
An organism-wide ATAC-seq peak catalog for the
bovine and its use to identify regulatory variants

Can Yuan,1 Lijing Tang,1 Thomas Lopdell,2 Vyacheslav A. Petrov,1 Claire Oget-Ebrad,1

Gabriel Costa Monteiro Moreira,1 José Luis Gualdrón Duarte,1 Arnaud Sartelet,3

Zhangrui Cheng,4 Mazdak Salavati,4,8 D. Claire Wathes,4 Mark A. Crowe,5

GplusE Consortium,5,7 Wouter Coppieters,6 Mathew Littlejohn,2 Carole Charlier,1

Tom Druet,1 Michel Georges,1 and Haruko Takeda1
1Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; 2Research and
Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand; 3Clinical Department of Ruminant, University of
Liège, 4000 Liège, Belgium; 4Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom; 5School of Veterinary Medicine,
University College Dublin, Dublin 4, Ireland; 6GIGA Genomics platform, GIGA Institute, University of Liège, 4000 Liège, Belgium

We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by

the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16

components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription

start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription fac-

tor bindingmotifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show

that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this

is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that var-

iants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that

variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We com-

bine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is ap-

proximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is

approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve

the accuracy of genomic selection.

[Supplemental material is available for this article.]

Genomic selection has had a tremendous impact on livestock
breeding in the past 10 yr (e.g., García-Ruiz et al. 2016).
Nevertheless, the accuracy of selection remains inferior to what
may be achievable given the heritability of the selected traits.
This could have a number of causes, including the size and compo-
sition of the reference population or the contribution of domi-
nance and epistasis to the genetic architecture of the traits of
interest. Another factor is that all variants are generally given an
equivalent weight in computing the additive relationship between
animals needed for GBLUP analyses or equivalent prior probabili-
ties of variant effects in Bayesian approaches. Yet, only a minority
of variants are causative (having a direct effect on gene function
and hence phenotype), with the remainder being, at best, passen-
ger variants in linkage disequilibrium (LD) with one ormore of the
causative variants. The extent of LD between causative and passen-
ger variants is bound to be population specific, or even subpopula-
tion specific, and is likely to fluctuate over time, and this may
account in part for the observed limits in selection accuracy. It is

generally believed that knowing the causative variants, or at least
those that are more likely to be, may help to further improve the
accuracy of genomic selection (Xiang et al. 2019).

Causative variants encompass coding and regulatory vari-
ants. Coding variants, including missense, nonsense, frameshift,
splice site variants, and deletions, are easily recognized yet only ac-
count for a limited part of the genetic variance for complex pheno-
types, including production traits. It is increasingly apparent that
most of the genetic variation for complex traits is owing to regula-
tory variants that act either by perturbing the expression profile of
genes located in cis (standard polygenic model) or, possibly, by
perturbing the gene regulatory network and affecting the expres-
sion profile of a restricted number of core genes in trans (omni-
genic model) (Liu et al. 2019). Regulatory variants are more
difficult to identify as the effect of polymorphisms on the func-
tionality of proximal and distant cis-acting regulatory elements re-
mains difficult to predict. However, it is reasonable to assume that
most regulatory variants are locatedwithin or in close proximity to
regulatory elements, which account for an estimated ∼5%–20% of
genome space (Meuleman et al. 2020; The ENCODE Project
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Consortium et al. 2020). Active regulatory elements can be recog-
nized by virtue of evolutionary constraint (Lindblad-Toh et al.
2011) and epigenetic features, including chromatin accessibility,
specific histone codes, transcriptional activity, their participation
in loop structures, and transcription factor (TF) occupancy
(Meuleman et al. 2020; The ENCODE Project Consortium et al.
2020).

In an effort to identify putative regulatory variants in the bo-
vine, we herein report (1) the generation of a comprehensive cata-
log of bovine regulatory elements identified using assay for
transposase accessible chromatin using sequencing (ATAC-seq)
(Buenrostro et al. 2013) in 63 tissue types; (2) the generation of a
catalog of common bovine variants that map to identified proxi-
mal and distal regulatory elements; (3) the demonstration that var-
iants driving expression quantitative trait loci (eQTL) in liver and
blood are more likely to map to regulatory elements that are active
in the cognate tissues and, hence, that variants in these regulatory
elements are more likely to be causative; (4) estimates of the pro-
portion of regulatory variants that map to ATAC-seq peaks as
well as the proportion of variants mapping to ATAC-seq peaks
that are regulatory; and (5) a retrospective evaluation of the utility
of this catalog for the identification of regulatory variants known
in livestock species.

Results

Generating a catalog of bovine cis-acting gene regulatory elements

To generate a bovine catalog of open chromatin regions using
ATAC-seq, we collected 106 samples corresponding to 68 tissue
types (Fig. 1A; Supplemental Tables S1, S2). Most samples (73%)
were collected from the same juvenile Holstein male. The remain-
der (27% including gonads and mammary gland) were collected
from nine additional animals (Supplemental Tables S1, S2). Fresh
and frozen samples were subjected to ATAC-seq using standard
procedures with two concentrations of tagmentation enzyme
(Buenrostro et al. 2013; Corces et al. 2017). We sequenced a total
of 185 libraries to an average of 31.8 million paired-end reads per
library (Supplemental Table S3). To these in-house-generated
data, we added publicly available ATAC-seq data (15 data sets)
from five additional tissues/cell types (Fang et al. 2019; Halstead
et al. 2020a,b; Johnston et al. 2021). Reads weremapped to the bo-
vine genome (ARS-UCD1.2) with Bowtie 2 (Langmead and Salz-
berg 2012) and ATAC-seq peaks called with MACS2 (Zhang et al.
2008) following ENCODE’s recommendations (https://www
.encodeproject.org/atac-seq/). Data sets passing quality control
(89/106 in-house-generated data, i.e., 84%) and corresponding to
technical replicates were merged (per biosample), resulting in a to-
tal of 104 ATAC-seq data sets (89 in-house and 15 public) repre-
senting 63 tissue types (58 in-house and five public). Pearson’s
correlations between technical and biological replicates (normal-
ized read counts across 500-bp windows covering the entire ge-
nome) exceeded 0.89 and 0.85, respectively (Supplemental Figs.
S1, S2).

MACS2 yielded an average of 76,919 peaks per sample in
ATAC-seq mode (range: 15,420–238,210 peaks) and 51,838 peaks
per sample in ChIP-seqmode (range: 14,594–201,757 peaks) (Sup-
plemental Fig. S3; Supplemental Table S4). We merged ATAC-seq-
mode and ChIP-seq-mode peaks separately across 104 samples fol-
lowing the method of Meuleman et al. (2020), and joined the re-
sulting peaks (when overlapping). This yielded a total of 976,813
reference peaks (excluding the Y Chromosome and unanchored

scaffolds) with core and consensus segments (empirical confi-
dence bounds of aggregates of peak summits and regions, respec-
tively) (Supplemental File S1; Meuleman et al. 2020). Core and
consensus segments amounted, respectively, to 134 Mb and 264
Mb, or 5.1% and 10.0% of genome space. Of these, 41,841 peaks
(4.3%) were located in promotor regions (defined as 1 kb upstream
of to 0.1 kb downstream from the transcription start sites [TSSs]) of
33,579 Ensembl reference transcripts (out of 43,512) and were re-
ferred to as “proximal,”whereas the remaining 934,972 peakswere
considered “distal.” The median consensus size of the proximal
peaks (306 bp) was larger than that of the distal peaks (216 bp;
PWilcoxon < 2.2 × 10

–16) (Fig. 1B). The proximal peaks were “open”
in more tissues than the distal peaks (i.e., distal peaks were more
often tissue-specific; PWilcoxon < 2.2 ×10

–16) (Fig. 1C). The accessi-
bility of “open” peaks was higher for proximal (14.0-fold increase
of read depth over background) than for distal peaks (7.3-fold in-
crease of read depth over background; PWilcoxon= 4.3 ×10

–19) (Fig.
1D). Of note, the distribution of genomic evolutionary rate profil-
ing (GERP) scores (Cooper et al. 2005; Davydov et al. 2010) was
overdispersed for both proximal and distal peaks, showing an ex-
cess of positions with higher and lower substitution rates than ex-
pected (under neutrality) comparedwith flanking regions (Fig. 1E).

ATAC-seq peaks were unevenly distributed across the ge-
nome, both between and within chromosomes (Supplemental
Fig. S4A,B). The density of ATAC-seq peaks was highest for Chro-
mosome 19 and lowest for Chromosomes 6 and 12. Chromosome
X was also particularly poor in ATAC-seq peaks, but this could be
owing to its hemizygosity in a majority of male samples. The den-
sity of ATAC-seq peaks was highly correlated with the density of
TSSs (r = 0.52) (Supplemental Fig. S4C).

We used unsupervised nonnegative matrix factorization
(NMF) according to the method of Meuleman et al. (2020) to
decompose the 976,813-peak ×104-sample matrix in 16 compo-
nents (Fig. 1F; Supplemental Tables S5, S6; Supplemental File S1;
Supplemental Figs. S5, S6). NMF converts each sample and each
peak into a linear combination of these 16 components, that is,
a weighted sum of the 16 components. Twelve of the 16 compo-
nents could be readily assigned to recognizable bodily systems as
they would be dominant (>30% of the weight) in anatomically re-
lated samples. They were labeled accordingly: central nervous sys-
tem (CNS), cerebellum, immune system, digestive tract, ruminal
epithelium, lower respiratory, upper respiratory, muscle, liver, en-
docrine, mammary gland, and testis. Accordingly, these 12 com-
ponents dominated about 629,870 ATAC-seq peaks (64.5%)
characterized by tissue-specific accessibility. Three components
corresponded, respectively, to eight-cell embryo, morula, and in-
ner cell mass (ICM) and dominated a very distinct set of about
213,305 ATAC-seq peaks (21.8%), of which 54,498 (5.6%),
76,175 (7.8%), and 14,108 (1.4%) were eight-cell, morula, and
ICM specific, respectively. A set of 26,414 (2.7%) peaks was shared
by multiple, yet at first glance, anatomically unrelated samples.
The meaning of this 16th component, whether biological or tech-
nical, remains unclear. It is referred to as “undefined.”Of note, the
16th component dominated the sample types that were hard to
dissociate. Finally, one group corresponded to about 107,224
(11.0%) peaks that were shared by the majority of samples and
characterized by uniform weights for the 16 components (≤30%
for any component). They are referred to as “ubiquitous” peaks
and account for 59.6% of proximal peaks assigned to housekeep-
ing genes (Supplemental Table S6).

NMF decomposition uses a binary matrix summarizing the
presence (1) versus absence (0) of the 976,813 peaks in the 104
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Figure 1. Generation of an organism-wide catalog of cis-acting regulatory elements for the bovine. (A) Sixty-three tissue types with ATAC-seq data an-
alyzed in this work. Novel ATAC-seq datawere generated for 58 tissue types (89 samples), and public ATAC-seq datawere downloaded for five (15 samples).
Tissue types are grouped and colored based on the nonnegative matrix factorization (NMF) analysis described in D. Tissues are parenthesized when the
largest NMF component in the tissue explains <50% of the total weight. This figure was created with BioRender (https://www.biorender.com). (B) Size
distribution of proximal (green) and distal (red) ATAC-seq peaks (consensus peaks). (C) Distribution of the number of samples in which proximal (green)
and distal (red) ATAC-seq peaks are open. (D) Distribution of the accessibility (fold-increase in coverage over background) of proximal (green) and distal
(red) ATAC-seq peaks. The vertical dotted lines in B, C, and D correspond to the medians. (E) Distribution of GERP scores for nucleotide positions within
proximal (solid green) and distal (solid red) ATAC-seq peaks, within sequence segments of same size immediately flanking proximal (dotted green) and
distal (dotted red) ATAC-seq peaks, and across the entire genome (gray). The proportion of nucleotide positions without GERP score is not shown. (F )
Decomposition of the 976,813-peak × 104-sample matrix in 16 components by nonnegative matrix factorization (NMF) following the method of
Meuleman et al. (2020). As a result, each peak and each tissue sample are represented as a linear combination of the 16 components, which are color-coded
in the graph. The lengths/heights of the bars measure the loading factor of the corresponding component for each of the tissue samples/peaks.
Anatomically related samples typically have the same dominant component and have been ordered accordingly (Supplemental Table S5). The peaks
that are predominantly active in the cognate tissue samples are dominated by the same component and are ordered accordingly. Thirty-one samples
did not show clear tissue-specific peaks; their ATAC-seq profiles were dominated by the “ubiquitous” peaks shared by nearly all samples and, to a lesser
extent, by a group of peaks assigned to the 16th “undefined” NMF component (shown in gray).
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samples. We also performed hierarchical clustering of the samples
(Ward D2 method) (R Core Team 2023) based on a quantitative
measure of the accessibility of distal peaks. This approach grouped
the samples largely by the NMF component (Supplemental Fig.
S7). Of note, the cerebellar samples (assigned to the
NMF07_Cerebellum group) formed a distinct cluster yet were clos-
est to the remaining CNS samples (NMF01_CNS group). Also, the
ruminal epithelial primary cells (NMF02_Ruminal epithelium)
formed a distinct cluster, with embryonic samples (rather than di-
gestive tract samples) as sister clade. This suggests that culturing
these cells profoundly affects the epigenetic profile of these cells,
apparently toward a proliferative stem-cell like phenotype.

We evaluated the added value of analyzing extra samples, first
in terms of discovery of new ATAC-seq peaks. To that end, we
ranked samples by the decreasing number of newly uncovered
ATAC-seq peaks (Supplemental Fig. S8A). When limiting ourselves
to the 97 postnatal tissue samples, the number of newly discovered
peaks saturated at about 725,000 after approximately 75 samples,
suggesting that our library of ATAC-seq peaks includes the major-
ity of regulatory elements accessible after birth. However, adding
only three embryonic samples (and, to a lesser extent, primary cul-
tured cells) uncovered an extra tier of around 200,000 peaks. This
suggests that substantially more developmental stage–specific reg-
ulatory elements remain to be uncovered and that the analysis of
additional fetal samples, for instance, is warranted. An additional
value in analyzing more tissue types is to determine in which tis-
sue types known regulatory elements are accessible and in which
tissues they are not (Supplemental Fig. S6). The majority of peaks
uncovered in a given sample are neither unique for the sample
nor sharedwith all others but rather sharedwith a variable number
of other samples (not necessarily from the same NMF component)
which are, hence, not obvious to predict (Supplemental Fig. S8B,
C). Finally, we examined the relative merits of analyzing more
sample types with ATAC-seq only versus fewer sample types with
multiple assays. To that end, we evaluated the overlap between
the peaks identified by Kern et al. (2021) in eight tissue types
(adipose, cerebellum, brain cortex, hypothalamus, liver, lung, skel-
etal muscle, spleen) using ATAC-seq combined with ChIP-seq
(H3K4me1, H3K4me3, H3K27ac, CTCF) with our own catalog.
To make for a better comparison, we reanalyzed Kern’s ATAC-seq
data in “narrow-peak” mode (as opposed to the “broad-peak”
mode used by Kern et al.). The vast majority (93.5%) of Kern’s
ATAC-seq peaks overlapped with ours, as expected. Kern’s ATAC-
seq peaks overlapped with 69% of their H3K4me3 peaks (i.e., ac-
tive promotors), 43% of their H3K4me1 peaks (i.e., active enhanc-
ers), 44% of their H3K27ac peaks (i.e., active promotors and
enhancers), and 42% of their CTCF peaks. Similarly, a subset of
our ATAC-seq data from the corresponding eight tissues over-
lapped with 76% of H3K4me3 peaks, 50% of H3K4me1 peaks,
49% of H3K27ac peaks, and 48% of CTCF peaks. In comparison,
our complete ATAC-seq peak catalog overlapped with 89% of
H3K4me3 peaks, 73% of H3K4me1 peaks, 71% of H3K27ac peaks,
and 69% of CTCF peaks (Supplemental Fig. S8D). Thus, it appears
that analyzing more sample types by ATAC-seq compensates to
some extent for the use of a single assay as it recovers regulatory el-
ements that aremissed if performing only ATAC-seq on fewer sam-
ple types. This finding also suggests that the same regulatory
elementmay adopt distinct epigenetic configurations, presumably
associated with distinct functional states, captured by distinct as-
says in different tissues.

We searched for TF binding motifs enriched in tissue-specific
and ubiquitous ATAC-seq peaks using HOMER (Fig. 2A; Supple-

mental Tables S7, S8; Heinz et al. 2010). For each component,
binding motifs were found to be very significantly enriched, in
good agreement with previous reports for bovine tissue-specific
cis-acting regulatory elements and/or tissue-specific function of
the corresponding TF in other species. Moreover, using publicly
available RNA-seq information, we found that 35 of the cognate
TFs were more highly expressed in the corresponding tissues com-
pared with all other ones (Supplemental Table S7).

We matched 91 of our tissue-specific ATAC-seq data with
publicly available RNA-seq data from 56 bovine tissues (Supple-
mental Table S9), and computed correlations between gene expres-
sion and accessibility of ATAC-seq peaks mapping within 1 Mb
from the gene’s TSS (Fig. 2B). Correlations were overdispersed,
showing too many positive but also negative correlations. Indeed,
any peak that is specific for a given tissue type will be positively
correlated with any gene that is specifically expressed in that
same tissue type. These correlations are therefore not indicative
of cis interactions between peaks and their target gene(s). However,
positive correlations were increasing in numbers (and becoming
more significant) as the distance betweenpeak and gene decreased.
This inflation of positive correlations over the background (i.e., at
distances≥750 kb) was highly significant for gene-peak distances
up to ∼250 kb. This supports the common occurrence of direct cis
interactions between enhancer peaks and target genes, at least up
to such distances. The effect was slightly more pronounced for
peaks located downstream from the TSSs than peaks located up-
stream of the TSSs. The same trend was not observed when repeat-
ing the same analyses with negative correlations (Fig. 2B). In fact,
we observed a slight deflation of negative correlations (becoming
less negative and less significant) as the distance between the
peak and gene decreased below ∼40 kb. This suggests that few
ATAC-seq peaks act as cis silencers on target genes.

Generating a catalog of common variants mapping to cis-acting

regulatory elements

We used a previously established catalog of 11,030,905 single-nu-
cleotide variants (SNVs) and 1,705,738 short (≤265-bp) insertion–
deletion variants (indels) obtained by analyzing 264 Holstein-
Friesian (HF) whole-genome sequences (average, 25.2-fold depth;
range, 15.2 to 47.1) (Oget-Ebrad et al. 2022) using GATK (Poplin
et al. 2018). Of these, 1,256,997 SNVs (11.4%) and 133,394 indels
(7.8%) mapped to ATAC-seq peaks (Supplemental File S2).

We studied the proportion of indels falling within versus out-
side ATAC-seq peaks separately for the following genome compart-
ments: TSSs, 100 bp upstream of to 1 kb downstream from
transcription termination sites (TTSs), exons, introns, and inter-
genic regions (Fig. 3B). The proportion of indels mapping to
ATAC-seq peaks was significantly below expectations for TSSs
(i.e., proximal peaks) (P=1.4 ×10–33), TTSs (P=1.2 × 10–52), introns
(P<1.0 ×10–100), and intergenic regions (P<1.0 ×10–100). These ef-
fects were even stronger when considering common indels only
(minor allele frequency [MAF] > 0.05). This is the expected signa-
ture of purifying selection acting on functionally important ele-
ments. Of note, the proportion of all indels (but not common
indels) was slightly higher than expected (p =0.18) for the exonic
compartment. This effect became significant (P= 1.8 ×10–10) when
restricting the analysis to open reading frames (ORFs) (i.e., ignor-
ing 5′ and 3′ untranslated regions).

In contrast, the proportion of SNVs mapping to ATAC-seq
peaks was significantly higher than expected for all five genomic
compartments: TSSs (P=2.7 ×10–21), TTSs (P=3.9 ×10–19), exons
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(P=4.4 ×10–41), introns (P<1.0 ×10–100), and intergenic regions
(P < 1.0 ×10–100) (Fig. 3A). The effect was reduced when consider-
ing common SNVs only but was still significant for TTSs (P=2.6
×10–3), exons (P=8.7 ×10–6), introns (P<10–100), and intergenic
regions (P<10–100). This is counter-intuitive as ATAC-seq peaks
are assumed to be functionally important elements and, hence,
subject to purifying selection that should result in fewer than ex-
pected number of variants. Only for TSSs were common SNVs sig-
nificantly underrepresented in ATAC-seq peaks (P=8.2 ×10–11).
These observations corroborate recent findings in Arabidopsis
thaliana (Monroe et al. 2022) and humans (Kaiser et al. 2021;

Luquette et al. 2022). They may be related to the reduced efficiency
of RNase H2–dependent repair of erroneously incorporated nucleo-
tides during pol α-dependent initiation of DNA replication of
Okazaki fragments (Reijns et al. 2015), or of nucleotide excision re-
pair (Sabarinathan et al. 2016), at sites where proteins, including
TFs, bind DNA. In agreement with this hypothesis, the density of
singletons (supposed to be enriched in recent mutations and hence
used as surrogate for de novo mutations [DNMs]) was higher in
ATAC-seq peaks than in flanking sequences (Fig. 3C,D). Knowing
that the expected number of singletons per base pair equals 4Nμ in-
dependently of sample size (Nielsen and Slatkin 2013), and under

A

B

Figure 2. Open chromatin regions are enriched in cis regulatory elements. (A) TFs (x-axis) whose bindingmotifs are enriched in tissue type–specific ATAC-
seq peaks assigned to the corresponding NMF components (y-axis). The color code measures the excess in the percentage of peaks encompassing the
corresponding motif over background, scaled (Z-score) across NMF components. TFs that are also more strongly expressed in tissues corresponding to
that component compared with other tissues (Supplemental Table S7) aremarked by asterisks. (B) Proportion of significant, across tissue type, correlations
(P<10–6) between ATAC-seq peak accessibility and gene expression as a function of the distance between the TSS and the peak. Green indicates positive
correlations; red, negative correlations.
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some simplifying assumptions, the SNV mutation rate may be
about 1.3 times higher within than outside ATAC-seq peaks.

In melanoma, the rate of somatic mutations is increased
about fivefold at accessible TF binding sites, and this is thought

to be because of hampered nucleotide excision repair by bound
TFs (Sabarinathan et al. 2016). To verify whether the excess of
SNVs in our ATAC-seq peaks was likewise concentrated in TF bind-
ing motifs, we identified 386,812 NMF component-specific peaks

A
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D

B

Figure 3. Open chromatin regions are mutational hotspots yet are subject to purifying selection. (A) Proportion of SNVs that map in ATAC-seq peaks for
different genome compartments (x-axis: TSS, TTS, exon, intron, intergenic). Gray indicates the proportion of a corresponding genome compartment that
is occupied by ATAC-seq peaks; dark purple, all SNVs; and light purple, common SNVs (MAF>0.05). (∗∗∗) P≤0.001, (∗) P≤0.05. (B) As in A for indels. Gray
indicates the proportion of a corresponding genome compartment that is occupied by ATAC-seq peaks; dark green, all indels; and light green, common
indels (MAF >0.05). (∗∗∗) P≤0.001, (NS) nonsignificant. (C) Number of singleton SNVs (per interrogated base pair) in 264 whole-genome-sequenced
Holstein-Friesian (HF) animals in nonoverlapping 200-bp windows at increasing distances from the center of ATAC-seq peaks. The shaded area corresponds
to 2× SD for the corresponding window. Fluctuation increases with distance as the number of windows decreases. (D) As in C for singleton indels. The
excess near the ATAC-seq peak centers is clearly visible despite the drop at their very center (assumed to reflect purifying selection). (E) Folded SFS (0.0
<MAF≤0.1) for SNVs mapping within ATAC-seq peaks assigned to different genome compartments (purple range indicates TSS, TTS, exon, intron, inter-
genic) comparedwith SNVs outside peaks. (∗∗∗) P≤0.001. (F) Folded SFS (0.0 <MAF≤0.1) for indels mapping within ATAC-seq peaks assigned to different
genome compartments (green range indicates TSS, TTS, exon, intron, intergenic) compared with indels outside peaks. (∗∗∗) P≤0.001.
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(weight of one component >90%) and, within those, the positions
of the 10 most enriched binding motifs for that component (de
novo enrichment analysis) (Supplemental Table S8). We then
checked whether SNVs mapping to the corresponding peaks
would fall more often within than outside of the binding motifs.
There was no evidence for a preferential location of SNVs in bind-
ingmotifs, whether at themotif, NMF component, or global level.
If any trend, the proportion of SNVs in bindingmotifs was slightly
inferior to their corresponding peak occupancy (global P=0.06)
(Supplemental Table S10).

To further check whether variants mapping to ATAC-seq
peaks, including SNVs, might be under purifying selection as ex-
pected, we compared the folded site frequency spectrum (SFS) of
variants mapping within ATAC-seq peaks for the five genomic
compartments in the 264 sequenced animals, with the folded
SFS of all variants flanking peaks. The proportion with MAF≤
0.01 was higher for variants mapping in ATAC-seq peaks, and
this applied both to indels and to SNVs. The effect was strongest
for TSSs and exons (Fig. 3E,F).

Taken together, our data support the notion that ATAC-seq
peaks are mutational hotspots, explaining the observed excess of
SNVs, yet are subject to enhanced purifying selection, accounting
for the depletion in indels and the shift of the SFS toward low fre-
quencies for both SNVs and indels. This hypothesis may also ac-
count for the overdispersed GERP scores (Fig. 1E).

Of the 1,390,391 genetic variants mapping to ATAC-seq
peaks, 847,831 SNVs and 86,673 indels are common with MAF>
0.05 in the sequenced animals (Supplemental File S2). These are
prime candidates to receive particular attention when computing
genomic breeding values in genomic selection.

Identifying bovine cis eQTL in liver and blood

To evaluate whether our catalog of “ATAC-seq variants” is en-
riched in regulatory variants, we performed eQTL analyses.We col-
lected whole-blood and liver samples from, respectively, 224 and
176 HF cows and performed RNA-seq using standard procedures
(Supplemental Table S11; Lee et al. 2021; Wathes 2021a,b). The
reads were mapped to the bovine genome (ARS-UCD1.2) using
HISAT2 (Kim et al. 2015) and read coverage for 27,233 reference
genes (bosTau9.ensGene.gtf, v101) estimated using StringTie
(Pertea et al. 2015). Gene count data were normalized within sam-
ple using DESeq2 (Love et al. 2014) following the method of
Anders and Huber (2010) and across samples using inverse normal
transformation. After filtering out lowly expressed genes, 14,289
genes were retained for eQTL analyses in blood and 15,458 in liver.
All samples were genotypedwith a high-density SNV array interro-
gating 777,962 variants and imputed to whole genome using
Minimac4 (Das et al. 2016) and the 264 sequenced Holstein ani-
mals as reference. This yielded usable genotypes for 8.4 million
SNVs and 1.3 million indels with MAF>0.02. Cis eQTL analyses
(variantswithin 1Mb fromgene’s TSS)were conducted using resid-
uals corrected for hidden PEER factors (Stegle et al. 2010), country
(of origin of the samples), and polygenic effects estimated with
GenABEL (Aulchenko et al. 2007), under an additive model using
QTLtools (Delaneau et al. 2017). Nominal P-values were corrected
for multiple testing within the 2-Mb cis window by permutation.
The best-corrected P-value was retained for each gene and convert-
ed to FDRvalue by tissue type.Cis eQTLswith FDR<0.05were con-
sidered significant.

We obtained 7817 significant cis eQTLs in blood and 6172 in
liver (Supplemental Table S12). These numbers correspond to

39.9% and 54.7% of interrogated genes, respectively, and are com-
parable to findings in humans (https://gtexportal.org/home/
tissueSummaryPage). Leading variants tended to concentrate
(and −log(p) values hence to be highest) in the vicinity of the
TSSs (Supplemental Fig. S9). The proportion of significant blood
eQTLs that would also operate in liver was estimated at 67% using
π1 following the method of Storey and Tibshirani (2003), whereas
the proportion of significant liver eQTLs thatwould also operate in
blood was estimated at 78%.

We defined “credible variant sets” (i.e., sets of variants that
are more likely to include the causative variants that are function-
ally driving the observed cis eQTL effect) as the leading variant plus
the variants in LD with it at threshold r2-value of 0.9. The median
size of credible sets was 12, ranging from one to 2870.

Variants driving eQTL are preferentially mapping in ATAC-seq

peaks

If variants mapping to ATAC-seq peaks are indeed enriched in
causative variants, they should be enriched in the credible sets
driving cis eQTL effects. The significance of the overlap between
cis eQTL credible sets andATAC-seq peakswas evaluated by permu-
tation following the method of Trynka et al. (2015) (Fig. 4A,B;
Supplemental Table S13). Analyses were conducted by NMF com-
ponent (assigning peaks to their dominant component). Credible
sets for blood-specific cis eQTLs were most significantly (P≤
0.0001) enriched in variants mapping to ATAC-seq peaks assigned
to the immune and ubiquitous NMF components. Credible sets for
liver-specific cis eQTLs were most significantly (P≤0.0001) en-
riched in variantsmapping to ATAC-seq peaks assigned to the liver
and ubiquitous NMF components. The enrichment in tissue-spe-
cific ATAC-seq peaks (immune for blood eQTL, and liver for liver
eQTL) was driven by distal peaks, whereas the enrichment in ubiq-
uitous ATAC-seq peaks was driven by both proximal and distal
peaks (Fig. 4A,B; Supplemental Table S13).

Estimating the proportion of regulatory variants mapping in

ATAC-seq peaks and the proportion of variants mapping in

ATAC-seq peaks that are regulatory

The utility of ATAC-seq data for the identification of regulatory
variants underpinning the heritability of complex traits depends
on the proportion of regulatory variants that map to ATAC-seq
peaks (i.e., the sensitivity or ratio of true positives/[true positives
+ false negatives]), and the proportion of regulatory variants
among variants mapping to ATAC-seq peaks (i.e., the precision
or ratio of true positives/[true positives + false positives]). The com-
bination of ATAC-seq and cis eQTL information provides an op-
portunity to estimate these parameters. For example, if all cis
eQTLs are driven by a regulatory variant mapping to an ATAC-
seq peak, all credible sets should contain at least one variant map-
ping to an ATAC-seq peak. We developed a maximum likelihood-
based approach (see Methods) to estimate the proportion of cis
eQTLs driven by regulatory variants in ATAC-seq peaks from the
observed excess of credible set variants mapping in ATAC-seq
peaks (over the proportion of the genome occupied by ATAC-seq
peaks). The parameters estimated by this approach were then
used to estimate the proportion of regulatory variants among
those that map to ATAC-seq peaks (see Methods).

We applied this approach to the 7817 blood and 6172 liver
eQTLs. It yielded estimates of 0.34 (blood) and 0.32 (liver) for sen-
sitivity, and 0.044 (blood) and 0.041 (liver) for precision. In other
words, approximately one out of three regulatory variants maps to
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an ATAC-seq peak, and approximately one in 25 variantsmapping
to ATAC-seq peaks is regulatory.

Retrospective evaluation of the utility of ATAC-seq information

for the identification of known regulatory variants in livestock

Prior positional cloning studies conducted in livestock identified
at least three regulatory variants influencing economically impor-
tant quantitative traits. The first is the IGF2-intron3-3072 variant
in the pig that precludes binding of the ZBED6 repressor to a con-
served silencer element in intron 3 of the IGF2 gene, leading to il-
legitimate postnatal expression of the paternal IGF2 allele in
striated muscle and, hence, muscular hypertrophy (Van Laere
et al. 2003; Markljung et al. 2009). The sequence conservation of
the corresponding silencer element suggests that it operates in a
similarmanner across species. Nevertheless, there was no evidence
in our ATAC-seq peak catalog of any peak overlapping the orthol-
ogous position of the quantitative trait nucleotide (QTN; bosTau9
Chr 29: 49,408,409), whether tissue specific (including in muscle)
or tissue shared (Fig. 5A). The second is the ovine rs10721113 cal-
lipyge QTN that perturbs the function of a putative silencer ele-
ment highly conserved among placental mammals, located in
the GTL2-DLK1 intergenic region, that—in wild-type sheep—sup-
presses postnatal muscular expression of a cluster of imprinted
genes (including the paternally expressedDLK1 and PEG11 genes).
Animals inheriting this mutation from their sire express the calli-
pyge muscular hypertrophy (Freking et al. 2002; Georges et al.
2004). There was no clear evidence of a peak overlapping the
orthologous position of the QTN (bosTau9 Chr 21: 65,691,395)
in postnatal skeletalmuscle ATAC-seq peaks, aswould be expected.
Therewas such a peak in testes and to a lesser extend in tongue, but
—in hindsight—this would not have been considered strong sup-

port for the causality of the correspond-
ing variant, and the significance of this
finding—if any—remains unclear (Fig.
5B). The third example concerns a credi-
ble set of eight noncoding variants affect-
ing bovine stature and several other traits
by perturbing the expression of PLAG1
and possibly other genes in its vicinity
(Karim et al. 2011). Of the eight variants,
only the two that map to the supposedly
bidirectional promotor between PLAG1
and CHCHD7 (rs20982 1678: (CCG)9/
(CCG)11 microsatellite and rs210030
313: A/G SNV) overlap with strong ubiq-
uitous ATAC-seq peaks (Fig. 5C). Of note,
previously conducted reporter and EMSA
assays supported the causality of both
variants (Karim et al. 2011). Further sup-
porting their causality, the ATAC-seq
data reveal an allelic imbalance for the
rs210030313 SNV (Fig. 5D) that is consis-
tentwith the observed effects on gene ex-
pression (G=Q allele =higher PLAG1/
CHCHD7 expression=more accessible;
A=q allele = lower PLAG1/CHCHD7 ex-
pression= less accessible). Moreover, the
rs209821678 variant lies in a trough re-
vealed in the ATAC-seq mode profile,
suggesting that the corresponding seg-
mentsmediated binding to a trans-acting

factor. In this case, ATAC-seq datawould therefore have been help-
ful in pinpointing the causative variants.

Discussion

Weherein report themost complete catalog of open chromatin re-
gions for cattle to date (Fig. 1; Supplemental File S1; e.g., Foissac
et al. 2019; Halstead et al. 2020a,b; Kern et al. 2021; Ming et al.
2021). It comprises more than 976,000 ATAC-seq peaks detected
in one or more of 63 tissue types representing pregastrulation em-
bryos, endoderm, ectoderm, andmesoderm. To facilitate its use by
the community, the data aremade accessible via a custom track on
the UCSC Genome Browser (via https://genome.ucsc.edu/s/
Animal_Genomics_ULiege/ATAC_hub_V1 or https://www.gigaua
g.uliege.be/cms/c_4791343/en/gigauag-diagnostics-software-data).
The vast majority of ATAC-seq peaks (about 840,000) show tissue-
specific accessibility, dominated by one of 16 NMF components
(weight of the largest NMF component >0.3). Of note, nearly
213,000 of these are specific for preimplantation embryonic stag-
es. This clearly indicates that, as expected, chromatin accessibility
is very dynamic, warranting the analyses ofmultiple tissues during
fetal development in future studies. By studying across-tissue cor-
relation between gene expression (using publicly available RNA-
seq data) and accessibility of neighboring peaks, we show a clear
signal of enhancer and/or promotor activity (excess of positive cor-
relations with decreasing distance) but not of silencer activity
(depletion of negative correlations with decreasing distance).
This either indicates that silencers only account for a small minor-
ity of cis-acting regulatory elements or that silencers are not effec-
tively identified using assays relying on chromatin openness (see
also hereafter).

A BBlood-specific eQTL Liver-specific eQTL

Figure 4. Open chromatin regions are enriched in cis-regulatory variants. Enrichment of variants map-
ping to NMF component-specific ATAC-seq peaks in credible sets (r2 ≥0.9 with the lead variant) of 3857
blood-specific and 2212 liver-specific cis eQTL, evaluated by following the method of Trynka et al.
(2015). The x-axis shows statistical significance (log(1/p)) of the enrichment; y-axis, NMF component.
Green indicates proximal peaks; red, distal peaks. (A) Blood-specific eQTLs. (B) Liver-specific eQTLs.
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Figure 5. A retrospective evaluation of the utility of the ATAC-seq catalog for identifying regulatory variants. ATAC-seq peaks at three genomic loci en-
compassing regulatory QTNs previously identified in domestic animals. Chromosome coordinates, gene annotations, QTN positions, core and consensus
reference peak regions (thick bars and horizontal lines, respectively; color-coded based on their highest NFM component), and peaks (ChIP-seq mode tag
coverage unless otherwise mentioned) from at least one tissue sample representing each NMF component group with corresponding color code. Positions
of the QTNs are highlighted as vertical gray bands. Track height measures the normalized tag coverage (1,000,000/[total tag count]). (A) The bovine
orthologous region encompassing the IGF2-intron3-3072 QTN identified in pigs (A/G at susScr11: Chr 2: 1,483,817; bosTau9: Chr 29: 49,408,408)
(Van Laere et al. 2003; Markljung et al. 2009) that maps to a 16-bp motif highly conserved among placental mammals disrupts interaction of the
ZBED6 repressor, resulting in an approximately threefold up-regulation of IGF2 in postnatal skeletal muscle affecting muscle growth, heart size, and fat
deposition. None of ATAC-seq peaks overlapping the 16-bp motif were called across the 104 ATAC-seq data analyzed in this study. (B) The bovine orthol-
ogous region encompassing the callipyge (CLPG) muscular hypertrophy mutation identified in sheep (A/G at oviAri4: Chr 18: 64,294,536; bosTau9: Chr
21: 65,691,397) (Freking et al. 2002; Smit et al. 2003). The mutation is located in a 12-bp highly conserved motif among placental mammals and is con-
sidered to disrupt a muscle-specific long-range control element (a silencer) that causes ectopic expression of a 327-kb cluster of imprinted genes in post-
natal skeletal muscle. ATAC-seq peaks overlapping the mutation site were called only in testis and tongue samples but not in skeletal muscle. (C) Bovine
PLAG1 promoter region encompassing two out of eight candidate QTNs influencing bovine stature identified by Karim et al. (2011) (rs209821678 [alter-
natively ss319607405]: (CCG)11/(CCG)9 at bosTau9: Chr 14: 23375648–23375650; rs210030313 [ss319607406]: G/A at bosTau9: Chr 14: 23375692).
The two QTNs reside in a strong 1044-bp-long ubiquitous peak between the PLAG1 and CHCHD7 TSSs. Regions encompassing the other six credible var-
iants do not map to any called peak in our ATAC-seq data and, hence, are not shown. (D) Enlargement of the two QTN loci for three animals that are Qq
heterozygous at rs210030313. Peaks called with ATAC-seq and ChIP-seq modes, as well as allelic imbalance in mapped reads, are shown. The two QTNs
reside in a footprint of the ATAC-seqmode peak, which is recovered by a ChIP-seqmode peak, indicating the presence of trans-acting factor(s) in the region
hindering cleavage events by transposases. Allelic imbalance at rs210030313 (Q=G; q=A) indicates that the Q allele is more accessible compared with the
q allele. Previous work showed that the two regulatory variants affect bidirectional promoter strength and that the Q allele, associated with bigger stature,
showed approximately 1.5-fold higher promoter activity compared with the q allele in a luciferase assay. Figures were created using the Integrative
Genomics Viewer (Robinson et al. 2011).



One of the main motivations to establish open chromatin
catalogs in livestock is to identify regulatory variants that might
underpin the heritability of agronomically important traits.
Indeed, it is hoped that knowledge of these regulatory variants
may increase the accuracy of genomic selection. We identified
1,390,391 variants mapping to open chromatin regions, of which
938,374 (67%) are common variants with MAF>0.05 in Dutch
HFs (Supplemental File S2). Instead of prioritizing variants map-
ping to ATAC-seq peaks indiscriminately for genomic selection,
our catalog can be used to define sets of variants that are accessible
in tissue types that are relevant for the trait under consideration.
For instance, variants mapping to ATAC-seq peaks that are specif-
ically accessible in, for instance, the mammary gland, hypothala-
mus, pituitary gland, and liver might be particularly relevant
when targeting milk production traits.

We note that the proportion of SNVs (as opposed to indels)
mapping to ATAC-seq peaks is significantly higher than the pro-
portion of genome space occupied by ATAC-seq peaks (Fig. 3).
We provide evidence that this is owing to an approximately 1.3-
fold higher DNM rate in ATAC-seq peaks compared with the rest
of the genome, corroborating recent findings in other eukaryotes
(Kaiser et al. 2021; Luquette et al. 2022; Monroe et al. 2022).
Shifts toward lower MAFs compared with variants in flanking re-
gions support the operation of purifying selection on open chro-
matin regions and, hence, their functional importance (Fig. 3).

To further examine the regulatory function of open chroma-
tin regions, we identified 7817 and 6172 sets of credible variants
assumed to include causative variants driving the same number
of cis eQTLs detected in blood and liver, respectively (Supplemen-
tal Table S12). As anticipated, variants in these credible sets tend to
map to open chromatin regions more often than expected by
chance alone (as evaluated by permutation following the method
of Trynka et al. 2015). Furthermore, the enrichment was not ran-
domwith respect to the NMF component (Fig 4; Supplemental Ta-
ble S13). Credible sets corresponding to blood eQTLs tended to
overlap ATAC-seq peaks assigned to the immune and ubiquitous
NMF, whereas liver eQTLs tended to overlap ATAC-seq peaks as-
signed to the liver and ubiquitous NMF. The overlap with the tis-
sue-specific NMF (immune and liver) was primarily owing to
distant regulatory elements, whereas the overlap with the ubiqui-
tous NMFwas equally owing to distant and proximal regulatory el-
ements (Fig. 4).

These results tell us that variants that map to ATAC-seq peaks
are more likely to be regulatory variants than variants that map
outside of ATAC-seq peaks. However, they do not really tell us
how sensitive and precise ATAC-seq assays are to identify regulato-
ry variants. We summarized this interrogation with two specific
questions: (1) what fraction of regulatory variants map to ATAC-
seq peaks (sensitivity), and (2) what fraction of variants in ATAC-
seq peaks are regulatory (precision). We developed a maximum
likelihood framework using eQTL information to estimate both
parameters. Sensitivitywas estimated at one in three, and precision
at one in 25. Thus, as many as two out of three regulatory variants
may lie outside of ATAC-seq peaks inventoried in our catalog
(Supplemental File S2). A first possible explanation of this observa-
tion is that our catalog still misses a substantial proportion of bo-
vine gene switches. This could be because, in particular, we did
not explore sufficient developmental stages, or ATAC-seq peaks
do not capture all gene switches (e.g., silencers). A second possible
explanation is that variants lying outside of ATAC-seq peaks may
nevertheless affect the functionality of (nearby) gene switch com-
ponents that are identified by ATAC-seq peaks (e.g., by affecting

the formation of secondary structures involving the switch).
Finally, some variants are known to affect transcript levels not
by perturbing gene switches but by affecting transcript stability,
including stop gains and splice variants. For example, the K232A
mutation in DGAT1 affects transcript abundance by affecting
splicing (Fink et al. 2020). The one in 25 precision indicates that
the majority of variants falling in ATAC-seq peaks are probably
neutral. It is possible that some eQTLs are driven by more than
one causative variant, which would slightly increase precision.
Contrary to coding variants, which can be identified quite accu-
rately based on our understanding of the genetic code and splicing
mechanisms, predicting the effect of SNVs on the functionality of
cis-acting regulatory elements is still in its infancy.

Taken together, our results indicate that the knowledge of
open chromatin regions in the bovine genome is a first step toward
the identification of regulatory variants, yet this knowledge will
likely have to be complemented with additional information to
more effectively pinpoint the causative regulatory variants and
thereby have amajor impact on the accuracy of genomic selection.

Methods

Ethical approvals, sample collection, and processing

All relevant procedures using animalswere approved by the animal
care and use committee (ACUC) of theUniversity of Liège (approv-
al no. 17-1948 and 17-1949) or the Ruakura ethics committee,
Hamilton, New Zealand (approval no. AEC 12845) and performed
in accordance with the relevant guidelines and regulations of the
committees. Blood samples were collected from the tail or jugular
vein of animals using K2-EDTA blood collection tubes. White
blood cells (WBCs) were enriched by lysing erythrocytes using
eBioscience 10X RBC lysis buffer (Thermo Fisher Scientific).
Peripheral blood mononuclear cells (PBMCs) were prepared by
density gradient centrifugation using either Ficoll-Paque plus
(Cytiva) or Lymphoprep (Stemcell Technologies) with SepMate-
50 tubes (Stemcell Technologies). For tissue collections, animals
were humanely euthanized, and tissues were collected in ice-cold
Belzer UW cold storage solution (Bridge to Life) until processing
as described below or were otherwise snap-frozen in liquid nitro-
gen. Details of bovine samples can be found in Supplemental
Tables S1 and S2. To optimize protocols, one C57BL/6J ×A/J F1
mouse (male, 1 yr old) was euthanized by cervical dislocation.
Four tissues (liver, spleen, kidney, muscle) were collected in the
UW cold storage solution and processed as described below. We
processed/stored samples in three ways: fresh, slow-frozen, and
snap-frozen conditions.

Fresh samples

Tissues collected in the UW cold storage solution were directly
used for constructing ATAC-seq libraries on the day of sampling
(17 biosamples with “fresh” in their names) (Supplemental Table
S3).

Cryopreserved samples

Tissues were cut into ∼27-mm3 cubes and transferred to cryotubes
filled with 1 mL of STEM-CELLBANKER DMSO-free cell freezing
media (Amsbio). The tubes were kept on ice for∼10min and trans-
ferred to a cryo-box in dry ice while other samples were processed.
The samples were then stored in a −80°C freezer until use (55 bio-
samples with “slow” in names) (Supplemental Table S3).
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Snap-frozen samples

Tissues were cut into ∼27-mm3 cubes and transferred to cryotubes.
The samples were snap-frozen in liquid nitrogen and stored
at −80°C until use (34 biosamples with “snap” in names)
(Supplemental Table S3).

ATAC-seq library construction

ATAC-seq libraries were constructed following theOmniATAC-seq
protocol (Corces et al. 2017) with some modifications.

Tissue homogenization

A cryopreserved tissue in a vial was quickly thawed in a water bath
and transferred to an excess amount of ice-cold Dulbecco’s phos-
phate buffered saline (DPBS). The cryopreserved or fresh tissue
samples were dissociated into a single-cell suspension using a
gentleMACS dissociator (Miltenyi Biotec) by running one or two
cycles of program B1 with 3 mL of ice-cold Omni 1×homogeniza-
tion buffer in a gentleMACSC-tube. Snap-frozen samples were pul-
verized using a mortar and pestle chilled in liquid nitrogen. The
cell suspension or pulverized tissuewas transferred to a Dounce tis-
sue grinder (Merck D9063) on ice with 3 mL of ice-cold Omni 1×
homogenization buffer. Samples were homogenized with an A-
pestle until resistance went away and further with a B-pestle (three
to 10 strokes each) so as to disrupt cellular plasmamembranes. Cell
debris were removed by passing the sample through stackable cell
strainers (100-, 70-, and 30-µm MACS SmartStrainers, Miltenyi
Biotec). The flow-through was further clarified by a brief centrifu-
gation at 100g for 1 min at 4°C. The supernatant was mixed with
an equal volume of ice-cold Omni 50% iodixanol solution (final,
25% iodixanol).

Purification of nuclei

Two layers of iodixanol cushions were prepared in a 2-mL LoBind
tube (Eppendorf) by placing 600 µL of ice-cold 40% iodixanol sol-
ution on the bottom (marking the surface of the bottom layer fa-
cilitated sample collection later) and overlaying 600 µL of ice-
cold 29% iodixanol solution using a wide-bore tip. On the top,
800 µL of the cell suspension (containing 25% iodixanol) was
placed. Density gradient centrifugation was performed using a ta-
ble-top centrifuge (Eppendorf 5430R) with a swing rotor at 6000g
for 30min at 4°C and a soft brake setting. Top layers were carefully
removeddown to∼2mmabove the bottom layer. The nuclear frac-
tion, between the bottom and middle layers, was collected (∼400
µL) to a new LoBind tube on ice. The number of nuclei was count-
ed by mixing 20 µL of the sample with 20 µL of 100×diluted
Hoechst 33342 (Thermo Fisher Scientific) using a hemocytometer
under a fluorescence microscope.

Tagmentation

Approximately 50,000 nuclei were transferred to two 1.5-mL
LoBind tubes filled with 1 mL of ice-cold Omni-ATAC-RSB+
0.1% Tween-20 buffer and centrifuged at 500g for 10 min at 4°C.
After carefully removing the supernatant, nuclei were resuspended
in 50 µL of Omni-ATAC reaction mix containing Tn5 transposase
TDE1 enzyme (Illumina). As the effectiveness of transposase varied
slightly among samples, we used two different amounts of the en-
zymeper sample (Supplemental Table S3). Aftermixing the sample
by pipetting six times using a P200 fine tip, tagmentation reaction
was performed using an Eppendorf ThermoMixer at 500 rpm for
30 min at 37°C. The reaction was stopped by adding 300 µL of
PB buffer in a MinElute PCR purification kit (Qiagen) and 10 µL
of 3 M sodium acetate (pH 5.2). The sample was mixed, kept at

room temperature for 10 min, and stored at −20°C until DNA pu-
rification. Libraries for two blood samples (WBC, PBMC) were gen-
erated with an alternative ATAC-seq protocol (Buenrostro et al.
2013) during the pilot experiment phase. A genomic DNA
(gDNA) control library was also prepared using 50 ng of purified
gDNA from one animal (HOL1_m) by following the Nextera
DNA sample preparation guide (Illumina). The tagmented DNA
was purified and eluted in 21 µL elution buffer using the
MinElute PCR purification kit.

Library preparation

The purified DNA was amplified using NEBNext high-fidelity 2X
PCR master mix with the Ad1 and Ad2 primers (Buenrostro et al.
2013) for 13 (for ATAC-seq library) or five PCR-cycles (gDNA li-
brary), respectively. The amplified libraries were purified and elut-
ed in 50 µL elution buffer using theMinElute PCR purification kit.
Library size distribution was monitored using 10 µL of the library
by QIAxcel capillary electrophoresis (Qiagen). Large DNA frag-
ments were eliminated using AMPure XP magnetic beads
(Beckman Coulter) by a right-side size selection using 0.55× fol-
lowed by 1.5 × volume ratio of beads to sample. Library concentra-
tion was estimated using the KAPA library quantification kit (Kapa
Biosystems). The libraries were sequenced with 2×38-bp paired-
end reads using a NextSeq 500 sequencer, or 2 ×51-bp paired-
end reads on a NovaSeq 6000 (Illumina) instrument. In total,
185 ATAC-seq libraries were sequenced, yielding 31.8 million
paired-end fragments on average (range: 2.5–117.2 million frag-
ments) (Supplemental Table S3). ATAC-seq FASTQ files were ob-
tained from the EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/
biostudies/arrayexpress) under accession number E-MTAB-9872
(Lee et al. 2021) or generated in this study and submitted under ac-
cession numbers E-MTAB-11825 and E-MTAB-11826 (see Data ac-
cess). In addition, we downloaded publicly available ATAC-seq
data from the NCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession numbers PRJNA531214,
PRJNA665194, PRJNA601200, PRJNA595394, and PRJNA622966
(Supplemental Table S1; Fang et al. 2019; Halstead et al. 2020a,b;
Johnston et al. 2021) and analyzed these in a similar way.

ATAC-seq peak calling

ATAC-seq peakswere called following the recommendations of the
ENCODE ATAC-seq pipeline (“ATAC-seq Data Standards and
Processing Pipeline”) (https://www.encodeproject.org/atac-seq/).

Trimming

Sequences with low sequence quality, residuals of library adaptors,
and bases >38 bp (to uniform read length across data) were trimmed
using Trimmomatic (ILLUMINACLIP:NexteraPE-PE.fa:2:30:5:1:true
SLIDINGWINDOW:4:15MINLEN:20CROP:38) (Bolger et al. 2014).
Proportions of reads remaining after trimming averaged 98.7%
(range: 96.8–99.5%) (Supplemental Table S3).

Mapping

The trimmed reads were aligned to the bovine genome assembly
ARS-UCD1.2 using Bowtie 2 (‐‐local –mm). Overall mapping rate
averaged 95.5% (range: 36.4%–99.4%).

Filtration

Readsmapping to themitochondrial chromosomewere filtered out
using SAMtools (samtools idxstats file.bam | cut -f 1 | grep -v chrM |
xargs samtools view -b file.bam) (Danecek et al. 2021). The propor-
tion of mitochondrial reads averaged 16.1% (range: 0.8%–61.9%).
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PCR/optical duplicates were removed using Picard toolkit (java -jar
picard.jarMarkDuplicates REMOVE_DUPLICATES= trueOPTICAL_
DUPLICATE_PIXEL_DISTANCE=100 [2500 for NovaSeq data]
VALIDATION_STRINGENCY=LENIENT) (http://broadinstitute
.github.io/picard/). Duplicate read rate averaged 12.7% (range:
4.9%–23.1%). Properly aligned reads with high sequencing quality
were selected with SAMtools (for paired-end reads, samtools view -f
3 -F 1284 -q 30; for single-end reads after trimming, samtools view -f
9 -F 260 -q 30), resulting in an average of 35.3 million informative
reads per library (range: 3.4–141.5 million).

Fractionation

Reads were partitioned into two bins based on their mapped frag-
ment lengths using BamTools filter function (Barnett et al. 2011):
(1) short reads generated from putative nucleosome-free regions of
DNA (<146 bp) and (2) longer reads likely from nucleosome-asso-
ciated DNA (≥146 bp).

Peak calling

ATAC-seq peaks were called using MACS2 in two ways
(Supplemental Fig. S3): First, in ATAC-seq mode: the genomic lo-
cus cleaved by the transposase (a tag) was defined as a 38-bp region
centered either 4 bp (for a plus strand read) or 5 bp (for a minus
strand read) downstream from the read’s 5′-end (Adey et al.
2010; Buenrostro et al. 2013). Peaks (open chromatin regions)
were identified by comparing the tag distribution of a sample to
one from a purified gDNA control (macs2 callpeak ‐‐format BED
‐‐control ‐‐nomodel ‐‐shift -19 ‐‐extsize 38 ‐‐qvalue 0.05 ‐‐gsize hs
‐‐keep-dup all ‐‐max-gap 38 ‐‐SPMR ‐‐bdg). Second, in ChIP-seq
mode, to recover regions protected from transposase cleavage
events owing to binding of trans-regulatory factor(s) like a TF (so-
called footprints in the ATAC-seq mode analysis), peaks were
called using general settings used for ChIP-seq analysis (MACS2
piles up entire sequencing fragments instead of focusing on trans-
posase cleavage sites close to 5′-ends of reads). To avoid covering
nucleosome positions, only the nucleosome-free fraction of se-
quence fragments (mapped fragment size < 146 bp) was used
(macs2 callpeak ‐‐format BAMPE ‐‐control ‐‐qvalue 0.05 ‐‐gsize hs
‐‐keep-dup all ‐‐max-gap 38) for ChIP-seq mode.

Quality control

In-house ATAC-seq data (peak-called with the ATAC-seq mode)
were evaluated using commonly used ATAC-seq quality-control
measurements (Supplemental Table S3): the fraction of reads in
called peak regions (FRiP; average: 0.212; range: 0.004–0.591)
and TSS enrichment (average: 16.1; range: 2.14–46.2). Irreproduc-
ible discovery rates (IDRs) that measure reproducibility in score
ranking between peaks, as well as rescue ratios thatmeasure consis-
tency between replicates (average: 1.23; range: 1.02–1.96), were
calculated using samples with technical replicates.

Low-quality libraries with the number of filtered reads of few-
er than 10million per sample, FRiP less than 0.07, TSS enrichment
less than 7.0, and a self-consistency ratio more than two, as well as
some technical duplicates with less quality, were excluded from
further analyses (36 libraries out of 185).

Final peak calling per biosample

Reads of libraries from the same biosample that passed the quality
control were merged, and peaks were called afresh as described
above in ATAC-seq and ChIP-seq modes. We also integrated 15
high-quality public data sets in our analysis (Fang et al. 2019;
Halstead et al. 2020a,b; Johnston et al. 2021). P-value thresholds

for final peak selection for all samples (with and without technical
replicates) were determined as the median of the lowest log(1/P)-
values of peaks with IDR≤0.1 across samples with technical repli-
cates (−log10(P-value) = 8.01 and 9.28 for ATAC-seq and ChIP-seq
modes, respectively).

Reproducibility

Reproducibility of peak calling was evaluated by measuring Pear-
son’s correlation of genome-wide read coverage in 500-bp win-
dows between technical (range: 0.89–0.99) and biological
replicates (0.85–0.97) (Supplemental Figs. S1, S2) using deepTools’
bamCoverage (‐‐outFileFormat bigwig ‐‐effectiveGenomeSize
2701495761 ‐‐normalizeUsing RPKM ‐‐ignoreForNormalization
chrX chrY), multiBigwigSummary (bins ‐‐binSize 500), and plot
Correlation (‐‐corMethod pearson ‐‐whatToPlot heatmap –remove
Outliers ‐‐colorMap viridis ‐‐plotNumbers) (Ramírez et al. 2016).

Defining and merging consensus and core peak components

across samples and calling modes

Core and consensus peak components were defined following the
method of Meuleman et al. (2020) as follows. Individual peak (IP)
summit positions were collated across samples separately for
ATAC-seq and ChIP-seq modes. Summits were clustered such
that the distance between clusters was ≥20 bp. The space covered
by each cluster was defined as the core component of a newly de-
fined “collective peak” (CP). The corresponding IP were piled up
and the limits of the consensus CP defined as the full-width at
half maximum. If by doing so some consensus CPs overlapped,
they were merged by repeating the process using all concerned
IPs. This yielded two genome-wide sets of core and consensus
CPs for ATAC-seq mode and ChIP-seq mode, respectively. If over-
lapping, the corresponding consensus and core CPs were merged
to, in the end, yield one unique set of core and consensus “CPs”
or reference peaks used for all further analyses (Supplemental
File S1).

Nonnegative matrix factorization

NMF was conducted following the method of Meuleman et al.
(2020) using scripts downloaded from GitHub (https://github
.com/Altius/Vocabulary). Briefly, we set up an m (number of sam-
ples) × n (number of peaks)matrix (V) summarizing the accessibility
of each peak in each sample in binary mode (0 or 1, based on pres-
ence absence of an “IP” in the corresponding sample). V was de-
composed in a m× k W and k×n H matrix such that V≈W×H,
where k is the number of hidden components. The value for k was
set at 16 following the method of Meuleman et al. (2020), as a
trade-off betweenmaximizing the recapitulation ofV and retaining
biological interpretability (k at elbow point of the derivative of F1
score over k). Following this procedure, each sample and each
peakwere assigned aweight for each one of the k components. Sam-
ples and peaks were in general assigned to their dominant compo-
nent (with largest score), and components were assigned to
biological systems on the basis of their composite samples (Fig.
1F; Supplemental Table S5; Supplemental File S1). The peak infor-
mation is also made accessible via a custom track on the UCSC
Genome Browser (https://genome.ucsc.edu/s/Animal_Genomics_
ULiege/ATAC_hub_V1 or https://www.gigauag.uliege.be/cms/c_
4791343/en/gigauag-diagnostics-softwar e-data).

Public RNA-seq data

RNA-seq data originated frombovine tissues similar to the ones gen-
erated in this studywere downloaded from theNCBI Sequence Read
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Archive (https://www.ncbi.nlm.nih.gov/sra; for accession numbers,
see Supplemental Table S9; Graf et al. 2014; Cai et al. 2018; Dado-
Senn et al. 2018; Khansefid et al. 2018; Fang et al. 2019, 2020).
Low-quality bases, residuals of library adaptors, and short reads
<35 bp were removed using Trimmomatic (ILLUMINACLIP:adap-
tor.fa:2:30:10:4:true SLIDINGWINDOW:4:15 LEADING:10
TRAILING:10 MINLEN:36). The reads were mapped to the bovine
reference genome ARS-UCD1.2 using HISAT2 (version 2.1.0) using
genome indexes that were built along with coordinates of 2.7 mil-
lion DNA variants (2,389,896 SNVs and 176,799 indels) and refer-
ence transcripts (bosTau9.ncbiRefSeq.gtf; hisat2 ‐‐dta ‐‐no-softclip
-x index -S out.sam). Reads mapped to ribosomal RNA, duplicated,
or improperly mapped were filtered out using BEDTools
(intersectBed -abam -b rRNA.bed -v), Picard toolkit
(MarkDuplicates REMOVE_DUPLICATES= true VALIDATION_STR
INGENCY=LENIENT), and SAMtools (view -f 3 -F 1284 -q 30).
Expression levels of reference transcripts on autosomes and sex
chromosomes in the gene reference file (bosTau9.ensGene.gtf,
v101) were estimated using StringTie (stringtie -G -e). A raw read
count matrix per gene (27,233 genes) was prepared using a
prepDE.py script in StringTie. Using R package DESeq2, the count
data were normalized by their library sizes after selecting genes for
which counts were more than 10 (for the TF binding motif enrich-
ment analysis) or 30 (for the peak-expression correlation analysis) in
at least one sample (Data<−Data [(rowSums (counts (Data)) >
threshold)≥1]) and transformed using regularized-logarithm trans-
formation (rlog (Data, blind=TRUE)).

TF binding motif enrichment in peaks

Known and de novo DNA motifs enriched in core peaks assigned
to tissue specific components (one weight≥0.9) or the ubiquitous
component (all weights≤30%) were identified using HOMER
(findMotifsGenome.pl peak.bed bosTau9_genome_directory-size
given) (Fig. 2A; Supplemental Tables S7, S8). For each of the 16
components, we then checked, for the 10 most enriched binding
motifs, whether the cognate TF was also more strongly expressed
in the tissue samples assigned to that component. This was accom-
plished by standardizing (Z-score) the expression level of the cor-
responding TF gene across 114 of the above-mentioned publicly
available RNA-seq libraries that could be assigned to one of our
16 components (Supplemental Table S7), and verifying whether
the Z-scores were higher in the tissue type assigned to the cognate
component compared with the other samples. The statistical sig-
nificance of the difference in Z-score was estimated using a permu-
tation test and ensuing P-values converted to FDR values (π0 set at
1) using the qvalue R package (http://github.com/jdstorey/qvalue)
to correct for multiple testing. FDRs≤0.05 were deemed
significant.

Correlation between chromatin openness and gene expression

Chromatin openness

Chromatin openness of a peak in a given sample was measured as
the fold enrichment (in normalized read depth) over gDNA back-
ground at the nucleotide position in the peak with the highest
such value. This was computed with theMACS2 bdgcmp function
(-m FE -t sample_pileup.bdg -c control_lambda.bdg) and using the
bedGraph files from MACS2 ATAC-seq mode peak calling. The
highest fold enrichment value per peak was extracted using
BEDTools (map -nonamecheck -c 4 -o max -a consensus_peak.bed
-b out.bdg). We kept peaks for which fold enrichments were more
than five at least in one sample (975,488 peaks).

Gene expression

Fifty-six bovine public RNA-seq data matched to 91 of our 104
ATAC-seq data sets were selected from the data sets mentioned
above (Supplemental Table S9). RNA-seq datawere processed as de-
scribed above.

Correlation

Pearson’s correlations between openness (fold enrichment) of
peaks located within 1 Mb from TSS of a given gene and gene ex-
pression level across the 91 data sets were calculated using R stats
(R Core Team 2023).

Generating a catalog of common variants mapping to cis-acting

regulatory elements

Genome-wide variant catalog

We used a catalog of 11,030,905 SNVs and 1,705,738 short (≤265
bp) indels called from whole-genome sequences of 264 HF cattle
(obtained from BioProject accession number PRJEB53518; Oget-
Ebrad et al. 2022).

Proportion of variants mapping to ATAC-seq peaks by genome-compartment

The genome was subdivided in five mutually exclusive compart-
ments (TSS, TTS, exonic, intronic, intergenic) using a gene refer-
ence file (bosTau9.ensGene.gtf, v101). Each compartment was
further subdivided in (1) a part overlapping any peak in our catalog
of 948,566 autosomal consensus peaks and (2) the remaining part.
We then checked whether there was a significant difference in the
proportion of variantsmapping to the peak part versus the propor-
tion of space occupied by the peak part using a chi-square good-
ness-of-fit test.

Density of singletons within and outside of ATAC-seq peaks

The change of singleton density as a function of the distance from
the nearest peak was determined sequentially as follows. We first
identified the size of the genome (in base pairs) that was within
100 bp from the nearest ATAC-seq peak (200-bpwindows centered
on the peaks; g1), as well as the number of singletons that
mapped within this space (s1), and computed the corresponding
ratio (r1 = s1/g1). We then identified the size of the genome that
was between 300 and 100 bp from the nearest ATAC-seq peaks
(200-bp windows on the left and right of window 1, excluding
what was assigned to fraction 1; g2L and g2R), as well as the number
of singletons that mapped within these spaces (s2L and s2R), and
computed the corresponding ratios (r2L= s2L/g2L and r2R= s2R/g2R).
We pursued this process for windows that weremore andmore dis-
tant from the nearest ATAC-seq peaks. The “confidence interval”
around the estimates was defined as the computed ratio ±2 SD
(2 × SDi), where SDi was computed assuming a binomial distribu-
tion as SDi =

�������������������
gi × ri × (1− ri)

√
.

Site frequency spectrum

Variantsmapping to peakswere sorted according to the five above-
mentioned compartments (TSS, TTS, exonic, intronic, intergenic).
Their SFS (0.01 bins) was compared (histogram) between compart-
ments and with that of all other variants in the genome. To check
for a shift toward lower allelic frequencies by compartment, we
compared the distribution of allelic frequencies between variants
that mapped to peaks (“peak part” above) versus variants that
did not map to peaks (but belonged to the same compartment) us-
ing a Wilcoxon rank-sum test.
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Identifying bovine cis eQTLs in liver and blood

RNA-seq and data preprocessing

We reanalyzed RNA-seq data of 176 liver and 227whole-blood biop-
sies collected from 240 Holstein females at ∼14 d postpartum in the
GplusE project (obtained from ArrayExpress; accession numbers
E-MTAB-9347 and E-MTAB-9431 for blood; E-MTAB-9348 and
E-MTAB-9871 for liver) (Lee et al. 2021; Wathes et al. 2021a,b). The
libraries were constructed with an Illumina TruSeq stranded total
RNA library prep Ribo-Zero gold kit and sequencedwith 75-base sin-
gle-end reads. First, low-quality bases, residuals of library adaptors,
and short reads (<35 bp) were removed using Trimmomatic (java
-jar trimmomatic-0.36.jar SE input.fastq.gz output_trimmed.
fastq.gz ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 SLIDINGWINDO
W:4:15 LEADING:3 TRAILING:3MINLEN:36 2>>log.txt). The reads
were mapped to the bovine reference genome ARS-UCD1.2 using
HISAT2 (hisat2 ‐‐dta ‐‐no-softclip -x index -U trimmed.fastq.gz -S
output.sam ‐‐rna-strandness R 2>>log.txt). Reads mapped on ribo-
somal RNA were filtered out using SAMtools (samtools sort input.
sam -o sorted.bam) and BEDTools (intersectBed -abam sorted.bam
-b rRNA.bed -v). BAM files from the same biosample were merged,
and properly mapped reads were kept with SAMtools (samtools
merge merged.bam sample_ID∗.bam; samtools view -F 2308 -q 30
-o clean.bam -b merged.bam; samtools sort -o clean.sorted.bam
clean.bam; samtools index clean.sorted.bam). Expression levels of
reference transcripts (bosTau9.ensGene.gtf, v101) on autosomes
and sex chromosomes were estimated using StringTie (stringtie
clean.sorted.bam ‐‐rf -G bosTau9.ensGene.nochrUn.gtf -e -o
transcripts.gtf) (Pertea et al. 2015). A raw read counts matrix by
gene (27,233 genes) was prepared using a prepDE.py script in
StringTie. Gene-specific reads counts were scaledwith a “size factor”
using DESeq2 after eliminating mitochondrial gene counts. Gene
with summation of TPM lower than one and with fewer than eight
individuals with counts greater than zero were filtered out. After-
ward, counts were normalized by inverse normal transformation
by gene and across individuals.

SNV genotyping

All animals were genotyped with a high-density (about 778,000)
SNV array (Illumina BovineHD Genotyping BeadChip), and im-
puted to whole genome using SHAPEIT4 (for phasing) (Delaneau
et al. 2019) and Minimac4 using the previously mentioned
whole-genome sequences of 264 HF animals as reference.
Variants with MAF≤0.02, probability of the data assuming
Hardy–Weinberg equilibrium ≤0.001, and imputation accuracy
(r2) ≤0.9 were filtered out, leaving a total of 10,257,878 usable
markers (the genotypes are available from the Zenodo open data
repository at https://doi.org/10.5281/zenodo.8339268).

eQTL analyses

WeusedQTLtools to ensure RNA–DNA samplematching based on
genotype concordance (Supplemental Table S11). Expression val-
ues were first corrected for hidden confounders and “country of or-
igin” using probabilistic estimation of expression residuals (PEER).
The resulting residuals were then further corrected for strati-
fication and/or polygenic effects on gene expression using
GenABEL. The ensuing “double-corrected” residuals were then
used for cis eQTL analyses usingQTLtools. For each gene, we tested
all variants within 1 Mb from the TSS. Ensuing P-values were cor-
rected for multiple testing (in the window) by permutation. For
each gene, we kept the best P-value (= “lead variant”), and these
“best P-values” were converted to FDR and Q-values (hence cor-
rected for multiple testing) following the methods of Benjamini

andHochberg (1995) and Storey and Tibshirani (2003), respective-
ly. eQTL with FDR≤0.05 were deemed experiment-wide signifi-
cant. π1 (the proportion of alternative hypotheses among all
tested hypotheses) was estimated according to the method of
Storey and Tibshirani (2003).

Enrichment of eQTL driving variants in ATAC-seq peaks

We first identified, for each significant cis eQTL, a credible set of
variants defined as all the variants within 1 Mb from the lead vari-
ant and inLDwith itwitha thresholdvalue r2LD ≥ 0.9.Wethenused
the method proposed by Trynka et al. (2015) to measure the puta-
tive enrichment of credible variants in ATAC-seq peaks. The analy-
siswas performedbyNMFcomponent. Briefly,wedefined, for each
cis eQTL, a region/window spanned by the credible set plus buffer
segments on either side corresponding to twice the median peak
size (= 436 bp). We first counted, using the real eQTL results, for
how many eQTLs at least one credible variant mapped within an
ATAC-seq peak (assigned to the NMF component under consider-
ation). We then randomly shifted variant and peak coordinates
with respect to eachotherwithin each cis eQTLwindowand count-
ed forhowmanyeQTLsat leastone credible variantmappedwithin
an ATAC-seq peak. This “permutation” process was repeated
10,000 times, and the significance of the overlap between credible
variants andpeaksobserved for the real datawas evaluated fromthe
number of occurrences of an equal or higher overlap with the per-
muted data. To evaluate the contribution of proximal rather than
distal ATAC-seq peaks to the signal, permutations were also con-
ducted separately by peak type (proximal vs. distal).

Estimating the proportion of regulatory variants mapping in

ATAC-seq peaks and the proportion of variants mapping in

ATAC-seq peaks that are regulatory

We assumed that every cis eQTL i out of T is driven by one regula-
tory variant that is part of a credible set comprising niA variants in
the ATAC-seq peaks and niN variants outside of the ATAC-seq
peaks. We further assumed that a fraction fA of cis eQTLs is driven
by a regulatory variant mapping to an ATAC-seq peak
(Supplemental Codes S1, S2), as well as a fraction fN=1− fA by a
regulatory variant mapping outside ATAC-seq peaks, and that
ATAC-seq peaks occupy a proportion pA of the genome. The likeli-
hood of the data for eQTL i can hence be expressed as

Li = fA
niA + niN − 1

niA − 1

( )
× pAniA−1 × (1− pA)

niN

[ ]

+ fN
niA + niN − 1

niN − 1

( )
× pAniA × (1− pA)

niN−1
[ ]

.

This equation assumes that the (niA+niN−1) “passenger” vari-
ants in the credible set are distributed between ATAC-seq peaks
and the rest of the genome according to the proportion of the ge-
nome occupied by these two components and following a binomial
distribution.

We used the Newton–Raphson method (R nlm function)
(R Core Team 2023) to determine the value of fA that maximizes
the likelihood of the data for all T eQTL:

LT =
∏T
i=1

Li.

fA corresponds to the above-mentioned sensitivity (s.t. 0≤ fA≤1),
whereas the precision was estimated as

fA × T∑T
i=1 niA

.
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Data access

ATAC-seq data generated in this study have been submitted to the
EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/biostudies/array
express) under accession numbers E-MTAB-11825 and E-MTAB-
11826. Imputed genotypes of animals used for eQTL analyses are
available from the Zenodo open data repository at https://doi
.org/10.5281/zenodo.8339268. Other data sets used in this study,
published previously, are described in the Methods. Key analysis
pipelines are available at GitHub (https://github.com/can11si
chuan/Bov-ATAC) and Supplemental Code S1 and S2. The UCSC
Genome Browser track hub to visualize all 104 individual and ref-
erence ATAC-seq peaks is accessible from https://genome.ucsc
.edu/s/Animal_Genomics_ULiege/ATAC_hub_V1 or https://www
.gigauag.uliege.be/cms/c_4791343/en/gigauag-diagnostics-softwa
re-data. Bovine ATAC-seq peaks and putative regulatory variants
identified in this study are found in Supplemental Files S1 and
S2, respectively.
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