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Cancer is a complex disease with diverse molecular mechanisms that affect patient prognosis. Network-based approaches are

effective in revealing a holistic picture of cancer prognosis and gene interactions. However, a comprehensive landscape of

coexpression networks and prognostic gene modules across multiple cancer types remains elusive. In this study, we per-

formed a systematic analysis of coexpression networks in 32 cancer types. Our analysis identified 4749 prognostic modules

that play a vital role in regulating cancer progression. Integrative epigenomic analyses revealed that these modules were

regulated by interactions between gene expression and methylation. Coregulated genes of network modules were enriched

in chromosome cytobands and preferentially localized in open chromatin regions. The preserved network modules formed

330 module clusters that resided in chromosome hot spots. The cancer-type-specific prognostic modules participated in

unique essential biological processes in different cancer types. Overall, our study provides rich resources of prevalent

gene networks and underlying multiscale regulatory mechanisms driving cancer prognosis, which lay a foundation for bio-

marker discovery and therapeutic target development.

[Supplemental material is available for this article.]

Cancer is a multifaceted and intricately regulated process that in-
volves the coordinated activity of genes from various pathways.
Despite the diversity of cancer types, there exists a common frame-
work that governs their development and progression (Hanahan
and Weinberg 2011). Various network approaches have been pro-
posed to characterize gene interactions and dissect the regulatory
relationships underlying tumorigenic pathways (Creixell et al.
2015). Gene coexpression networks are a mathematical model
that assumes functionally related genes are coregulated as a cellular
system and can be modeled as modules embedded in a coexpres-
sion network (Zhang and Horvath 2005; Langfelder and Horvath
2008). Characterizing gene coexpression networks is vital for can-
cer research, as they provide a holistic view of how genes function
together in biological systems, allowing identification of novel
gene interactions and pathways.

Discovering genes that predict patient survival is crucial for
cancer biomarker development, risk assessment, and clinical deci-
sion-making. Previous studies showed that cancer prognostic
genes tend to be coregulated at the transcriptome level and en-
riched in the modules of coexpression networks (Yang et al.
2014). As coexpression modules reflect holistic features of path-
way-related genes, they are robust andmeaningful for cancer prog-
nosis and functional interpretations. Multiple computational
methods have been applied to identify cancer networks and prog-
nostic modules. For example, Yang et al. (2014) detected network
modules enriched for prognostic genes in four cancers using our
previously developed tool WGCNA (Zhang and Horvath 2005).

Yu et al. (2019) focused on seven cancer types and constructed a
network using the top correlated gene pairs, followed by commu-
nity detection via MCODE. Raina et al. (2023) established a data-
base of coexpression networks from TCGA data sets using the
weighted Pearson correlationmethod, without subsequent modu-
larity and prognostic marker identification. Although prior re-
search has identified coexpression network modules in a few
cancers, a standard procedure for defining such networks across
a broad range of cancer types remains absent.

In this study, we used the advanced, uniform, and well-re-
garded network tool multiscale embedded gene coexpression net-
work analysis (MEGENA) to systematically identify prognostic
modules. In contrast to the large, sparse modules created by
WGCNA (Zhang and Horvath 2005), MEGENA has been empiri-
cally verified using simulated and real-world large-scale gene ex-
pression data to resolve intricate hierarchical network structures
and generate more concise and coherent modules (Song and
Zhang 2015; Chella Krishnan et al. 2018). The high resolution of
hierarchical network structures at varying levels of compactness al-
lows MEGENA to efficiently infer coexpression relationships and
further pinpoint network drivers in large-scale bulk tissue tran-
scriptomes of complex human diseases (Wang et al. 2019, 2021;
Song et al. 2021; Xu et al. 2022). By applyingMEGENA to all major
cancer typeswithin the TCGAcohort, we comprehensively charac-
terized coexpression networks and prognostic modules in cancers
and revealed themultiomic regulatorymechanisms related to can-
cer prognosis. We also shared all the networks, modules, prognos-
tic features, and functional annotations on open-source websites,
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which offers a unique opportunity for comparative network anal-
ysis in this field.

Results

Pan-cancer coexpression networks and prognostic modules

We constructed gene coexpression networks for 32 solid tumors
using the MEGENA pipeline, which includes 9546 individuals
from the TCGA database. We performed four major analyses, in-
cluding gene network construction, gene module annotation,
module prognostic testing, and module preservation analysis
(Fig. 1A).MEGENA ranks significant correlation coefficients and it-
eratively tests them for planarity to grow a planar filtered network
using the PMFG algorithm (Tumminello et al. 2005). Then it per-
forms multiscale clustering analysis to identify coexpressionmod-
ules at different network-scale topologies. The modules generated

byMEGENA coexpression networks are hierarchical, ranging from
the smallest modules with 10 genes to large ones with thousands
of genes. In total,MEGENA identified 27,448 hierarchicalmodules
from 32 coexpression networks corresponding to 32 different can-
cer types (Supplemental Table S1). On average, each network con-
tains 17,831 genes (SD=1568), 51,677 gene–gene correlations (SD
=1487), and 858 hierarchical network modules (SD=139).

The pan-cancer network analysis identified 4749 prognostic
modules, whose module eigengenes (PC1 from principal compo-
nent [PC] analysis [PCA]) were correlated with survival outcomes
of cancer patients from the Cox proportional-hazard model (P<
0.05) (Supplemental Table S2). Based on Molecular Signatures
Database (MSigDB) hallmark pathway annotation, the prognostic
modules were most enriched for pathways essential for tumor de-
velopment, including E2F targets, G2M checkpoints, epithelial–
mesenchymal transitions (EMTs), MYC targets, and inflammatory
responses (Supplemental Fig. S1). Of the 239 prognostic modules
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Figure 1. Pan-cancer coexpression networks and prognostic modules. (A) The pipeline for pan-cancer coexpression network analysis, showing the steps in-
volved in constructing coexpression networks and identifying prognosticmodules. (B) Dot plots of three representative hallmark pathways of prognosticmod-
ules. For eachpathway, thedots indicate the prognosticmodules from32cancers, and the colors show the outcomesof patient survival in each cancer. Thedot
size isproportional to thepathwayenrichment significance,with largerdots indicating strongerenrichment. The false-discovery rate (FDR)was calculatedas the
adjusted Fisher’s exact test (FET) P-values. The top fivemoduleswith the strongest enrichment are labeled. (C) Aggregated networks of the prognosticmodules
in the threehallmarkpathways,withbluedots indicating thepathwaygenes andyellowdots indicatingother coexpressedgenes. Thenode size ineachnetwork
is proportional to the conservation weight across different cancers. The top 20 nodes with the strongest conservation are labeled.
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enriched for the E2F target pathway, 205 (86%) modules were as-
sociated with poor survival or a higher hazard ratio (Fig. 1B,C).
Similarly, 184 of 209 (88%) prognostic modules of the EMT path-
way showed poor survival. Meanwhile, about half of (50%, n=77)
the prognostic modules of the inflammatory pathway showed
good survival, and another half of the inflammation-related mod-
ules corresponded to poor survival. We also observed that there
were more modules associated with lower survival than with in-
creased survival (Supplemental Fig. S1). Given that the pathways
of E2F targets and EMT were conserved across multiple cancer
types, there were more prognostic modules enriched for these
two pathways linked with poor survival. Other pathways, such
as fatty acid metabolism, adipogenesis, and xenobiotic metabo-
lism, were associated with a good survival rate and were more spe-
cific to certain cancer types.

We evaluated the predicting efficacy of prognostic modules in
comparison to prognostic genes. Given that the eigengene of prog-
nosticmodules was calculated fromPCanalysis, we extracted all the
PCs of prognostic genes for comparison with the prognostic mod-
ules. In breast cancer (BRCA), there were 1670 prognostic genes,
and only 46 PCs of the prognostic genes were associated with sur-
vival (P<0.05), which is fewer than the number of prognostic mod-
ules (n=103). Among the top 50 ranked PCs, prognostic modules
also show a higher significance than prognostic genes in predicting
patient survival (Wilcoxon test P=1.9×10−6) (Supplemental Fig.
S2). These findings indicate that the module-based approach is
more effective at identifying survival-associated features than is in-
dividual gene analysis. Because the network modules represent all
individual genes in amodule, thenetwork approach is able tounveil
interactions of tumor regulators. For example, two key cytolytic ef-
fectors, granzyme A (GZMA) and perforin 1 (PRF1), were coex-
pressed in the aggregated inflammation network associated with
good patient survival (Supplemental Table S3). Consistently, the
combination of these two genes was effective to quantify immune
cytolytic activity in several cancers (Rooney et al. 2015).

To investigatewhether networkmodules could be reproduced
in non-TCGA cohorts, we analyzed RNA sequencing data from tu-
mor tissues of 65 liver cancer patients (LIHC) in an independent
study (Long et al. 2022). We used the same MEGENA pipeline to
construct a coexpression network and evaluated the conservation
of TCGA network modules in this cohort. Of the 796 network
modules identified in the LIHC from the TCGA data set, 661
(83%) were recovered in the non-TCGA cohort (adjusted Fisher’s
exact test P [aFETP] < 0.05) (Supplemental Table S4). Similarly,
199 out of 237 (84%) prognostic modules from TCGA were pre-
served in the independent cohort. We also explored whether cru-
cial functions of pan-cancer prognosticmodules could be reflected
in cell lines. Thus, we computed the CERES dependency score of
the aggregated prognostic modules from the Achilles CRISPR-
Cas9 screens of 975 cell lines (Meyers et al. 2017). Among the three
primary aggregated prognostic modules (E2F targets, EMT, and in-
flammation), the E2F targets aggregatedmodules had significantly
lower CERES scores (P<0.01, 1000 permutations), indicating their
essentiality for cell line survival. Conversely, the EMT and inflam-
mation prognostic modules showed no cell line essentiality.

Epigenetic regulation of network modules

Epigenetic regulation through DNA methylation plays a crucial
role in cancer development (Saghafinia et al. 2018; Locke et al.
2019). Therefore, we investigated the regulation of module-level
DNAmethylation and its impact on patient prognosis.We focused

on 16 cancer types that had enough normal samples for compara-
tive analysis with tumor samples. We identified 1517 and 1626
network modules significantly enriched for up-regulated and
down-regulated differentially expressed genes (DEGs), respective-
ly, whereas 849 and 597 network modules were enriched for up-
regulated and down-regulated differentially methylated CpGs
(DMCs), respectively. We observed a global inverse relationship
between DEG- and DMC-enriched modules. For example, 408
moduleswere enriched for down-regulatedDEGs and up-regulated
DMCs (dDEGs-uDMCs), and 173 modules were enriched for up-
regulated DEGs and down-regulated DMCs (uDEGs-dDMCs) (Fig.
2A). Modules enriched for dDEGs-uDMCs were related to vascular
smooth muscle contraction and calcium signaling pathways, in-
cluding the angiopoietin encoding gene ANGPTL1 and the colla-
gen encoding gene COL14A1 (Fig. 2B). Meanwhile, network
modules enriched for uDEGs-dDMCs were mostly involved in cy-
tokine and chemokine pathways, suggesting coregulation of gene
expression and methylation may play important roles in regulat-
ing different module functions.

Next, we analyzed the prognostic modules coregulated by
both DEGs and DMCs using the pan-cancer networks. We con-
ducted an intersection analysis of the survival-associated gene sig-
nature, DEG signature, andDMC-containing gene signature in the
16 cancer types. We found that 10,174 out of 37,353 (27%) sur-
vival-associated genes were also differentially expressed in these
cancer types, and 15,478 out of 64,166 (24%) DEGs were also dif-
ferentially methylated (Supplemental Fig. S3). Among the mod-
ules enriched with uDEGs-dDMCs, 13 (8%) and 34 (20%)
modules were associated with good and poor patient survival, re-
spectively (Fig. 2C). Similarly, among the dDEG-uDMC enriched
modules, 34 (8%) and 65 (16%) modules were indicative of good
and poor survivals, respectively (Fig. 2D). In head and neck squa-
mous cell carcinoma (HNSC), module M755 was enriched for
uDEG-dDMCs with good prognosis (hazard ratio (HR) = 0.63, P=
0.001) and mainly functions in natural killer (NK) cell–mediated
cytotoxicity (aFETP= 1.7 ×10−16) (Fig. 2E). In contrast, module
M9 of the HNSC network was enriched for dDEG-uDMCs with
poor prognosis (HR=1.4, P=0.02) and mainly associated with
the dilated cardiomyopathy pathway (aFETP=3.5 ×10−12).

Regulation of network modules by chromatin accessibility

Given that chromatin configuration is a critical regulator of gene
expression (Corces et al. 2018), our study investigated the regula-
tion of network modules by chromatin accessibility in cancers.
We examinedwhether networkmoduleswere enriched for specific
chromosome locations that are influenced by chromatin states.
The Giemsa banding technique stains euchromatic and hetero-
chromatic regions with different GC contents, which generates a
map of chromosome cytobands (Verma and Rees 1974). Thus,
we used chromosome cytobands as the windows for the enrich-
ment test. We found that 42% (11,568) of the network modules
were significantly enriched in at least one cytoband of human
chromosomes (gene overlaps > 3 and aFETP<0.05), with 66%
(568) of cytobands enriched in network modules of at least one
cancer type. The cytobands with frequent module enrichment
colocalized with open chromatin regions, as shown by the signifi-
cantly higher ATAC-seq signals observed inmodule-enriched cyto-
bands than inmodule-depleted cytobands (Wilcoxon test P<2.2 ×
10−16) (Fig. 3A,B). Using the Spearman’s correlation test, we found
that cytobands with a higher number of enrichedmodules tend to
house more genes (r = 0.84, P=9.8 ×10−150) (Supplemental Fig.
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S4), suggesting that coexpressed modules are inclined to reside
within gene-rich regions of cytobands.

We also explored the enrichment of prognostic modules for
chromosomal cytobands and found that 48% (414) of cytobands

contained at least one prognostic module (Supplemental Table
S5). Notably, 11 cytobands were enriched for prognostic modules
in at least half of all cancer types analyzed, including three cyto-
bands on Chromosome 19 (19p13.3, 19p13.11, and 19q13.43)
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Figure 2. Regulation of module gene expression by DNAmethylation. (A) Venn diagram showing the intersections between network modules enriched
with different DEG and DMC categories in 16 cancer types. (B) Heatmap showing the top KEGG annotations for network modules with different DEG-DMC
categories. The number on the heatmap corresponds to the frequency of module enrichment in each KEGG pathway. (C,D) Dot plots displaying the top 15
prognostic modules enriched for different DEG-DMC categories. The x-axis and y-axis indicate enrichment of DEGs and DMCs, respectively. (E) Two rep-
resentative prognostic modules of HNSC. The network plots illustrate the two prognostic modules, M9 and M755, which are enriched for different DEG-
DMC categories. In the network plot, the green, blue, and purple colors indicate DEGs, DMCs, and both DEG-DMCs, respectively. Node size is proportional
to the connectivity of the network.
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(Supplemental Fig. S4). The cytoband 19p13.3 was enriched for
prognostic modules in 17 cancers and contained half of the 60
genes in module M99 of adrenocortical carcinoma (ACC) (Fig.
3C–E). The ACC M99 eigengene was significantly associated
with poor survival outcomes (HR=2.7, P=0.02). Seven prognostic
genes of M99 were located on 19p13.3, including H3K79 methyl-
ation regulators DOT1L and KDM4B. The cytoband 16p13.3 was
also enriched for prognostic modules of 22 cancer types. It con-
tained 11 prognostic genes of M33 in cervical squamous cell carci-
noma (CESC), including the cell-cycle repressor E4F1 and the
cytosolic iron–sulfur protein assembly component CIAO3 (previ-
ously known as NARFL) (Fig. 3F–H). Both 19p13.3 and 16p13.3
were located in euchromatic regions with open chromatin status.

We used cell-type marker genes from the single-cell database
PanglaoDB to explorewhether cell-typemarker geneswere enriched
in specific cytobands. Among the 862 cytobands in the human ge-
nome, 20 (2%) cytobands were enriched for cell-type marker genes
(aFETP<0.05, gene overlaps>3). Similarly, among 11,568 network
modules enriched in cytobands, 1265 (10%)moduleswere enriched
for cell-type markers, suggesting that a small portion of cytobands/
modules displays cell-type-specific expressions.

To investigate whether cytobands were also enriched for copy
number variations, we analyzed the colocalization of module-
enriched cytobands and the hotspots of copy number variations
previously identified by the TCGA group using the GISTIC2.0
pipeline (Mermel et al. 2011). We found that seven of 11 cyto-
bands with the most frequent enrichment of prognostic modules
overlap with copy number variations in at least three cancer types
(Supplemental Table S6). Some cytobands affected by copy num-
ber variations have been reported with crucial functions in cancer
development. For example, 3p21.31 hosts a large number of tu-
mor-suppressor genes and is frequently deleted in seven different
cancer types (Jain et al. 2021). The chromosome region 1q21.3
has been reported with frequent amplifications, which can serve
as a trackable biomarker and actionable target for breast cancer re-
currence (Goh et al. 2017).

The preservation of coexpressed modules across 32 cancers

We investigated the preservation of network modules across 32
cancer types to reveal similarities in molecular regulatory mecha-
nisms of cancer transcriptomes. To assess module preservation,
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Figure 3. Regulation of networkmodules by chromatin accessibility. (A) Chromosomal cytobands with enriched networkmodules and open chromatins.
Karyotype representation distinguishes euchromatin and heterochromatin regions using alternating light and dark shades, based on Giemsa banding. Bar
plots in red and blue depict module-enriched regions and open chromatin regions, respectively. The y-axis represents the number of cancer types with the
module enrichment and open chromatins, ranging from a minimum of zero to a maximum of 30. (B) Boxplot showing the fold changes of ATAC-seq peak
signals in cytobands with enriched or depleted network modules compared with the genome background. (C) Prognostic module ACC_M99 enriched for
the cytoband 19p13.3. The bar plots above the karyotype show module enrichment (purple) and ATAC-seq fold change (orange), respectively. The heat-
map below the karyotype shows the enlarged cytoband region and the linear arrangement of module genes (red) in the cytoband. (D) Coexpression net-
works of ACC_M99. In the network plot, the red nodes indicate the genes in the 19p13.3 cytoband region. The names of prognostic genes are labeled by
different colors (purple indicates good outcome; blue, bad outcome). (E) Survival plot of prognostic module ACC_M99. The high and low cutoffs were
defined based on the median of gene expression across all tumor samples. (F–H) The cytoband enrichment (F), coexpression network (G), and survival
plot (H) of prognostic module CESC_M33.
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we calculated the FET statistics and the Jaccard index of module
similarity for pairwise module comparisons of all cancer types
(Fig. 4A).We identified 829,167module pairs with significantmu-
tual similarity (aFETP<0.05), of which 8020module pairs (top 1%)
were highly conserved with a Jaccard index> 0.4. These conserved
module pairs came from 1941 modules (7% of total network mod-
ules) of 32 cancer types (Supplemental Table S7). In addition, we
identified 1063 cancer-type-specific modules (4% of total network
modules) that had little overlap with other cancer types (Jaccard
index<0.05 or aFETP>0.05) (Supplemental Table S8). We selected
these 1941 conserved modules and 1063 specific modules for de-
tailed downstream analyses.

Each cancer contained a different number of conserved (six to
188) and specific (two to 120) modules. The ratio between the
number of conserved and specific modules decreased from the
highest in lung squamous cell carcinoma (LUSC) to the lowest in
thymoma (THYM), which reflected the trend of shared transcrip-
tomic signatures across all cancer types (Fig. 4B). We performed
clustering analysis of 32 cancer types based on the Jaccard index
of conserved modules, and classified the cancer types into four
groups with different degrees of module similarity. The groups
G1 and G2 consisted of 13 cancers with high similarity of con-
served modules, whereas the groups G3 and G4 included 19 can-
cers with low module similarity (Fig. 4C). The ANOVA test

revealed that the sample size was not significantly different in
each cancer group (P>0.1), suggesting sample size did not affect
the module similarity during clustering analysis. Most cancers
from G1 and G2 are from endoderm tissues and gynecologic tis-
sues, consistent with previous observation that cancer types
from anatomy-related tissues share high-molecular similarities
(Hoadley et al. 2018).

The prognostic features of conserved module clusters

We classified the 1941 conserved modules into 330 module clus-
ters based on module similarities by a greedy algorithm
(Supplemental Table S9). Each cluster corresponds to a set of con-
servedmodules in multiple cancers, and 107 clusters contained re-
ciprocal conserved modules in more than three cancer types (Fig.
4D). Gene Ontology (GO) annotation revealed that the conserved
module clusters were related to functions such as chromatin as-
sembly, homophilic cell adhesion, defense response to virus, and
T and B cell activation pathways.

Out of the 330 clusters, 97 (29%)were associated with patient
survival in at least one cancer type, with 14 module clusters being
associated with patient survival in at least three cancers. Notably,
the cluster c1 eigengenes were associated with patient survival in
13 different cancer types, including 10 cancers with a high hazard
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Figure 4. Preservation of pan-cancer network modules. (A) Schematic plot illustrating the module preservation analysis pipeline. (B) The number of con-
served and cancer-specific modules identified in each cancer type. (C ) Cancer-type clustering based on the similarity of conserved modules. The heatmap
displays the conserved modules (n = 1941) as rows and the cancer types as columns. A hierarchical clustering algorithm was used to classify cancer types
based on the Jaccard index of their conserved modules. (D) The module clusters formed by conserved modules. Each cluster represents a set of reciprocal
conservedmodules across different cancer types. The nodes represent conserved modules, and the colors indicate cancer types. The linked nodes indicate
module clusters formed by conserved modules in different cancer types.
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ratio, indicating poor outcomes (Fig. 5A). The c1 module
contained histone 1 family genes, which play essential roles in
compacting chromatin and stabilizing high-order chromatin
structures (Fig. 5B). The c2, c30, and c26 module clusters were pri-
marily formed by closely related members of gene families such as
PCDHs and HOX genes and were associated with a high hazard ra-
tio in most cancer types. In contrast, module clusters c20 and c9,
consisting mainly of immune genes, were associated with good
outcomes. The modules in c20 regulated B cell development and
function, whereas the c9 cluster contained HLA genes for antigen
processing and presentation.

We observed that conserved module clusters had a tendency
to localize in specific chromosomal regions. For instance, cluster c1
showed enrichment in 6p22.1 in 31 cancer types, whereas c2 was
enriched in 5q31.3 in 26 cancer types (Fig. 5C). Among the 330
module clusters, 84 clusters were enriched for the same cytoband

in more than three cancers. Furthermore, we found that the chro-
mosome cytobands colocalizing with module clusters c1, c2, and
c30, such as 6p22.1, 5q31.3, and 12q13.13, were also enriched
for DEGs between tumor and normal samples (Supplemental Fig.
S5). These findings suggest that conserved module clusters tend
to be located in chromosomal hotspots that are frequently dysre-
gulated in tumors.

The prognostic modules unique to each cancer type

To further investigate the potential cancer-specific activities of net-
work modules, we analyzed the cancer-type-specific modules
across different cancer types (Fig. 6A). Among the 1063 cancer-
type-specific modules identified, 252 (24%) were significantly
associatedwith patient survival. Furthermore, 63 of these prognostic
modules were significantly enriched for MSigDB hallmark pathways

A
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Figure 5. Characterization of conserved module clusters. (A) Prognostic significance and biological functions of pan-cancer conserved module clusters.
The heatmap shows the hazard ratios of module clusters in at least three cancer types. Themodule clusters were annotated based on themost frequent GO
process. (B) Aggregated networks of the top eight module clusters with the highest prognostic frequency in multiple cancers. The top 20 nodes with the
highest connectivity are labeled. (C) Enrichment of module clusters in chromosomal cytobands. The heatmap illustrates the number of cancer types in
which the module clusters show enrichment in the cytobands. The top 10 module clusters with the highest frequency of enrichments are shown.
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(Fig. 6B), indicating that these modules may play important roles
in specific biological processes across different cancer types.

We observed that cancer-type-specific prognostic modules
couldhave distinct functions in cancer development and signaling
(Fig. 6C–E). For instance, breast cancer (BRCA) was associated with
a module involved in estrogen response, consistent with the
known role of estrogen in breast cancer development. Pancreatic
adenocarcinoma (PAAD) was associated with a module related to
the TP53 pathway, a key tumor-suppressor pathway that is fre-
quently mutated in cancers. In liver cancer (LIHC), a unique mod-
ule, M194, was related to xenobiotic metabolism, which is critical
for detoxification of foreign substances and may contribute to the

pathogenesis of liver cancer. Notably, among fourmodules unique
to liver cancer, all of these cancer-specific modules were conserved
in an independent non-TCGA cohort (Long et al. 2022). These re-
sults suggest that cancer-type-specific modules may have unique
functions in cancer development and progression, highlighting
their potential as cancer-type-specific regulatory mechanisms
and therapeutic targets.

Discussion

In this study, we performed a systematic investigation of coexpres-
sion networks across 32 cancer types. Compared with previous
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Figure 6. Cancer-type-specific prognostic modules. (A) Heatmap showing cancer-type-specific modules. Rows represent specific modules, and columns
represent cancer types. Color intensity indicates the Jaccard index of themost similarmodule in each cancer type. (B) Heatmap showing the top 30modules
with significant enrichment for hallmark pathways. Color intensity in the heatmap is proportional to pathway enrichment. Asterisks highlight candidate
cancer-specific modules for survival plots and unique biological functions. (C–E) Coexpression networks and survival plots of cancer-type-specific prognos-
tic modules. In the network plots, the pink and light blue colors indicate genes associated with better and worse survivals, respectively. The names of hub
genes in the network modules are labeled.
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sporadic reports of cancer networks, our pan-cancer work repre-
sents a comprehensive analysis of all the major cancer types in
the TCGA cohort using a uniform and well-established pipeline.
We identified 4749 prognostic modules that play essential roles
in cancer regulatory pathways, including cancer cell division, me-
tastasis, and immune microenvironment processes. The network
modules are regulated bymultiscalemechanisms involving the in-
terplay of gene expression,methylation, and chromatin accessibil-
ity. The network modules form preserved module clusters that
preferentially reside in chromosomal hotspots. There are also can-
cer-type-specific prognostic modules that participate in cancer-
specific biological processes. Together, our pan-cancer analysis
provides a holistic view of the tumorigenesis of prognostic mod-
ules and revealed potential biomarkers for cancer development
and progression.

It should be noted that TCGA transcriptomes were sequenced
from bulk RNA-seq samples, and there were variations in the pro-
portions of cell types in the sequenced samples thatmay confound
individual gene or pathway analyses. However, the coexpression
network approach is effective to partition genes from different
cell types into distinct network modules, thereby capturing cell-
type-specific modules that influence cancer prognosis. In a recent
study of primary melanoma, we showed that the MEGENA coex-
pression network is an efficient tool for identifyingmodules of dif-
ferent cell types within the tumor microenvironment (Song et al.
2021). We have also shown the applicability of our network ap-
proach in identifying modules responsible for different cell types
in bulk RNA-seq data sets from complex human diseases (Wang
et al. 2019, 2021; Xu et al. 2022, 2023). Therefore, the network ap-
proach is able to unravel global connections of genes with related
functions, minimize bias signals of survival prediction, and eluci-
date molecular regulations of cancer development.

Our analysis also revealedmultiscale epigenetic regulations of
network modules in different cancers. We observed that 42% of
network modules were enriched for chromosome cytobands,
which can be explained by epigenetic mechanisms for long-range
regulations, such as chromatin accessibility andDNAmethylation.
Consistently, the module-enriched cytobands had higher ATAC-
seq peak signals compared with the module-depleted cytobands,
suggesting open chromatin regions may facilitate gene co-
expression within the cytobands. DNA methylation is another
important mechanism for long-range regulation. For example,
the PCDH family genes from module cluster c2 have frequent
methylation alterations in the multigene clusters of chromosome
region 5q31 (Vega-Benedetti et al. 2019). Such methylation alter-
ations reversely correlate with gene expressions in different can-
cers. We also observed that cytobands with prognostic module
enrichment overlapped with copy number variations in multiple
cancer types. In breast cancer, coexpressed genes tend to be con-
nected at cytoband regions and coincide with known copy num-
ber altered regions (García-Cortés et al. 2020). These observations
suggest copy number variation is an important player in regulating
coexpression of network modules.

Finally, our results revealed the landscape of conserved and
specific modules in different cancers. We found that the preserved
signatures of network modules reflected the transcriptomic simi-
larity of cancer types. Based on the similarity of conserved mod-
ules, cancers originating from anatomy-related tissues tended to
cluster together. Consistently, a previous study reported similar
patterns of cancer-type classification using multiomic integrative
clustering from aneuploidy, CpG hypermethylation, mRNA,
miRNA, and protein data sets (Hoadley et al. 2018). For example,

the G1 and G2 groups with highly conserved network modules
were primarily associated with gastrointestinal tumors (ESCA,
READ, STAD), squamous histology cancers (LUSC, HNSC, CESC,
ESCA, BLCA), and pangyn cancers (BRCA, OV, CESC, UCS). This
suggests that cancer-type clustering is primarily organized by his-
tology and tissue type, and module-based analysis can be poten-
tially served as an approach for cancer-type classification.

In summary, our study provides a comprehensive under-
standing of the pan-cancer coexpression landscape and identifies
prognostic modules that play crucial roles in cancer regulatory
pathways. The multiscale regulations of prognostic modules, in-
cluding their coregulation at the chromosome level and their asso-
ciations with DNA methylation, offer new insights into the
underlying mechanisms of cancer development and progression.
We also shared the networks, modules, prognostic features, and
their functional annotations on open-sourcewebsites, allowing fu-
ture work to use, evaluate, and explore a wide range of cancer biol-
ogy questions. Our comprehensive pan-cancer results offer a
unique opportunity for comparative network analysis in this field.

Methods

Clinical and molecular data sets

We obtained standardized, normalized, and batch-corrected data
matrices from the Pan-Cancer Atlas of TCGA. Clinical matrices of
patients and samples, normalized RNA-seqdata sets, andprocessed
DNAmethylationvalues fromIllumina450KBeadChiparrayswere
downloaded from the publication page (https://gdc.cancer.gov/
about-data/publications/pancanatlas). Gene expression data sets
were generated using the Firehose pipeline with MapSplice and
RSEM (Wang et al. 2010; Li andDewey 2011), andwere normalized
by setting the upper-quartile to 1000. It also corrected for batch ef-
fects, such as platform variations of HiSeq and GA, as well as batch
IDs in certain cancer types, based on RNASeqV2 mRNA data (Syn-
apse syn4976363). Normalized ATAC-seq peak calls were down-
loaded from the website (Corces et al. 2018; https://gdc.cancer
.gov/about-data/publications/ATACseq-AWG). We used overall
survival and progression-free intervals from the curated clinical
data resource (Liu et al. 2018), as recommended by the Pan-Cancer
Atlas, as clinical endpoints for survival outcome analysis. We dis-
tinguished tumor and normal samples by the sample type code
“01A” (primary solid tumor) and “11A” (solid tissue normal), re-
spectively. We only used solid tumors with more than 50 samples
for network analyses.

Coexpression network construction

The normalized, batch-corrected, and platform-corrected RNA-seq
data sets were divided into 32 matrices based on cancer types. We
filtered out lowly expressed genes that containedNAvalues or zero
values in >75% of samples for each cancer and log2-transformed
gene expressions. As confounding factors like batches, gender,
and age can systematically influence gene expression levels and
correlations during coexpression network analysis, we adjusted
for confounding factors such as race, age, and gender using a linear
model (Song et al. 2021; Xu et al. 2023). In this model, we fitted
these confounding factors and captured the residuals using the
lm() function from the R software (v3.6) (R Core Team 2018).

Coexpression networks were built by MEGENA for each can-
cer type, following our previous pipelines (Song and Zhang 2015;
Wang et al. 2019, 2021; Song et al. 2021). We permuted (n=10)
the gene expression matrix across the samples to calculate the
false-positive rate (FPR) and the corresponding false-discovery
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rate (FDR) for each correlation coefficient cutoff. Then an FDR
threshold of 0.05 was applied to determine the correlation coeffi-
cient cutoff that effectively filtered out nonsignificant correla-
tions. The gene pairs of significance were initially sorted by
absolute Pearson correlation coefficients. Sequentially, the sorted
gene pairs were examined if each pair can be placed on the
three-dimensional topological sphere without intersecting with
other edges, a process referred to as the planarity test. The resulting
coexpressionnetwork formedpart of a category of geometrical net-
works known as planar filtered networks (PFNs), which can be de-
picted on a sphere’s surface without any link intersections
(Tumminello et al. 2005). Subsequently, the PFN underwent an
unsupervised clustering process to identify network clusters (e.g.,
gene modules) at various compactness resolutions through multi-
scale clustering analysis (MCA). MCA divided the parent module
into child modules by searching for an optimal partition for
Newman’s modularity (Q) (Newman 2006). Consequently, the re-
sulting genemoduleswere structured in ahierarchy that represents
a multiscale organization of gene modules with varying compact-
ness degrees. We executed multiscale hub analysis by pinpointing
nodes with significantly (P<0.05) higher network connectivity
than the randomly permuted planar networks.

Module enrichment and prognosis analysis

We used ClusterProfiler for enrichment testing of coexpressed
modules (Yu et al. 2012). To annotate the pathway functions of
network modules, we performed FET to determine whether the
module genes were enriched for GO processes, KEGG, REAC-
TOME, and hallmark pathways from MSigDB. We adjusted the
multitesting P-values using the Benjamini–Hochberg (BH) meth-
od. To test the cytoband enrichment, we downloaded gene sym-
bols and cytoband locations of the GRCh38/hg38 reference from
the HGNC database. We applied FET from ClusterProfiler to test
whether genes from each cytoband were enriched for a network
module.We adjusted themultitesting P-values using the BHmeth-
od. We defined the significant cytoband enrichment with a cutoff
of overlapping size greater than three and aFETP<0.05.

We obtained the clinical endpoints from the curated clinical
data resource for module prognosis analysis (Liu et al. 2018). In ac-
cordance with a previous study, overall survival was used as an
endpoint in 24 cancer types, whereas progression-free intervals
were used in nine cancer types with few deaths, including BRCA,
DLBC, LGG, PCPG, PRAD, READ, TGCT, THCA, and THYM
(Smith and Sheltzer 2022). Next, we used PCA to calculate the
module eigengenes, which represent the first PC of gene expres-
sions. We stratified module eigengenes into high- and low-expres-
sion groups based on their relative expressions compared with the
median level. To test whether expressions of module eigengenes
significantly affect survival time (P<0.05), we built a Cox propor-
tional-hazard model using the R function “coxph.” The hazard ra-
tio reflects how the expression levels influence the rate of patient
survival, in which an increase in the death hazard results in a
decrease in the length of survival. Similarly, we identified prognos-
tic genes in each cancer by fitting their covariate-adjusted expres-
sions to the Cox proportional-hazard model.

DEG and DMC analysis

We performed DEG analysis by comparing normalized gene ex-
pressions between tumor and normal tissues in 17 cancer types.
We performed differential expression analysis using the moderat-
ed t-test implemented in the limma package (Ritchie et al. 2015).
Patient age, gender, and race were treated as covariates in the de-

signmatrix. We filtered significant DEGs with a fold change great-
er than two and adjusted P-value<0.05.

For DMC analysis, we identified gene promoters within 2 kb
upstream of and 200 bp downstream from the transcription start
sites using the R function “promoters” from the “ensembldb”
package. We converted the CpG locations of Illumina 450 K Bead-
Chip Arrays to hg38 coordinates using the R function “liftOver”
and compared them with the promoter regions using the “findO-
verlaps” function from the “GenomicRanges” package. We used
resulting promoter-located CpG probes to identify DMCs between
tumor andnormal samples in 16 cancer types. Similar toDEGanal-
ysis, we analyzed the beta values of CpG probes by the moderated
t-test implemented in the limma package, with the adjustment of
age, gender, and race as covariates (Ritchie et al. 2015). We further
filtered significant DMCs by a beta value change>0.2 and adjusted
P-value<0.05.We filtered out CpGprobes that were potentially af-
fected by SNPs if the containing SNPs had aminor allele frequency
higher than 0.05.

ATAC-seq peak signal analysis

We confined our analysis to tumor samples from the ATAC-seq
data sets in each cancer type. We used the normalized and log2-
transformed pan-cancer peak set counts from the Pan-Cancer
Atlas for ATAC-seq analysis (Corces et al. 2018). For each fixed-
width genome region, we used “fixed-width peaks” and normal-
ized the peak values across all samples within each cancer type.
These “fixed-width peaks” facilitate direct comparisons of ATAC
peak values among different samples.We determined the peak val-
ue of each cytoband by taking the average of the peak counts of the
fixed-width regions within that cytoband. The R function
“subsetByOverlaps” was used to compare the chromosomal coor-
dinates between the cytoband and ATAC-seq peak sets. We calcu-
lated the genome background signals by averaging all peak set
values from all the samples. The fold change of the cytobands
was calculated by dividing the mean count values of the peak
sets by that of the genome background. The Wilcoxon rank test
was applied to test the significance of the fold change.

Module preservation analysis

We performed module preservation analysis by calculating mod-
ule similarities in all cancer types.We compared themodule genes
of a cancer type with the network modules in other cancer types
and calculated pairwise module similarity using the Jaccard index,
where A and B indicate the genes from each module:

J(A, B) = |A > B|
|A < B| .

We then applied the FET of ClusterProfiler to calculate the sig-
nificance ofmodule similarity in each cancer type and used the BH
method to adjust themultitesting P-values (Yu et al. 2012). We de-
fined conserved modules as those with a Jaccard index>0.4 and
aFETP<0.05 and defined specific modules as those with a
Jaccard index <0.05 or aFETP>0.05. We used module sizes with
10 to 500 genes for the enrichment test of the preservation analy-
sis, as suggested by ClusterProfiler.

As conserved modules have their counterparts in different
cancer types, we grouped them into module clusters using the
greedy algorithm. The algorithm implemented a loop to iteratively
search module clusters, which included three steps: (1) starting
from a random module, the algorithm identified the conserved
counterparts of the target module; (2) the identified modules
were pooled together to search for more counterparts until all
the conserved modules were identified; and (3) the identified
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conserved modules were grouped into one module cluster and ex-
cluded from the search list. We repeated the steps until all con-
served modules were assigned to module clusters.

Aggregation of network modules

We performed network aggregation in the pan-cancer study to il-
lustrate the consensus prognostic modules or conserved modules.
First, we extracted the genes of the target modules to obtain the
nodes of aggregated networks for one cancer type. Next, we used
the resulting nodes to search theMEGENAnetwork to obtain their
coexpression relationships and generate the network edges. We
merged the network nodes and edges from different cancer types
to construct the aggregated network (Xu et al. 2022).We calculated
the conservation weights of network nodes based on the total fre-
quency of the node genes present in different cancer types.
Similarly, we calculated the conservationweights of network edges
based on the total frequency of the gene–gene coexpression links
in different cancer types. To obtain a global coexpression network
conserved inmore than three cancer types, we filtered the less con-
served nodes with weights less than four and generated the final
aggregated network bymerging the edges from the remaining con-
served nodes.

Data access

The summarized files of MEGENA coexpression networks and
prognosticmodules in 32 cancer types canbe found in Supplemen-
tal Tables S1 and S2, respectively. The code for network analysis is
available in the Supplemental Code. The comprehensive results
of networks and modules in each cancer type, along with coding
scripts, are available at GitHub (https://github.com/penguab/
Pancancer_Networks), Zenodo (https://doi.org/10.5281/zenodo
.8271601), and as Supplemental File S1.
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