of origin and the lineage placement of cluster 
is shown on the right for each cell. D. Heatmap of the total length of the DA chromatin in Dlx1/2 expressing sublineages. The cell clusters were 
clustered by the similarity in the differentially accessible (DA) DNA features. E. Heatmap of the chromatin accessibility for features within ± 50 kpb 
around Gad2 gene (columns) across GABAergic clusters (rows). Dominant brain region of origin is shown in the parenthesis after cluster number. 
Barplots on the right side show average expression of Gad2 in the cluster
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one Dlx1/2 + cluster (104) grouped with differentiated 
R1 neurons (Fig.  6A). These 6 clusters with addition of 
3 Dlx1/2 + progenitor clusters 45, 48 and 80 (Methods) 
were selected for pseudotime analysis (Fig. 6B). In pseu-
dotime trajectory, three distinct lineages could be iden-
tified: the medial ganglionic eminence and preoptic area 
GABAergic neurons (cluster 140, Fig.  6B, MGE/POA), 
the lateral and caudal ganglionic eminences group (clus-
ter 45, LGE/CGE) and the diencephalic prosomere 3 lin-
eage formed from clusters 3 and 136 (Fig. 6B, P3) . The 

MGE/POA clusters are positive for Lhx6, Lhx8, Nkx2-1, 
Foxg1 expression, the LGE/CGE for Prox1 and the P3 
clusters by Nkx2-1, Six3, Lhx1, Sst, Npy RNA expression 
(Fig.  6B, C). As the Dlx1/2 expressing clusters did not 
fully group in chromatin accessibility based hierarchical 
clustering, we asked how much variation these clusters 
show in mRNA expression. Hierarchical clustering based 
on 1400 (5% of mouse genes) highly variable genes in the 
Dlx1/2 + clusters show that cells similar in chromatin 
accessibility mostly cluster based on their transcriptome 

Fig. 6  (See legend on previous page.)
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as well (Fig.  6C). The cells forming lineages in pseudo-
time analysis also clustered based on mRNA expression 
(Fig.  6B, C, Reln + clusters 104 and 179). In conclusion, 
while there is overall good match between the epig-
enomic and transcriptomic types, we observe differences 
of genome accessibility in transcriptionally similar cells 
as well the mRNA expression differences in the scATAC-
seq clusters. The clusters that appear similar on the level 
of genome-wide chromatin accessibility can be further 
characterized for placement in distinct cellular lineages 
and for transcriptomic profiles.

The differentially accessible (DA) chromatin between 
the Dlx1/2 + GABAergic clusters is ranging from 
250–8000 kbps (Fig.  6D). To ask how the DA chroma-
tin contributes to the gene regulation, we applied Gene 
Ontology (GO) term enrichment analysis using genes 
nearest to the differentially accessible DA features in the 
neighbouring cluster pairs in pseudotime (clusters 45 
and 3 and clusters 45 and 140, Fig.  6B, Supplementary 
Table 7). In the GO biological process category, the DA 
feature -associated genes were greatly enriched in genes 
involved in neuronal development (regulation of neu-
ron migration, dendrite morphogenesis, axon guidance, 
homophilic cell adhesion via plasma membrane adhesion 
molecule) or TF function (positive regulation of transcrip-
tion by RNA polymerase II). Enriched cellular compo-
nent terms (neuronal cell body, postsynaptic membrane, 
presynaptic membrane, dendrite, dendritic spine, axon, 
growth cone, integral component of postsynaptic density 
membrane, neuron projection) and molecular function 
terms (cell–cell adhesion mediator activity, glutamate 
receptor activity, transmitter-gated ion channel activity 
involved in regulation of postsynaptic membrane poten-
tial) were also associated with neuronal development 
and function or with TF function (RNA polymerase II cis-
regulatory region sequence-specific DNA binding, DNA-
binding transcription activator activity, RNA polymerase 
II-specific) (Supplementary Table 7). In summary, the dif-
ferential chromatin accessibility in developing forebrain 
GABAergic neurons clusters is associated with the pro-
cesses of neuronal differentiation.

Finally, we explored the differential use of regula-
tory elements near the GABAergic neuron differentia-
tion genes. Presynaptic GABAergic neurotransmission 
requires maintained expression of Gad1, Gad2 and 
Slc32a1. To understand how these genes are regulated 
in differing genome accessibility context, we mapped 
the feature accessibility near the Gad2, Gad1 and 
Slc32a1 genes in the GABAergic neuron clusters 
(Fig.  6E, Supplementary Fig.  7). As expected, the fea-
ture accessibility increases in parallel with the Gad2 
mRNA expression (Fig.  6E). In general, we observed 
high variability in feature accessibility 50 kbp up- and 

downstream of Gad1, Gad2 and Slc32a1 across the 
GABAergic neuron subtypes in all brain regions 
(Fig. 6E, Supplementary Fig. 7). The Di/Tel cell groups 
(di) tend to cluster together, at least considering fea-
ture activation at Gad2 and Slc32a1 loci (Fig.  6E, 
Supplementary Fig. 7B). This is consistent with the dif-
ferent selector TF families which would target different 
sequences active in Di/Tel (homeobox TFs) as opposed 
to MB/R1 (bHLH, GATA). It would be interesting to 
study the commonly and differentially used genomic 
features for the selector TF binding. Interestingly, the 
features in the Gad1 locus show high activation pat-
tern only in a subgroup of midbrain GABAergic neu-
rons (Supplementary Fig.  7A). It is possible that Gad2 
is the main glutamic acid decarboxylase in Di/Tel and 
R1 GABAergic neurons. However, as Gad1 mRNA is 
detected in all GABAergic neuron subtypes, the lower 
genome accessibility signal might reflect the relatively 
smaller number of regulatory elements required to acti-
vate the Gad1 gene or its regulation by further distal 
regulatory elements.

Discussion
Cell type and state
Which modality, chromatin accessibility or the mRNA 
expression, is a better predictor of cell identity? Due to 
both technical and biological variability among single 
cells, cell type should not be defined as a transcriptionally 
and epigenetically fixed entity, but the signature should 
allow certain level of variation. Our cross-modality clus-
ter comparisons confirm that we can detect different 
transcriptional and epigenetic states within cell types. 
Compared to the number of genes, the higher number 
of open chromatin features allows to reach higher clus-
tering resolution. High resolution was achieved here by 
combining two essential steps: first, forming cell clades 
before feature definition allows to detect and consider 
rare and cell-type specific features, and second, using 
the highest clustering resolution achievable for given fea-
tures and number of cells. Indeed, the number of clusters 
detected in the scATAC-seq experiment is nearly dou-
ble compared to the number of clusters detected in the 
scRNA-seq data at optimal resolution. This has earlier 
been interpreted as segregation of different cell states [2]. 
Alternatively, the one-to-many matching effect between 
scRNA-seq and scATAC-seq clusters could be due to 
the use of alternative gene regulatory programs. In this 
case, rather than cell state, the apparent ‘resolution’ 
reflects parallel regulatory or co-regulatory events, lead-
ing to similar mRNA expression profile. Careful analysis 
of marker gene combinations is required to address this 
question.
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The advantages and limitations of the study
As open chromatin features are stage- and tissue spe-
cific to a considerable extent, our study provides a 
pertinent method to combine data from different 
experiments. Nevertheless, additional experiments 
may be required to understand the regulation of cell 
differentiation. The chromatin features defined in this 
study cover 8.7% of mouse genome and can be used for 
the analysis of regulatory landscape and its dynamics 
in the E14.5 mouse CNS. However, using predefined 
areas for scoring chromatin openness has several limi-
tations. First, dynamic use of chromatin outside of pre-
defined features is not considered. Second, information 
about the function of the feature in genome regulation 
(steric or regulative interactions)  is lacking here. For 
the gene regulatory features, defining the target genes 
is not trivial. Feature-to-target gene links are espe-
cially challenging to define for the distant intergenic 
features (> 100  Mb from genes). Such enhancers can 
associate with the target gene promoter by chroma-
tin looping and their target genes can be either up-or 
downstream of the feature. Third, in the integrated 
scRNA-seq + scATAC-seq data, we characterized the 
cell clusters using the RNA expression inferred from 
a stage- and region- matched dataset. Nevertheless, 
rather than the inferred RNA expression level, true 
multimodal -omics data would allow to better assess 
the match between the RNA expression-based cluster-
ing vs clustering by open chromatin features. On the 
other hand, the mRNA expression response from chro-
matin accessibility change might require some distance 
in time [3, 32].

Finally, mRNA expression and open chromatin fea-
tures describe only a fraction of the cell. Post-tran-
scriptional aspects such as the alternative splicing of 
RNA could not be addressed in this study. scRNA-seq 
also lacks information of the regulatory RNA mole-
cules and non-polyadenylated RNA, such as long non-
coding RNA. Providing a true snapshot of the genetic 
regulation network in a cell would also require in-
parallel information of protein expression in the cells. 
Currently available methods limit the proteomics and 
protein–protein interaction studies as well as studies of 
post-translational regulation of protein expression and 
activity in a comparable cell type resolution.

Regardless of these limitations, the collected and 
integrated ATAC-seq and RNA-seq data from cells of 
numerous types and developmental stages will be an 
essential addition to the studies of neurogenesis and 
early fate specification of neurons. Developmental 
stages of active neurogenesis are under-represented in 
the current brain cell atlases.

Single‑cell ATAC‑sequencing allows defining stage‑ 
and cell type specific genomic features
Here, we have demonstrated that using chromatin fea-
tures for clustering single cells, a high resolution where 
‘cell types’ are separated by hundreds to thousands of 
base pairs difference in accessible chromatin can be 
reached. Our comparison of the differentially expressed 
genes and the genes near DA features showed that the 
achieved resolution allows extraction of regulatory 
events associated with cell state, progression along dif-
ferentiation stages, or even specific molecular functions.

Both GABAergic (as well as glutamatergic) neuron 
subtypes show remarkably distinct accessible chromatin 
profile in different brain regions. The other neuron types 
sampled here (aminergic neurons) are not divided in a 
large number of subtypes. Within GABAergic neurons, 
the similarity in chromatin accessibility correlates with 
cell subtypes and differentiation stage. Further studies 
might explain how the observed difference in accessible 
chromatin is regulative to cell fate decisions. Cell fate 
decision is associated with a change in gene expression 
profile that is to a large extent mediated by transcrip-
tion factors. Transcription factor binding profile in dif-
ferentially accessible chromatin features could therefore 
be informative in predicting the course of differentiation. 
Importantly, integrating the chromatin feature acces-
sibility with mRNA expression data in single cells adds 
multiple layers of value: first, it provides readout of gene 
transcription, and second, information about the molec-
ular function of the cell or cell type.

Strikingly, the placement of GABAergic cell clades 
in the cell type tree of E14.5 mouse CNS shows that 
GABAergic genes could be expressed in very different 
global genome accessibility context. In addition, we show 
differences in the genomic accessibility at the known 
GABAergic neuron marker gene loci, indicating that 
pan-GABA-ergic genes could be regulated by redundant 
modular fashion by alternative TF-enhancer interactions, 
similar to pan-glutamatergic neuron gene Vglut in nema-
tode [10].

Conclusions
We have demonstrated an approach to study divergent 
gene expression regulation events in cell types within and 
across regional boundaries in mouse brain. The study of 
cell type specific accessible chromatin elements can eas-
ily be applied to various questions in developmental biol-
ogy. We demonstrate how specific points of the “cell type 
tree” can be analyzed in detail for the appearance of cell 
types. In the future, it would be interesting to dissect the 
fractions of chromatin specifically associated with dis-
tinct developmental events.
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Methods
Single‑cell RNA‑sequencing
Single cells were isolated from Nkx2-2Cre/+; R26RTd-

Tomato/+ mouse embryos [33]. R26RTdTomato allele was 
obtained from Jackson laboratories, catalog number 
007909). Embryonic day 0.5 (E0.5) was defined as noon 
of the day of the vaginal plug. On the selected embryonic 
day, the pregnant mouse was sacrificed by CO2 expo-
sure followed by cervical dislocation, and embryos were 
dissected.

For the scRNA-seq, brains were isolated from E14.5 
mouse embryos, and the ventral and ventrolateral fore-
brain, midbrain and R1 pieces were separated. The 
dissected tissue is relatively enriched in neuromeres 
producing GABAergic neurons. Lateral and medial gan-
glionic eminences and the preoptic area were extracted 
from forebrain, and the prosomere 3 and ventral parts of 
prosomere 1 and prosomere 2 of diencephalon. M2-M7 
domains were collected from the midbrain. From rhom-
bomere 1, the ventral and ventrolateral tissue was 
extracted, and the rhombic lip excluded. The area bound-
aries at zona limitans intrathalmica, midbrain-hindbrain 
boundary, alar-basal plate boundary and pallial-subpallial 
area border were identified by anatomical landmarks. 
Cells were dissociated using the Papain cell dissociation 
kit (Worthington, LK003150). Chromium 3’ single-cell 
RNA-seq kit (10xGenomics, 1000146) was used for cell 
capture and cDNA synthesis, with the cell yield set at 
5000 cells per sample. Per each brain region, single cell 
collection was performed from two individual embryos. 
cDNA libraries were sequenced on Illumina NovaSeq 
6000 system using read lengths: 28 bp (Read 1), 8 bp (i7 
Index), 0  bp (i5 Index) and 89  bp (Read 2). The reads 
were quality filtered and mapped against the Mus mus-
culus genome mm10, using CellRanger v3.0.1 pipeline for 
scRNA-seq.

The exact cell number, read yields and read quality for 
each sample are found in (https://​github.​com/​Compu​
tatio​nalNe​uroge​netics/​Neuro​nalFe​ature​Space/​seq_​
quali​ty_​repor​ts).

Processing of scRNA‑seq data
scRNA-seq data processing per brain region is described 
in detail in R code in (https://​github.​com/​Compu​tatio​
nalNe​uroge​netics/​Neuro​nalFe​ature​Space) with main 
steps outlined below.

scRNA-seq data was read into Seurat objects from 
10 × filtered_feature_bc matrix by using Ensembl gene 
IDs as features. Replicates per each brain region, or all 
replicates in the later analysis steps were merged as Seu-
rat objects. After merging, quality control (QC) was 
performed by calculating mt-percentage. Cells were 

filtered requiring nFeature_RNA > 2500 and nFeature_
RNA < 6000 and percent.mt < 15. Data was then log-nor-
malized, top 3000 most variable features were detected, 
data was scaled and percent.mt, nFeature_RNA, nCount_
RNA were set to be regressed out.

Data was then run through PCA using variable fea-
tures, and Seurat RunUMAP with PCA dimensions 
1–37 was used to generate Uniform Manifold Approxi-
mation and Projection (UMAP) for further analysis. 
Seurat functions of FindNeighbors(dims = 1:37) and 
FindClusters(resolution = 5) were applied for neigh-
borhood and community detection-based clustering. 
Clustering resolution was optimized with chooseR [12]. 
Neurotransmitter type was estimated by using ScType 
[21] as described below.

Single‑cell ATAC‑seq
Embryonic brains were isolated from E14.5 wildtype 
(n = 2) and Pax7Cre/+; R26RTdTomato/+ mouse embryos 
(n = 1). Pax7Cre allele (catalog number 010530) was 
obtained from The Jackson Laboratory. From each 
embryo, the ventral forebrain  (Tel) and diencephalic 
prosomere 3 (DI), ventral midbrain (MB) and ventral R1 
pieces (R1) were separated and processed as individual 
samples. Nuclei were isolated using the recommended 
protocol for scATAC-seq (Assay for Transposase Acces-
sible Chromatin, 10xGenomics protocol CG000212). At 
least 2 replicates were collected per each brain region 
and stage. Chromium Single Cell Next GEM ATAC Solu-
tion (10X Genomics, 1000162) was used for the capture 
of nuclei and the accessible chromatin capture. In chip 
loading, the nuclei yield was set at 5000 nuclei per sam-
ple. Chromium Single Cell Next GEM ATAC Reagent 
chemistry v1.1 was used for the DNA library preparation. 
Sample libraries were sequenced on Illumina NovaSeq 
6000 system using read lengths: 50  bp (Read 1N), 8  bp 
(i7 Index), 16  bp (i5 Index) and 50  bp (Read 2N). The 
reads were quality filtered and mapped against the Mus 
musculus genome mm10 using Cell Ranger ATAC v1.2.0 
pipeline.

Definition of feature space of scATAC‑seq data
In order to define feature space that could be used in the 
processing of scATAC-seq samples from different brain 
regions, we adapted the approach described by Cusa-
novich et al. [16].

scATAC-seq data from the replicates of the same 
brain region were processed through pipeline described 
in (https://​github.​com/​Compu​tatio​nalNe​uroge​netics/​
Neuro​nalFe​ature​Space) by using Seurat and Signac pack-
ages in R [17, 20], obtaining read count tables per cell 
per 5kbps bin over the entire mm10 genome (excluding 
X- and Y-chromosomes). These were merged into one 

https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace/seq_quality_reports
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace/seq_quality_reports
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace/seq_quality_reports
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
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Seurat object and additional QC was performed based on 
nucleosome signal, TSS enrichment, blacklisted regions 
and reads in peaks fractions, as well as setting min and 
max limits for number of cells having count per feature 
and number of features having count per cell.

We then binarized the data and used Latent Semantic 
Analysis (LSA) [16, 17] to reduce the dimensionality. The 
first singular component was omitted as it significantly 
correlated with read depth (Supplementary Fig.  3C). 
Remaining 49 components were used to construct hier-
archical tree of cellular clades with using cosine distance 
and ward.D2 as linkage methods.

Next, we computed Dunn2 and Silhouette statistics 
[34] at various cut heights of the cellular clade tree (see 
Supplementary Fig. 1A) by using R package fpc. Silhou-
ette statistics measures how well each cell fits into the 
assigned cluster as comprared to other clusters. Dunn2 
statistics measures separation or distance between 
clusters. Based on these statistics we selected cutting 
height h = 6 having highest for both statistics, which 
resulted in in 74 cellular clades, with 65–1847 cells per 
clade (Supplementary Fig.  1B). First, the reads from 
each clade were processed separately, using Macs2 for 
the peak detection, thus each clade had equal possibil-
ity to provide its own peaks to merged collection [16]. 
Subsequently, peaks from all clades were merged to form 
common E14.5 ATAC features [16].

Feature comparisons and characterization
In the comparisons of sample-specific features in VENN 
diagrams, the features were considered overlapping when 
they shared an overlap of at least of 100 bp. Features of 
the joined feature space were further characterized by 
using ChIPseeker [35] and visualized with circlize [36] R 
packages. Comparison of genomic annotation for peak 
locations for joined feature space vs random space was 
done with 1000 random iterations of peak locations and 
averaging proportions of hits to various genomic annota-
tion categories. Fisher’s Exact test was used to test signifi-
cance of observed vs expected proportions of annotation 
categories.

ENCODE elements comparison
Comparisons of our features to known mouse genome 
elements were calculated with findOverlapsOfPeaks 
function from ChIPpeakAnno R package [37], by using 
parameters (connectedPeaks = "keepAll", minover-
lap = 1). The previously known elements were obtained 
from ENCODE database [19] from SCREEN UI V3 using 
closest matches in terms of brain region and embry-
onic stage: for E14.5 Di we used E14.5 mouse forebrain 
data, for E14.5  MB we used E14.5 mouse midbrain 
and for E14R1 we used E14.5 mouse hindbrain data 

(ENCODE sample IDs ENCFF274NPS, ENCFF475FUT, 
ENCFF081VBW, MB_ENCFF539CBL, ENCFF829ZIT, 
ENCFF104QAC, ENCFF237YNH, ENCFF349REI, 
ENCFF279EVI).

Processing of scATAC‑seq data with E14.5 ATAC features
E14.5 ATAC features were used to process the scATAC-
seq data as previously described, but instead of fixed 5 
kbps windows, the features of the joined feature space 
were used. Data was subjected to QC, binarization and 
LSA, steps described in more detail in  (https://​github.​
com/​Compu​tatio​nalNe​uroge​netics/​Neuro​nalFe​ature​
Space) largely following steps described by Stuart et  al. 
[17]. scATAC-seq data was integrated with scRNA-seq 
using an approach described by Hao et al [20].

UMAP projection based on scATAC-seq data was 
done with Seurat by using SVD components 2–59 
for cells with reliable score from scRNA-seq inte-
gration. First component was omitted due to the 
association to read depth (Supplementary Fig.  3C). 
Neighborhood and community detection were made 
with Seurat functions of FindNeighbors(dims = 2:59) and 
FindClusters(resolution = 16). Clustering resolution was 
optimized with ChooseR [12] as described below.

Clustering resolution optimization
We used ChooseR [12] package as wrapper to test cluster-
ing resolution parameter values between 1–20 for clus-
tering of both scATAC-seq and scRNA-seq data before 
visualizing with UMAP. We modified ChooseR package 
code to accommodate scATAC-seq data by adding an 
option to skip first SVD component in scATAC-seq data. 
The optimal resolution parameter was chosen based on 
silhouette values (Supplementary Table 6, Supplementary 
Fig. 2).

Identification of neurotransmitter type
Neurotransmitter types for each cell were identified by 
using ScType [21] from which we returned cell level typ-
ing, instead of more typical cluster-level cell type label, 
and we added an ‘unknown’ label based on a cell not hav-
ing score for any defined cell type higher than mean(sc
ores) + (1.3*sd(scores)). ScType was applied on integrated 
RNA data in scATAC-seq object and separately to RNA 
data in scRNA-seq object. The neurotransmitter pheno-
type of the cell types was identified based on the expres-
sion of positive and negative marker genes describing 
each neurotransmitter type (Supplementary Table 4). In 
addition to the different neurotransmitter types, we cre-
ated ‘progenitor’ label using artificial composite genes 
called g2m and s, which describe the cells in G2/M or 
S-phase of the cell cycle, respectively. We adjusted a 
gene_set_prepare function in ScType to accept our added 

https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
https://github.com/ComputationalNeurogenetics/NeuronalFeatureSpace
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artificial composite genes (code in https://​github.​com/​
Compu​tatio​nalNe​uroge​netics/​Neuro​nalFe​ature​Space). 
Otherwise, the code was run with default parameters. 
Marker genes for G2/M and S-phase were collected from 
Seurat cell cycle gene collection. As some of these genes 
are not entirely cell cycle specific in the context of devel-
oping neurons in mouse, we applied additional filtering 
by excluding genes showing expression in postmitotic 
neurons (Supplementary Table 4).

Chromatin accessibility‑based similarity of cell clusters 
and transcriptome correspondence
Similarity of scATAC-seq based cell clusters was further 
analyzed by hierarchical clustering. The average accessi-
bility profile across all features per cluster was calculated 
and the clusters subjected to hierarchical clustering using 
cosine distance and ward.D2 as linkage method. The 189 
identified scATAC-seq clusters were visualized with cir-
clize with additional information of brain region of origin 
and neurotransmitter types visualized in stacked barplots.

In analysis focusing to GABAergic cell clusters, we 
selected cell clusters where > 0.75 proportion of cells 
received NT-type = ‘GABAergic’ label from ScType. These 
clusters were subjected to separate hierarchical cluster-
ing (cosine distance and ward.D2 linkage) based on their 
average accessibility profile across all features. The tree 
and selected cell attributes were visualized with circlize.

Analysis of cell attributes distribution on the hierarchical 
cluster tree
Relative enrichment (R) of attribute categories (NT-
type, brain region) was calculated at each branch up to 
ten branching points. R = ((number of cells with the 
category/number of cells in total in that branch)/(total 
number of cells with the category/total number of cells)). 
R = 1 indicates no enrichment of the particular category 
among the cells of the branch in question, whereas R 
value less or more than one indicate lower or higher rela-
tive proportion of the cells with that label, respectively.

Pseudotime analysis
We used generalized trajectory inference method VIA [31] 
to examine trajectories and pseudotime among prominently 
GABAergic cell clusters based on chromatin accessibility. 
Additional three Dlx1, Dlx2 + NT-type = ‘progenitor’ clus-
ters (80, 48, 150) were added to the analysis to provide pro-
genitor cells and root the lineages. Details and parameters of 
VIA analysis are available from (https://​github.​com/​Compu​
tatio​nalNe​uroge​netics/​Neuro​nalFe​ature​Space). Data sub-
set was exported from R and subjected to VIA analysis in 
Python (Jupyter) based workflow where VIA was run with 
pyVIA library. Progenitor clusters were set as initial roots.

Unique marker gene combinations for cell clusters
CombiROC [27] was applied find unique combinations of 
expressed genes per each scATAC-seq based cluster. The 
thresholds for each cluster were decided based on visual 
consideration of plots provided by CombiROC. Thresh-
olds and code are available from  https://​github.​com/​
Compu​tatio​nalNe​uroge​netics/​Neuro​nalFe​ature​Space.

NT purity and Gini index
To assess the biological validity of clusters, we calculated 
purity value [22] across clusters, as well as Gini index [23] 
of expression of housekeeping genes and genes expressed 
in neurons. Both indexes were calculated based on 
imputed RNA. For both indices, the maximum value of 
1 would indicate perfect segregation of NT-types/marker 
gene expression among the clusters [38].

scATAC‑seq vs scRNA‑seq cell cluster composition
In order to assess similarities in scATAC-seq and scRNA-
seq cell cluster composition, for every cell, the cluster ID 
vectors of scATAC-seq clusters (n = 189) and label trans-
ferred scRNA-seq clusters (n = 87) were registered. The 
resulting contingency table (Supplementary Table 8) was 
visualized in heatmap with ComplexHeatmap package 
[39]. Ordering of the rows and columns in the heatmap 
was calculated with R package seriation [38] by using 
BEA_TSP as method.

Characterisation of differentially accessible chromatin
Pairwise differentially accessible chromatin features 
between all pairs of clusters were identified with Seurat 
FindMarkers function applying min.pct = 0.05, logistic 
regression and latent variable set to peak_region_frag-
ments. This was run in wrapper across all cluster com-
binations and differential accessibility (DA) was defined 
when avg_log2FC > 0.75 or avg_log2FC < -0.75 and 
p_val_adj < 0.05.

The closest gene for each DA feature was identi-
fied with Signac ClosestFeature with threshold of avg_
log2FC > 0.7 for DA feature. Enrichment for the genes 
in Gene Ontology (GO) biological process categories 
was calculated with go_enrich function from R package 
GOfuncR [40].

Accessibility of features around a selected gene
Cluster averaged and column scaled accessibility val-
ues were drawn for all features within selected window 
(+ -50kpb from TSS) around the gene in question. Heat-
map has been clustered with Euclidean distance and 
ward.D2. linkage methods. Row-wise partitioning has 
been found with k-means clustering and by searching for 
optimal k with maximizing silhouette score.
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