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Abstract

Schooling fish heavily rely on visual cues to interact with neighbors and avoid obstacles.

The availability of sensory information is influenced by environmental conditions and

changes in the physical environment that can alter the sensory environment of the fish,

which in turn affects individual and group movements. In this study, we combine experi-

ments and data-driven modeling to investigate the impact of varying levels of light intensity

on social interactions and collective behavior in rummy-nose tetra fish. The trajectories of

single fish and groups of fish swimming in a tank under different lighting conditions were

analyzed to quantify their movements and spatial distribution. Interaction functions between

two individuals and the fish interaction with the tank wall were reconstructed and modeled

for each light condition. Our results demonstrate that light intensity strongly modulates social

interactions between fish and their reactions to obstacles, which then impact collective

motion patterns that emerge at the group level.

Author summary

Schooling fish rely extensively on visual cues to interact with their peers and navigate

obstacles. Environmental conditions can modify the sensory landscape experienced by

fish, and in turn impact both individual and collective movements. Here, we combine

experiments and data-driven modeling to explore the influence of different levels of light

intensity on social interactions and collective behavior in rummy-nose tetra. By recon-

structing and modeling the interactions between pairs of fish and between fish and the

tank boundary, we show that light intensity modulates social interactions and influences

how fish swim and respond to obstacles. Our model explains how the modulation of these

interactions at the individual level leads to changes in collective movements observed at

the group level.
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Introduction

Collective behaviors are observed across multiple spatial scales in nature, as seen in bacteria

colonies, insects, bird flocks, or fish shoals [1–3]. By enabling individuals to coordinate their

actions, these phenomena bear significant functional consequences for group members,

including improved safety [4–7], increased foraging [4, 5, 8], and enhanced reproductive suc-

cess [3, 9]. It is widely accepted that collective behaviors emerge from the interactions between

individuals within a group [1, 2, 7, 10–12]. These social interactions have fundamental effects

on the phenotypes and fitness of individuals, as well as the collective behavior of groups [13–

15]. They can even change the activity patterns of individuals to influence the fitness of others

[16]. Analyzing social interactions among individuals is thus a key factor in understanding

and controlling the mechanisms of collective animal behavior [1–3, 17–20].

In recent decades, the analysis of collective behavior has progressed in terms of under-

standing individual interactions [1, 3, 21, 22]. Advances in computerized methods based on

learning algorithms have overcome the difficulty of automatically tracking groups of ani-

mals, enabling the quantitative study of the effects of social interactions on individual behav-

iors [23–26]. These methods have been applied to various biological systems, from schools

of fish [27–29] and flocks of birds [30–32], to groups of primates [33, 34] and human crowds

[35, 36], providing new directions for quantifying collective motion. Animal experiments

have successfully linked group-level functional properties to behavioral mechanisms at the

individual scale, while also accurately obtaining large amounts of data about individuals in a

group [37–39]. Using these tracking data, one can now reconstruct and model the social

interactions between individuals, as well as their interactions with obstacles present in the

environment, to predict the properties of the collective motion [39–42]. Our computational

model allows to test, quantify, and interpret the impact of visual cues on individual and col-

lective motion.

In fish schools, social interactions rely on the integration of multiple sensory stimuli [43,

44] including vision [45] and lateral line [46, 47], which are used to detect movements of

neighbors and vibrations of the surrounding water. Generally, the availability of sensory

information is modulated by environmental conditions, and changes in the physical envi-

ronment can alter the sensory environment of animals, which in turn affects individual and

group movements. Previous studies have shown how various environmental factors, includ-

ing turbidity, oxygen levels, and light levels, affect the collective behavior of fish [48–51]. For

instance, turbid water scatters and reduces the amount of light, which can even cause

changes in the spectrum, resulting in fish having less access to public information and

opportunities for social learning about food locations under turbid conditions [52, 53].

Interestingly, in order to counteract this limitation of a decrease in information exchange in

highly turbid water, juvenile cod (Gadus morhua) keep their foraging rates constant by

increasing their activity levels [54]. Hypoxia can affect the school structure and dynamics of

the fish, as well as cause an increase in school volume and eventually lead to the school

breaking down [55]. In many species, the diurnal dynamics of illumination is responsible

for the school disintegration and the loss of schooling observed at night [56]. Artificial light

at night can also affect the activity patterns of individuals, dramatically changing the nature

of their motion [57]. The study of individual behavior and social interactions under these

different environmental factors is an important step to understand the adaptive capabilities

and the ecological success of a species.

Here, we used a combination of experiments with faithful data-based modeling to inves-

tigate the impact of varying levels of light intensity on social interactions and the resulting

collective behavior in rummy-nose tetra fish (Hemigrammus rhodostomus). The Rummy-
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nose tetra is a species that has a strong tendency to school, with an intermittent swimming

mode characterized by alternating bursts and coasting phases. This swimming mode allows

us to analyze individual trajectories as a series of discrete behavioral decisions in time and

space [39].

Previous studies have already investigated the role of lighting on the dynamics of collec-

tive swimming in rummy-nose tetra [43, 58]. However, they did not analyze in this context

the behavioral mechanisms and social interactions at play at the individual scale in small

and large groups. Our experimental and simulation results indicate that the level of illumi-

nation does not modify the general form of social interactions between fish and their inter-

action with the tank wall, but only modulates the intensity and range of these interactions.

Ultimately, our computational approach makes it possible to establish a direct causal link

between (1) the modulation of these interactions by light intensity at the individual scale

and (2) the specific collective motion patterns that emerge at the collective level in groups of

different sizes.

Results

The “burst-and-coast” swimming mode of H. rhodostomus consists of the successive alterna-

tion of sudden accelerations and quasi-passive deceleration periods during which the fish

glides along a near straight line. Each acceleration-deceleration sequence is called a “kick”.

Changes of direction in fish motion take place at the onset of a kick, during the acceleration

phase (see S1 Fig).

Effect of light intensity on individual swimming behavior

Light intensity deeply affects fish behavior and its burst-and-coast swimming (Fig 1A, 1B, and

S1 Video). We find that the average kick duration hτi and the average kick length hli increase

with light intensity, with hτi = 0.31 ± 0.01 s at 0.5 lx vs hτi = 0.51 ± 0.02 s at 50 lx, and hli =

31 ± 2 mm at 0.5 lx vs hli = 62 ± 4 mm at 50 lx (Fig 2A, 2B, 2D, 2E, and S9 Table). However,

the average peak speed v0 does not significantly vary with light intensity (Fig 2C and 2F). We

have performed a Wilcoxon rank-sum test for τ, l, v0 (see S9 Table; similar tests are presented

in S10–S12 Tables, for groups of N = 2, 5, 25 fish), which provides a statistical justification of

our claim that τ and l are consistently increasing with the light intensity before saturating for

5–50 lx, whereas v0 does not exhibit any systematic trend.

During the gliding phase, fish swims in a straight line with an exponentially decaying speed.

We find that the speed decays the fastest when light intensity is the lowest (0.5 lx) with a corre-

sponding decay rate τ0 = 0.34 s (S2(A) Fig). In addition, we find that, when the fish is far from

the wall (rw > 60 mm, a distance for which the influence of the wall becomes negligible), the

probability density function (PDF) of the spontaneous heading fluctuations δϕR is Gaussian

(S3 Fig).

Effect of light intensity on the interaction of fish with the wall

Due to symmetry constraints in a circular tank, the interaction between a fish and the wall can

only depend on its distance to the wall rw and its relative angle with the wall θw (Fig 1C). Fig

3A shows the experimental PDF of rw for different light intensities, illustrating that the higher

the light intensity, the closer the fish is to the wall: hrwi = 33 ± 3 mm at 0.5 lx vs hrwi = 20 ± 2

mm at 50 lx. Fig 3B shows the PDF of θw, centered near but below 90˚, indicating that the fish

generally stays almost parallel to the wall while frequently swimming towards it.
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Modeling and measurement of fish interaction with the wall in different

light conditions

To measure experimentally the interactions between a fish and the wall, we use the procedure

introduced by Calovi et al. [39]. The result of this procedure is presented as a scatter plot in Fig

4A and 4B along with the simple functional forms fw(rw) and Ow(θw) used to fit these data (Eqs

(9) and (10) in Material and methods). We find that the shape of the repulsive form is the

same for all light intensities (Fig 4). Fig 5A shows that the intensity of the spontaneous heading

fluctuation δϕR increases with light intensity until reaching a plateau around 5 lx, where δϕR�

0.35. Moreover, both the effective strength γw and range lw of the interaction with the wall

increase with light intensity (Fig 5B and 5C), while the angular dependence of the interaction

remains almost unchanged (Figs 4B and S4). For high light intensity, there are significant devi-

ations between the fits of fw(rw) and Ow(θw) and the actual data points, which indirectly con-

firms that individual movement patterns are indeed different under varying light intensities.

Fish prefer to stay closer to the walls and to move in directions parallel to the wall under high

light intensity (see Fig 3). This leads to a concentration of the data distribution, with relatively

few data points available when fish are far from the wall and non-parallel to the wall.

Fig 1. Collective motion in groups of fish under different light conditions. a,b Trajectories of 5 fish swimming in a tank during the

experiments at low light intensity (0.5 lx) and high light intensity (50 lx), respectively. The trajectories show the successive positions of

individuals over the past 1 s. c State variables of the fish with respect to the tank, position angle θ and fish heading angle ϕ, and with respect to the

wall, distance rw and relative orientation θw. d,e Numerical simulations of the model for N = 5 in low light and high light conditions respectively.

f State variables of a focal fish (red) with respect to a neighbor (blue): distance between them d, viewing angle ψ, and relative orientation Δϕ.

https://doi.org/10.1371/journal.pcbi.1011636.g001
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Consequently, the reconstruction of the interaction with the wall is reasonably precise in the

regions of rw and θw associated to a high probability, but exhibits large fluctuations for rw > 80

mm or θw far enough from ±90˚.

Altogether, these results show that the repulsion exerted by the wall on fish increases with

light intensity. This is a direct consequence of the modulation of the visual perception of fish

by the level of illumination (see also S5 Fig).

We then implement the interaction of the fish with the wall in the burst-and-coast model

(see Material and methods section). In Fig 3, and for the 5 light intensities considered, we com-

pare the distribution of the distance to the wall rw and the relative angle of the fish with the

wall θw, as obtained experimentally and in extensive numerical simulations of the model, find-

ing an overall satisfactory agreement. The numerical values of the parameters used in the

model are listed in S5 Table. On a more qualitative note, the simulations of the model repro-

duce fairly well the behavior and motion of a real fish under the different light conditions (Fig

1D, 1E, and S5 Video).

Effect of light intensity on social interactions between two fish

When fish swim in pairs, both the average kick length and kick duration increase with light

intensity: hli = 23 ± 2 mm at 0.5 lx vs hli = 50 ± 4 mm at 50 lx, and hτi = 0.31 ± 0.01 s at 0.5 lx

vs hτi = 0.62 ± 0.02 s at 50 lx (Figs 6 and S6 and S10 Tables and S2 Video). Fig 7A and 7B

shows the PDF of the distance to the wall of both fish when we distinguish them by their

Fig 2. Effects of light intensity on the burst-and-coast swimming of a single fish. a Probability density function (PDF) of the duration between two

consecutive kicks τ, b PDF of the distance traveled by a fish between two kicks l, c PDF of the maximum speed when the fish performs a kick v0, at

different light intensities: 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). d Average duration between two consecutive kicks hτi, e average distance

traveled by a fish between two kicks hli, and f average speed when the fish performs a kick hv0i, as functions of light intensity. Solid circles are the

average values on all experiments; error bars represent the standard error. Red dashed lines show the trend of the average value with the light intensity.

https://doi.org/10.1371/journal.pcbi.1011636.g002
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instantaneous relative position as follows: the geometrical leader is defined as the fish with the

largest viewing angle of the other fish |ψ|, that is, the fish which needs to turn the most to

directly face the other fish, the other fish being therefore the geometrical follower (Fig 1F)

[39]. We find that the geometrical leader is closer to the wall than the follower, as already

noted in [39], but both fish are further away from the wall than an isolated fish, although this

second effect is less pronounced at the maximum illumination (hrleaderw i ¼ 63� 1 mm and

hrfollowerw i ¼ 70� 1 mm at 0.5 lx vs hrleaderw i ¼ 41� 1 mm and hrfollowerw i ¼ 53� 1 mm at 50 lx).

In fact, the follower fish is taking a shortcut through the circular tank to catch up with the

leader, resulting in the follower swimming farther away from the wall of the tank, and also

slightly attracting the leader away from the wall. Fig 7C and 7F shows the PDF of the relative

Fig 3. Effects of light intensity on the spatial distribution and motion of a fish swimming alone. a,b Probability density functions (PDF) of the

distance to the wall rw and the relative angle of the fish with the wall θw, respectively, measured in the experiments for the 5 light intensities: 0.5, 1, 1.5, 5,

and 50 lx (solid lines, from dark to light blue). c,d PDFs of rw and θw, respectively, in the numerical simulations of the model and for each light

condition (dashed lines).

https://doi.org/10.1371/journal.pcbi.1011636.g003
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wall angle θw of the geometrical leader and follower respectively, which are also wider than for

a single fish. Fig 7I shows that the distance d between the two fish decreases when light inten-

sity increases, suggesting that attraction between fish increases with light intensity (see next

section): hdi = 76 ± 9 mm at 0.5 lx vs hdi = 67 ± 7 mm at 50 lx. Moreover, the PDF of the view-

ing angle ψ (see Fig 1F) of the leader and follower show a marginal variation with light (Fig 7J

and 7K), except at the highest illumination where the leader appears to swim more in front of

the follower, which is consistent with the fact that both fish swim closer to the wall at this

Fig 4. Effects of light intensity on the fish interactions with the tank wall. Function of repulsion fw(rw)Ow(θw) as extracted from the experiments by

means of the reconstruction procedure, for different light intensities: 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). a Intensity fw(rw) of the

interaction as a function of the fish distance to the wall rw. For the 5 considered light intensities, the PDF of rw (see Fig 3) has only a small residual

weight of 8.1%, 4.2%, 3.6%, 1.8%, 1.3% for rw > 80 mm, respectively, which explains the large fluctuations of fw(rw) observed for rw > 80 mm. b

Intensity Ow(θw) of the interaction as a function of the relative orientation of the fish to the wall θw. Color dots correspond to the discrete values

resulting from the reconstruction procedure, extracted from the experimental data. Blue solid lines correspond to the analytical approximation of the

discrete functions for the corresponding light condition. The orange line corresponds to the analytical approximation of a single discrete function

combining all light conditions: Ow(θw) = 1.9612 sin(θw)[1 + 0.8 cos(2θw)].

https://doi.org/10.1371/journal.pcbi.1011636.g004

Fig 5. Effects of light intensity on the parameters of the fish interactions with the tank wall. a Spontaneous heading fluctuations of a fish, γR, as a

function of light intensity when the fish is far from the tank wall (rw > 60 mm). b Intensity of the wall repulsion, γw, as a function of light intensity. c

Range of the the wall repulsion, lw, as a function of light intensity. Red dashed lines show the trend of the average value with light intensity.

https://doi.org/10.1371/journal.pcbi.1011636.g005
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maximum illumination. Finally, The PDF of their relative orientation Δϕ (Fig 7L) is essentially

not affected by the light intensity.

Modeling and measurement of social interactions between fish in different

light conditions

As shown in Calovi et al. [39], social interactions between fish in H. rhodostomus combine

attraction and alignment. We assume that both the attraction and alignment interactions FAtt

and FAli can be decomposed into the decoupled product of three functions, each one depend-

ing on one of the three variables that determine the relative states of the two fish, namely, the

distance between fish d, their relative orientation Δϕ, and the viewing angle ψ with which the

focal fish perceives its neighbor (Fig 1F). We extract the analytical expressions reproducing the

main features of the attraction and alignment interactions from the experimental data by

means of the reconstruction procedure developed in [39]. The dots on Fig 8 show the results

of the extraction of the interaction functions from experimental data, and the solid lines are

the simple functional forms used to fit these data (see Eqs (14)–(19) in Section Computational

model). Figs 8A, 8D and 9 show that the strength and the range of both attraction and align-

ment increase with light intensity. S7 and S8 Figs show these functions in more detail. Alto-

gether, these results suggest that visual information is a key factor in the ability of fish to

coordinate their collective swimming, in line with previous works [59]. As the perception of

the position of its neighbor by a fish becomes more precise, the intensity of social interactions

Fig 6. Effects of light intensity on the burst-and-coast swimming of pairs of fish. a Probability density function (PDF) of the duration between two

consecutive kicks τ, b PDF of the distance traveled by a fish between two kicks l, c PDF of the maximum speed when the fish performs a kick v0, at

different light intensities: 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). d Average duration between two consecutive kicks hτi, e average distance

traveled by a fish between two kicks hli, and f average speed when the fish performs a kick hv0i, as functions of light intensity. Solid circles are the

average values on all experiments; error bars represent the standard error. Red dashed lines show the trend of the average value with the light intensity.

https://doi.org/10.1371/journal.pcbi.1011636.g006
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becomes stronger, which leads the fish to be closer to each other. However, the angular depen-

dence of both attraction (Fig 8B and 8C) and alignment (Fig 8E and 8F) are not affected by

light intensity. We then introduced the functional forms of Eqs (14)–(19) that adequately

describe FAtt(d, Δϕ, ψ) and FAli(d, Δϕ, ψ) in the model to simulate the motion of fish (see Mate-

rial and methods; the parameter values used in the simulations are given in S6 Table).

Fig 7E-7H and Fig 7M-7P show the results of extensive numerical simulations of the model

including the interactions between fish, compared to the experimental measures above

Fig 7. Effects of light intensity on the spatial distribution in groups of two fish. Probability density functions (PDF) of a,e the distance to the wall rw

of the geometrical leader, b,f the distance to the wall rw of the geometrical follower, c,g the relative angle to the wall θw of the geometrical leader, d,h the

relative angle to the wall θw of the geometrical follower, i,m the distance between the two fish d, j,n the viewing angle ψ of the geometrical leader, k,o the

viewing angle ψ of the geometrical follower, and l,p the relative orientation Δϕ between the two fish, for 5 different light intensities 0.5, 1, 1.5, 5, and 50

lx (from dark to light blue). Solid lines (a-d,i-l) correspond to the experimental results and dashed lines (e-h,m-p) correspond to numerical simulations

of the model.

https://doi.org/10.1371/journal.pcbi.1011636.g007
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described. Overall, we find a qualitative (S6 Video) and fair quantitative agreement. Fig 9A-9D

show in detail the trend, as light intensity increases, of the numerical values of the strength and

range parameters of both interactions γAtt, lAtt, γAli, and lAli respectively that we used in the

simulations. In the attraction interaction, both γAtt and lAtt increase with light intensity. In the

alignment interaction, γAli decreases with light intensity, but this is compensated by the

increase of lAli, resulting in an interaction that is stronger when light is more intense (Fig 8D).

These results show that all parameters converge to a saturation value as light becomes more

intense.

Effect of light intensity on collective behavior in groups of 5 and 25 fish

We then investigate the consequences of the modulation of the interaction strength by the

light intensity on the collective behavior in groups of N = 5 and 25 fish (see S3 and S4 Videos).

S10 and S11 Figs and S10 and S12 Tables show the effects of light intensity on the duration

between two consecutive kicks τ, the distance traveled by a fish between two kicks l, and the

maximum speed when the fish performs a kick v0, in both group sizes. We characterize the col-

lective patterns by means of 5 observables quantifying the behavior and the spatial distribution

of the school: 1) the distance of a fish to the tank wall, rw(t); 2) the distance of a fish to its near-

est neighbor, NND(t); 3) the group radius of gyration, D(t), equal to the standard deviation of

the distance of the N fish to the barycenter of the group; 4) the group polarization, P(t), which

quantifies the mutual alignment of the fish; 5) the milling index, M(t), which quantifies the

Fig 8. Effects of light intensity on social interactions between pairs of fish. a-c Attraction interaction function FAtt = fAtt(d)OAtt(ψ)EAtt(Δϕ) and d-f

alignment interaction function FAli = fAli(d)OAli(Δϕ)EAli(ψ), for 5 different light intensities 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). a,d Intensity

of attraction and alignment respectively as functions of the distance between fish d. b,c Even and odd modulations of attraction intensity as functions of

the relative orientation Δϕ and the viewing angle ψ respectively. e,f Even and odd modulations of alignment intensity as functions of ψ and Δϕ
respectively. Color dots correspond to the discrete values resulting from the reconstruction procedure, extracted from the experimental data. Blue solid

lines correspond to the analytical approximation of the discrete functions for the corresponding light condition. Orange lines correspond to the

analytical approximation of a single discrete function combining all light conditions.

https://doi.org/10.1371/journal.pcbi.1011636.g008
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global rotation of the fish around the center of the tank, in a vortex-like formation (see Mate-

rial and methods).

Fig 10 shows the mean values of all these observables for all light conditions, and S12 and

S13 Figs show the corresponding PDFs. Let us mention at this point that when the number of

fish is increasing, the impact of the finite size of the confining tank on the group increases,

which will be especially apparent for N = 25 fish.

As the number of fish increases, they swim farther from the wall (Fig 10A and 10F). As a

function of light, we obtained a clear pattern for N = 1 and N = 2 (reproduced by the model),

showing that the fish are swimming markedly closer to the wall as the illumination is increas-

ing. For N = 5 and N = 25, this overall pattern is much less clear. For N = 5 and N = 25, the

group is more compact than for N = 2, with a mean distance between nearest neighbors in the

range 35–45 mm (N = 5) and 45–50 mm (N = 25), instead of 65–75 mm for N = 2 (Fig 10B and

10G). The fact that this mean distance is higher for N = 25 than for N = 5 reflects the fact that

the groups of 25 fish are spread over the whole tank (see hereafter), although it remains denser

near the wall. In the case N = 2, the mean distance between the 2 fish was consistently decreas-

ing with increasing light, whereas, for N = 5 and N = 25, it slightly increases up to 1.5–5 lx

before saturating or even slightly decreasing again at maximum illumination, although the var-

iation range remains quite narrow. The radius of gyration of groups of N = 5 and N = 25 fish

slightly increases for the lowest illumination before saturating (Fig 10C and 10H).

The main difference between groups of 5 and 25 fish is highlighted by their mean polariza-

tion and milling order parameters (Fig 10D, 10E, 10I, and 10J). The group of N = 5 fish is still

well localized in the tank of radius R = 250 mm (with a mean radius of gyration hDi �
50 mm� R), and the good alignment between fish is reflected by a high mean polarization

Fig 9. Effect of light intensity on the strength and range interaction parameters for N = 2 fish. Parameter values of a attraction strength γAtt, b

attraction range lAtt, c alignment strength γAli, and d alignment range γAli, used in the numerical simulations, as functions of light intensity (0.5, 1, 1.5, 5,

and 50 lx). Dashed lines show the trend of the average value with light intensity.

https://doi.org/10.1371/journal.pcbi.1011636.g009
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hPi � 0.9, which is maximal at the highest illumination. The localization of the group and its

strong polarization automatically results in a weak milling order parameter. Conversely, and

as noted above, the groups of 25 fish are spread over the entire tank, while still concentrating

near the wall. The spatial distribution of the group hence becomes rotationally invariant, lead-

ing to a negligible polarization. Yet, the group still presents a strong orientational order, with a

large majority of fish turning around the tank in the same rotational direction, hence leading

to a strong milling, with hMi � 0.9.

Overall, Fig 10 shows that varying the light intensity has a greater impact when fish swims

alone or in pairs than when they swim in larger groups.

The numerical simulations of the model including the interactions of the fish with their two

most influential neighbors [60] and the modulation of social interactions with light intensity is

in qualitative (S7 and S8 Videos) and fair quantitative agreement with the experimental results

in both group sizes and different lighting conditions (Figs 10F–10J and S12 and S13). The

parameter values used in the simulations of the model are listed in S7 (for N = 5 fish) and S8

(for N = 25 fish) Tables.

Discussion

Understanding how environmental parameters impact both individual behavior and social

interactions at the individual level, as well as the emergent properties observed at the collective

level, is a fundamental question in studies of collective animal movements [10, 61, 62]. In fish,

the level of illumination is an important ecological factor that strongly affects schooling behav-

ior and regulates their behavioral activities [63, 64]. When illumination falls below a critical

level, fish cannot perceive the visual information they need to coordinate their swimming [59].

Most studies on the effects of the level of illumination on schooling have only used descriptors,

such as the swimming speed, the distribution of nearest neighbor distances or inter-individual

Fig 10. Effect of light intensity on collective behavior for N = 1, 2, 5, and 25 fish. a,f Average distance of a fish to the wall hrwi. b,g Average distance

of a fish to its nearest neighbor hNDDi. c,h Average group dispersion hDi. d,i Average group polarization hPi. e,j Average group milling hMi. a-e

Experimental data, and f-j numerical simulations of the model, for different values of the light intensity (0.5, 1, 1.5, 5, and 50 lx) and different group

sizes N = 1, 2, 5, and 25 (from dark to light red). Gray dotted lines are a guide to the eye.

https://doi.org/10.1371/journal.pcbi.1011636.g010
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distances or the level of polarization and only a few of them have analyzed the behavioral

responses at individual scale [43, 65].

In the present work, we measured and modeled the impact of the light intensity both at the

individual scale (swimming behavior and social interactions between fish) and at the collective

scale (collective motion patterns) in groups of H. rhodostomus. We used the procedure intro-

duced by Calovi et al. [39] to extract the interactions between a fish and the wall, as well as

with another fish, and to quantify the effects of light intensity on these interactions. Our results

show that light intensity significantly alters the social interactions between individuals as well

as the way fish swim and react to the obstacles such as the tank wall detected in their

environment.

We find that, as light intensity decreases, the interactions between fish and between fish

and the tank wall are weakened. Fish change their swimming direction more frequently and

use smaller kick lengths, presumably to avoid collisions. Moreover, the intensity and the range

of interactions with obstacles and neighboring fish increase with light intensity, the conse-

quences being that fish move closer to each other and also closer to the wall when they swim in

pairs. However, in larger groups of fish, as individuals only interact with their two most influ-

ential neighbors, only small groups of 5 fish remain cohesive and in these groups, resulting in

a high polarization. In larger groups of 25 fish, the swimming patterns are no longer polarized,

and the fish rotate around the center of the arena whatever the level of illumination with a

high orientational milling order. This is mainly a consequence of the limited size of the tank

and one can expect that without confinement, large groups would be much more polarized.

The measurements of the effects of light intensity on burst-and-coast swimming and indi-

vidual interactions were then used to build and calibrate a model that quantitatively repro-

duces the dynamics of 1, 2, 5, and 25 fish, and the consequences of individual-level

interactions on the spatial and angular distributions of the fish within the tank.

As observed in the experiments, the model shows that the coupling between wall avoidance

behavior and the burst-and-coast motion results in the concentration of fish trajectories close

to the wall that increases with light intensity. Remarkably, even if the repulsive interaction

with the wall increases with light intensity, since the distance travelled by a fish between two

kicks also increases, it moves more often close to the wall due to its burst-and-coast swimming

mode [39]. Indeed, the longer the distance travelled between two kicks, the more difficult it is

for a fish to escape the concave wall so that it spends more time close to the wall. Moreover, as

a fish spends more time close to the wall, the intensity of the repulsive interaction must be

higher. The model also correctly recovers the transition between a highly polarized group with

a low milling rotational order for N = 5 fish, to a weak polarized group for N = 25 fish present-

ing a strong milling rotational order. The model also reproduces a similar average distance of

fish to its nearest neighbor in both group sizes. As a consequence, the total space occupied by

the group increases with group size, leading to a higher dispersion value. Finally, the model

reproduces the fact that the influence of the light intensity on the different measured observ-

ables is more systematic and important for N = 1 and N = 2 fish than for larger groups of N = 5

and N = 25 fish. Our results suggest that there exist robust effective interactions between fish,

since only the strength and range of these interactions but not their functional forms change

with light intensity. This provides a general explanation for the way fish adapt their behavior

and the way they interact with each other to environmental changes.

Overall, our approach, which combines experiments with data-driven computational

modeling, has allowed us to decipher how the level of illumination affects the behavior and

interactions among fish, and how the modulation of these interactions at the individual level

leads to changes in collective movements observed at the group level. Our approach that leads

to an explicit and predictive model can also be extended to understand and explain how the
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modulation of social interactions and behavior by environmental parameters (e.g., light, tem-

perature, flow speed, etc.) or physiological parameters (e.g., stress, hunger, etc.) affects collec-

tive behaviors in animal groups.

Materials and methods

Experimental procedures and data collection

Ethics statement. Experiments were approved by the Animal Experimentation Ethics

Committee C2EA-01 of the Toulouse Biology Research Federation and were performed in an

approved fish facility (A3155501) under permit APAFIS#27303-2020090219529069.v8 in

agreement with the French legislation.

Study species. Hemigrammus rhodostomus (rummy-nose tetras) were purchased from

Amazonie Labège in Toulouse, France. Fish were kept in 16 L aquariums on a 12:12 hour,

dark:light photoperiod, at 24.9˚C (±0.8˚C) and were fed ad libitum with fish flakes. The aver-

age body length of the fish used in these experiments is 31 mm.

Experimental setup. We used a rectangular glass tank 120 × 120 cm supported by a 20

cm high metal beam structure. A circular arena of radius R = 250 mm was set inside the experi-

mental tank filled with 7 cm of water of controlled quality (50% of water purified by reverse

osmosis and 50% of water treated by activated carbon) heated at 27.1˚C (±0.5˚C). The tank

was surrounded by white opaque curtains and the experimental room was illuminated by four

LED light panels proving homogeneous lighting. Light intensity was controlled through the

control light panel of the room, allowing 5 illumination levels (0.5, 1, 1.5, 5, and 50 lx).

At the start of each trial, 1, 2, 5, or 25 fish were randomly removed from the breeding aquar-

iums and placed in the circular arena. Fish were introduced in and acclimatized to the experi-

mental tank and lighting conditions during a period of 10 minutes before the trial started.

During each trial of one hour, individuals were swimming freely without external perturba-

tion. Fish trajectories were recorded by a Sony HandyCam HD camera from above the setup

at 25 Hz (25 frames per second) in HDTV resolution (1920 × 1080 p). Trials were carried out

with 5 different light intensities (see S1–S4 Tables).

Data extraction and pre-processing. Positions of fish in each frame have been tracked

with the tracking software FastTrack [66]. The FastTrack output format gives the position (in

pixels) of each fish in each frame, with a time step of Δ = 0.04 s. Although the accuracy of the

tracking was satisfactory, there were some identification errors, especially in large groups of

fish. We corrected the wrong tracks by reassigning the identification numbers to the right fish.

We used a sorting algorithm where the identities of the fish are sequentially reassigned so that

the coordinates of each fish at the next time step are the closest to the coordinates they had at

the previous frame. That is, the fish i at time t is assigned to the coordinates of fish j at time t +

Δt such that the distance covered by the fish group is minimized. In the video, the diameter of

the tank is about 1045 pixels, and the actual diameter is 500 mm. The conversion factor from

pixels to meters is 0.478 mm/pix. In order to correct possible changes in the position of the

experimental tank between two trials, the coordinate of the central pixel (x0, y0) of the aquar-

ium in the video must be modified on each of the videos.

The original pixel coordinates ðx̂; ŷÞ are converted into metric coordinates so that the ori-

gin of the system of reference is located in the center of the tank:

ðx; yÞ ¼ 0:478ðx̂ � x̂0; ŷ � ŷ0Þ, where we have used the same conversion factor in both direc-

tions and ðx̂0; ŷ0Þ are the pixel coordinates of the center of the tank.

During a test, it could happen that fish did not move. Therefore, we selected the phases dur-

ing which a sustained swimming activity was observed. We considered that if the fastest fish in

a group was swimming at a speed of less than 40 mm/s for more than 2 seconds, the fish were
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stopping. The program extracted the sequences where the fish were active, removing stopping

behavior. The data were then divided into several sequences of different duration for analysis.

The proportion of time when individuals were detected active over the whole trial is listed in

see S1–S4 Tables.

Fish trajectories were segmented according to the typical burst-and-coast swimming of this

species. There is a succession of short acceleration phases called “kicks”, during which a fish

may change its direction of motion, followed by a phase of quasi-passive deceleration, during

which the fish glides in an almost straight line until the next kick. The points of acceleration

and gliding can be identified by the minimum and maximum values of the velocity time series.

We use a Savitsky-Golay filter of degree three over a 0.36 s time window to smooth the raw

time series, and divided the time series into accelerating and decelerating states. To limit noise,

we merge any acceleration or deceleration periods smaller than 0.08 s. We assume that the

times of the kicks coincide with the starting of the acceleration periods.

In [39], an almost perfect left/right symmetry was observed for single fish and pairs of fish.

This means that a trajectory observed from the top of the tank has the same probability of

occurring as the very same trajectory but as seen from under the tank (i.e., a “mirror trajec-

tory”). Similarly, we consider that left/right symmetry exists in large groups (N = 5, 25). This

reasonable assumption not only effectively doubles the data set, but also reduces the statistical

uncertainty of the measured quantities and gives rise to more accurate interaction functions.

Computational model

The duration of the bursting phase of H. rhodostomus (typically less than 0.1 s) is much smaller

than that of the gliding phase (typically 0.5 s), and can thus be neglected. We also assume that

fish choose their direction of motion at the kicking instant, maintaining their heading while

decelerating in the gliding phase. The computational model thus consists of three equations

per fish that determine the instant at which a kick takes place, and how the heading and posi-

tion of the fish are updated at these kicking instants.

The n-th kick of fish i starts at time tn
i and is characterized by a length lni , a duration tn

i , and

the initial position and heading of the fish at the kicking instant,~u n
i ¼ ðx

n
i ; y

n
i Þ and �

n
i respec-

tively. At the instant tn
i , the fish chooses its new heading �

nþ1

i and moves along a straight seg-

ment of length lni during a time tn
i , at the end of which it arrives at its new position~u nþ1

i ,

according to the following equations:

tnþ1
i ¼ tn

i þ t
n
i ; ð1Þ

�
nþ1

i ¼ �
n
i þ d�

n
i ; ð2Þ

~u nþ1
i ¼ ~u n

i þ lni ~eð�
nþ1

i Þ; ð3Þ

~eð�nþ1

i Þ is the unit vector along the angular direction �
nþ1

i and d�
n
i is the change of heading

from kick n − 1 to kick n. The length and the duration of a kick performed by a fish are inde-

pendent of those from previous kicks, and also of the kicks of other fish. Thus, when swim-

ming in groups, the kicks of different fish are asynchronous and not necessarily of the same

length.

Individual fish make decisions at discrete times, at which the relative state of the N − 1

other fish must be known to evaluate the social interaction exerted on the focal fish. This infor-

mation must be collected at a time that does not necessarily coincide with the kicking time of

the other fish. The instantaneous speed of the fish decreases quasi-exponentially during the
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kick with a decay time τ0 [39], as observed experimentally in the data under each light condi-

tion. The peak speed vn, the kick duration τn and the kick length ln are linked by the following

relation: ln = vnτ0[1 − exp(−τn/τ0)]. Therefore, the instantaneous position of a fish at a time Δt
after its nth kick and before its next (n + 1)th kick, i.e., during the gliding phase, is given by

~uðtn
i þ DtÞ ¼~u n

i þ lni
1 � expð� Dt=t0Þ

1 � expð� tn=t0Þ
~eð�nþ1

i Þ: ð4Þ

We consider that the heading variation of individual fish δϕi results from the additive com-

bination of fish spontaneous behavior, physical constraints of the environment (obstacles),

and social interactions with other fish:

d�i ¼ d�
R
i þ d�

W
i þ d�

S
i ; ð5Þ

where indices R, W, and S stand for Random, Wall, and Social, respectively. Experiments per-

formed with only one fish in the tank are devoted to identify the shape and intensity of the ran-

dom spontaneous behavior of the fish d�
R
i and of the interaction with the tank wall d�

W
i .

Experiments with two fish allow to determine the pairwise interaction functions of attraction

and alignment, and experiments in larger groups (here 5 and 25 individuals) serve to identify

the neighbors to which an individual fish pays attention to update its heading. The experi-

ments carried out in this work show that the same model structure, and especially, the same

form of interaction functions, can be used for all light conditions.

When performing a kick, it may happen that the position of the fish calculated at the end of

the kick is out of the tank. In that case, the kick is rejected and a new angle of spontaneous var-

iation δϕR, a new kick length lni , and a new kick duration tn
i are sampled from their distribu-

tions, until the final position at the end of the kick is inside the tank. Moreover, we consider

that the fish keeps a distance of comfort lc to the wall, so that the kick is only accepted if

j~uðtn
i Þ þ ðl

n
i þ lcÞ~eið�

n
i þ d�

n
i Þj < R; ð6Þ

where R is the radius of the tank. If, after a large number of tries (up to 1000), the fish is still

outside the tank, then a random number is sampled from the uniform distribution in (−π, π)

and assigned to d�
R
i until Eq (6) is verified.

Spontaneous heading change and interaction of fish with the wall. Spontaneous head-

ing change can be described by a Gaussian noise δϕR = γR g, where γR is the intensity of these

variations and g is a Gaussian random variable of zero mean and unit variance. However,

experiments show that, when fish swim close to the wall, the amplitude of their heading fluctu-

ations is substantially reduced. We thus introduce a reduction factor that depends on the dis-

tance of the fish to the wall rw, a characteristic distance to the wall lw, and a modulation of this

effect α 2 (0, 1), so that

d�
R
¼ gR 1 � a exp �

rw
lw

� �2
" # !

g; ð7Þ

where all three parameters γR, lw, and α are measured experimentally for each light condition.

The effect of the wall on heading variation is described by a function that depends only on

the relative state of the fish with respect to the wall, (rw, θw). We assume decoupled contribu-

tions of each variable,

d�
w
ðrw; ywÞ ¼ fwðrwÞOwðywÞ; ð8Þ

where Ow is an odd function accounting for the fact that the fish turns with the same intensity
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but in the opposite direction when the wall is on the right side of the fish (θw > 0) or on the

left side (θw < 0), so that Ow(−θw) = −Ow(θw).

By means of a reconstruction procedure introduced in [39, 42], we obtain analytical expres-

sions of these functions for each light condition,

fwðrwÞ ¼ gwexp½� ðrw=lwÞ
2
�; ð9Þ

OwðywÞ / sin ðywÞ½1þ 0:8 cos ð2ywÞ�; ð10Þ

where γw is the intensity and lw is the range of the wall repulsion, and the angular function is

normalized so that the mean of the squared function in [−π, π] is equal to 1:

ð1=2pÞ
R p
� p

OwðyÞ
2dy ¼ 1. The same normalization is applied for all angular functions in the

model.

Social interactions between fish. Social interactions between two fish are described by

pairwise functions of the relative state of the fish (d, ψ, Δϕ), where d is the distance between

them, ψ is the viewing angle with which the focal fish perceives the other fish, and Δϕ = ϕj − ϕi

is their relative alignment. The analysis of the experimental data shows that two distinct inter-

actions are at play, attraction and alignment, so the social term is simply split into two additive

parts:

d�
S
ðd;c;D�Þ ¼ d�Attðd;c;D�Þ þ d�Aliðd;c;D�Þ: ð11Þ

As for the function describing the effect of the wall, we assume that each state variable con-

tributes to the heading change in a decoupled multiplicative form,

d�Attðd;c;D�Þ ¼ fAttðdÞOAttðcÞ EAttðD�Þ; ð12Þ

d�Aliðd;c;D�Þ ¼ fAliðdÞOAliðD�Þ EAliðcÞ; ð13Þ

where f denotes the strength of the interaction and O and E are respectively odd and even func-

tions. The parity of the angular functions accounts for the intrinsic symmetry of each kind of

interaction. For example, a fish is attracted by another fish with a force that has the same inten-

sity but opposite sign if the other fish is at its right or left side, i.e., if ψ< 0 or ψ> 0 respec-

tively. In turn, the force with which a fish attracts another has an intensity of the same sign,

whatever the sign of the relative alignment Δϕ. Similarly, a fish tries to align with another fish

with the same intensity independently of the side occupied by the other fish, but a fish turns

right or left according to the sign of their relative alignment, Δϕ> 0 or Δϕ< 0, respectively.

By means of the already mentioned reconstruction procedure, we found the following ana-

lytical expressions of the pairwise social interaction functions:

fAttðdÞ ¼ gAtt
d=dAtt � 1

1þ ðd=lAttÞ
2
; ð14Þ

OAttðcÞ / sin ðcÞ½1 � 0:33 cos ðcÞ�; ð15Þ

EAttðD�Þ / 1 � 0:6 cos ðD�Þ � 0:4 cos ð2D�Þ; ð16Þ

fAliðdÞ ¼ gAli
d

dAli
exp �

d
lAli

� �2
" #

; ð17Þ
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OAliðD�Þ / sin ðD�Þ½1þ 0:33 cos ðD�Þ�; ð18Þ

EAliðcÞ / 1þ 1:18 cos ðcÞ � 0:49 cos ð2cÞ: ð19Þ

The parameter γAtt (resp. γAli) is the dimensionless intensity of the attraction (resp. align-

ment) interaction, dAtt is the distance below which the attraction interaction changes sign

(becoming repulsive), and lAtt (resp. γAli) is the range of interaction. dAli is a fixed arbitrary

scale set to ensure that γAli is dimensionless and to fix its typical magnitude. The values of

these 6 parameters are extracted from the experiments by means of the reconstruction proce-

dure for each light condition.

Most influential neighbors. In larger groups (N> 2), previous works have shown that H.
rhodostomus can display the typical collective behavior of schooling and milling even when

individual fish uses only the information about two specific neighbors [60, 67], selected

according to the instantaneous influence they have on the heading variation of the focal fish.

We define the influence Iðd;c;D�Þ that fish j exerts on fish i at time t as the absolute value of

the contribution of j to the instantaneous heading change of i:

Iðd;c;D�Þ ¼ jd�S
ðd;c;D�Þj: ð20Þ

We assume that fish combine the information about their neighbors in an additive form,

d�
S
i ¼

Xk

j¼1

d�
S
ðdij;cij;D�ijÞ; ð21Þ

where k is the number of most influential neighbors taken into account. We take k = 2 for all

light conditions, a value which was shown to lead to the best agreement with experiments in

[60].

Modulation of kick length and duration with the distance between fish. Experimental

data in all light conditions show that, when swimming in pairs, the kick length lni depends on

the distance between fish d: the closer the fish, the shorter the kick (S9 Fig). We thus define a

decoupled modulation function Fmðd;c;D�Þ ¼ fmðdÞgmðcÞhmðD�Þ that depends on the rela-

tive state variables of pairs of fish and apply the same procedure of extraction used to build the

social interaction functions, finding that the main contribution to kick length variation is due

to the distance between fish, so that gm(ψ)� hm(Δϕ)� 1. The modulation function can then

be written as

FmðdÞ ¼ lm � gmðd þ dmÞ ed=lm ; ð22Þ

where lm is a saturation value at long distance, γm is the intensity of the modulation, and lm −
dm is the distance for which the modulation is maximal.

Quantification of collective behavior

The instantaneous state of the fish group can be characterized by means of three observables:

dispersion, polarization, and milling.

The dispersion or radius of gyration of the group, D(t) 2 [0, R], is a measure of the total

space occupied by the group, defined as

DðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

k~ui � ~uBk
2

s

; ð23Þ

where~uB ¼ ðxB; yBÞ is the position of the barycenter (center of mass) of the group, whose
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velocity is given by~vB ¼ ðvB
x ; v

B
y Þ, with

xB ¼
1

N

XN

i¼1

xiðtÞ; vB
x ¼

1

N

XN

i¼1

vi
xðtÞ; ð24Þ

and similar expressions for yB and vB
y ðtÞ. The heading angle of the barycenter is given by its

velocity vector, �B ¼ ATAN2ðvB
y ðtÞ; v

B
x ðtÞÞ. Low values of D(t) correspond to highly cohesive

groups, while high values of D(t) imply that individuals are spatially dispersed.

The polarization P(t) 2 [0, 1] is a measure of the degree of alignment of the fish:

PðtÞ ¼
1

N

�
�
�
�
�

XN

i¼1

~eiðtÞ

�
�
�
�
�
; ð25Þ

where~ei is the unit vector pointing in the fish heading direction. Polarization is high when P is

close to 1, meaning that the N fish are aligned and point in the same direction. Polarization is

low when the N headings are weakly correlated, or even totally uncorrelated, then leading to

the estimate P � 1=
ffiffiffiffi
N
p

resulting from the law of large numbers. Smaller values of P require

that the N headings cancel each other, e.g., when directions are collinear and opposite.

The milling M(t) 2 [0, 1] measures how much the fish turn in the same direction around

the center of the tank, independently of the direction of rotation. It is defined as

MðtÞ ¼

�
�
�
�
�

1

N

XN

i¼1

sin ð�y i
wðtÞÞ

�
�
�
�
�
; ð26Þ

where �y i
wðtÞ ¼ ��i �

�y i. Variables with a bar are defined in the barycenter system of reference:

�xi ¼ xi � xB, �vi
x ¼ vi

x � vB
x (similar expressions for the y-components). Then, the angles of rela-

tive position and heading of fish i with respect to B are �y i ¼ ATAN2ð�yi; �xiÞ and �� i ¼

ATAN2ð�vi
y; �v

i
xÞ respectively.

Other observables based on the barycenter, such as its distance to the wall rB
w ¼ R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

B þ y2
B

p
and its angle of incidence y

B
w ¼ ATAN2ðvB

y ; v
B
xÞ, can be used for small groups

(N = 5). However, when N = 25 the fish occupy the whole tank almost uniformly and the bary-

center’s state is not informative.

Parameter estimation and simulations

For each light condition, we performed 20 simulation runs with different initial conditions

and with a duration of 1000 s.

When swimming alone, the kick length of the n-th kick of a fish is calculated from the peak

speed vn and the kick duration τn, sampled from bell-shaped distributions obtained in the

experiment of each light condition. For example, in the 50 lx condition, we use

tn ¼ � 0:5 �t lnðr1r2Þ, where �t ¼ 0:45 s is the mean kick duration observed at 50 lx, and r1 and

r2 are two uniform random numbers sampled in (0, 1). To perfectly fit the experimental curve,

a new value is sampled each time that τn < 0.22 s.

When swimming in groups, the kick length ln can depend on the distance d between the

focal fish and its most influential neighbor. Moreover, the modulation of kick length and dura-

tion with the distance between also depends on light intensity (S9 Fig). In that case, ln is sam-

pled directly from the distribution whose mean is given by the modulation function: ln = −0.5

fm(d) ln(r1r2). We use this modulation when N = 2, but neglect it when N� 5, where the kick
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length is again sampled from a random distribution with fm(d) replaced by the mean kick

length.

All parameter values used in the simulations for all groups sizes and all light conditions are

reported in see S5–S8 Tables.

Supporting information

S1 Table. List of experiments with one fish.

(XLSX)

S2 Table. List of experiments with two fish.

(XLSX)

S3 Table. List of experiments with 5 fish.

(XLSX)

S4 Table. List of experiments with 25 fish.

(XLSX)

S5 Table. Parameters used in the simulations for N = 1.

(XLSX)

S6 Table. Parameters used in the simulations for N = 2.

(XLSX)

S7 Table. Parameters used in the simulations for N = 5.

(XLSX)

S8 Table. Parameters used in the simulations for N = 25.

(XLSX)

S9 Table. Wilcoxon test for N = 1. This test evaluates the p-value associated with the hypothe-

sis that the location of data (τ, l or v0) for 2 different lights are significantly different. We pro-

vide 2 significant digits after rounding, and an entry “0.00” indicates that the p-value is less

than 0.01.

(XLSX)

S10 Table. Wilcoxon test for N = 2.

(XLSX)

S11 Table. Wilcoxon test for N = 5.

(XLSX)

S12 Table. Wilcoxon test for N = 25.

(XLSX)

S1 Video. Effect of light intensity on individual swimming behavior in rummy-nose tetra

(Hemigrammus rhodostomus). Video excerpts of experiments with a single fish swimming

alone in a circular tank of radius 250 mm under five different light intensities (0.5, 1, 1.5, 5,

and 50 lx).

(MP4)

S2 Video. Effect of light intensity on social interactions between two fish in rummy-nose

tetra (Hemigrammus rhodostomus). Video excerpts of experiments with 2 fish swimming in a

circular tank of radius 250 mm under five different light intensities (0.5, 1, 1.5, 5, and 50 lx).

(MP4)
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S3 Video. Effect of light intensity on collective behavior in groups of 5 fish in rummy-nose

tetra (Hemigrammus rhodostomus). Video excerpts of experiments with a group of 5 fish

swimming in a circular tank of radius 250 mm under five different light intensities (0.5, 1, 1.5,

5, and 50 lx).

(MP4)

S4 Video. Effect of light intensity on collective behavior in groups of 25 fish in rummy-

nose tetra (Hemigrammus rhodostomus). Video excerpts of experiments with a group of 25

fish swimming in a circular tank of radius 250 mm under five different light intensities (0.5, 1,

1.5, 5, and 50 lx).

(MP4)

S5 Video. Numerical simulations of the model with a single fish under different light

intensities. Representative example of a simulation of a single fish swimming in a circular

tank of radius 250 mm under five different light intensities (0.5, 1, 1.5, 5, and 50 lx). The size of

the simulated fish does not correspond to the actual dimensions of the real fish and is used for

ease of visualization.

(MP4)

S6 Video. Numerical simulations of the model with 2 fish under different light intensities.

Representative example of a simulation of 2 fish swimming in a circular tank of radius 250

mm under five different light intensities (0.5, 1, 1.5, 5, and 50 lx). The size of the simulated fish

does not correspond to the actual dimensions of the real fish and is used for ease of visualiza-

tion.

(MP4)

S7 Video. Numerical simulations of the model with a group of 5 fish under different light

intensities. Representative example of a simulation of a group of 5 fish swimming in a circular

tank of radius 250 mm under five different light intensities (0.5, 1, 1.5, 5, and 50 lx). Each fish

interacts with its two most influential neighbors. The size of the simulated fish does not corre-

spond to the actual dimensions of the real fish and is used for ease of visualization.

(MP4)

S8 Video. Numerical simulations of the model with a group of 25 fish under different light

intensities. Representative example of a simulation of a group of 25 fish swimming in a circu-

lar tank of radius 250 mm under five different light intensities (0.5, 1, 1.5, 5, and 50 lx). Each

fish interacts with its two most influential neighbors. The size of the simulated fish does not

correspond to the actual dimensions of the real fish and is used for ease of visualization.

(MP4)

S1 Fig. Burst-and-coast motion of fish swimming alone in the tank. Time series of the

instantaneous speed of one fish under different light intensities: a 0.5, b 1, c 1.5, d 5 and e 50

lx. Colored vertical lines represent local minima (red) and maxima (blue) of the speed. Time

intervals going from a red line to the next blue line correspond to the bursting acceleration

phase, intervals going from a blue line to the next red line correspond to the decelerating glid-

ing phase.

(PDF)

S2 Fig. Normalized average decay of fish speed right after a kick when the fish swims alone

(N = 1). a Exponential deceleration during the gliding phase averaged along all kicks and nor-

malized with the value of the speed at the kicking instant, for different light intensities 0, 0.5, 1,

5, and 50 lx (from dark to light blue). Wide solid lines are experimental measures, dashed lines
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are exponential approximations of the form exp(−t/τ0), where τ0 is the relaxation time: τ0�

0.34 (0.5 lx), 0.66 (1 lx), 0.76 (1.5 lx), 0.83 (5 lx), 0.87 (50 lx). b Mean relaxation time τ0 as a

function of the light intensity (black circles). The red dashed line shows the trend of the aver-

age value with the light intensity.

(PDF)

S3 Fig. Effects of light intensity on the spontaneous heading change of a fish swimming

alone (N = 1). Probability density function (PDF) of the angle variation δϕ when the fish is far

from the wall (rw > 60 mm) in five different light intensities: 0.5, 1, 1.5, 5 and 50 lx (from dark

to light blue). Colored dots: measures from the experiments. Dashed lines: approximation

with Gaussian distributions, with γR=0.26, 0.34, 0.40, 0.42, and 0.43 respectively.

(PDF)

S4 Fig. Effect of light intensity on the fish interaction with the tank wall when the fish

swims alone (N = 1). Function of repulsion fw(rw)Ow(θw) as extracted from the experiments

by means of the reconstruction procedure (dots), and analytical approximations used in the

numerical simulations (solid lines), for different light intensities: 0.5, 1, 1.5, 5, and 50 lx (from

dark to light blue). a-e Intensity of the interaction fw(rw) as a function of the fish distance to

the wall rw. f-j Intensity of the interaction Ow(θw) as a function of the relative orientation of

the fish to the wall θw. Orange lines correspond to the analytical approximation of a single dis-

crete function combining all light conditions: Ow(θw) = 1.9612 sin(θw)[1 + 0.8 cos(2θw)].

(PDF)

S5 Fig. Effect of the kick length l on the spatial distribution of a fish swimming alone

(N = 1). a Probability density function (PDF) of the distance of the fish to the wall rw as a func-

tion of light intensity when only the kick length l is changed in the model. b Schematic dia-

gram of the motion of a single fish between two kicks. The distance travelled by the fish

between two kicks is greater at 50 lx than at 0.5 lx; as a consequence, the fish moves closer to

the wall when the light intensity is higher.

(PDF)

S6 Fig. Normalized average decay of fish speed right after a kick when fish swim in pairs

(N = 2). a Exponential deceleration during the gliding phase averaged along all kicks and nor-

malized with the value of the speed at the kicking instant, for different light intensities 0, 0.5, 1,

5, and 50 lx (from dark to light blue). Wide solid lines are experimental measures, dashed lines

are exponential approximations of the form exp(−t/τ0), where τ0 is the relaxation time: τ0�

0.39 (0.5 lx), 0.63 (1 lx), 0.69 (1.5 lx), 0.71 (5 lx), 0.79 (50 lx). b Mean relaxation time τ0 as a

function of the light intensity (black circles). The red dashed line shows the trend of the aver-

age value with the light intensity.

(PDF)

S7 Fig. Effects of light intensity on the attraction interaction between two fish (N = 2).

Components of the attraction interaction function fAtt(d), OAtt(ψ), and EAtt(Δϕ) as functions of

the distance between fish d, the viewing angle ψ, and the relative heading Δϕ, for different light

intensities: a-c 0.5 lx, d-f 1 lx, g-i 1.5 lx, j-l 5 lx, and m-o 50 lx (from dark to light blue). Color

dots correspond to the discrete values resulting from the reconstruction procedure, extracted

from the experimental data of the corresponding intensity of light. Solid lines correspond to

the analytical approximation of the discrete function. Orange lines correspond to the analytical

approximation of a single discrete function combining all light conditions.

(PDF)
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S8 Fig. Effects of light intensity on the alignment interaction between two fish (N = 2).

Components of the attraction interaction function fAli(d), EAli(ψ, and OAli(Δϕ) as functions of

the distance between fish d, the viewing angle ψ, and the relative heading Δϕ, for different light

intensities: a-c 0.5 lx, d-f 1 lx, g-i 1.5 lx, j-l 5 lx, and m-o 50 lx (from dark to light blue). Color

dots correspond to the discrete values resulting from the reconstruction procedure, extracted

from the experimental data of the corresponding intensity of light. Solid lines correspond to

the analytical approximation of the discrete function. Orange lines correspond to the analytical

approximation of a single discrete function combining all light conditions.

(PDF)

S9 Fig. Effect of light intensity on the modulation of the kick length with the distance

between fish. Modulation function (Fm(d)) of the mean value used in the distribution from

which kick lengths are sampled, as a function of the distance between fish d, and for different

light intensities: 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). Dots correspond to the dis-

crete functions resulting from the reconstruction procedure and extracted from the experi-

mental data. Solid lines correspond to the smooth analytical approximations of these discrete

functions.

(PDF)

S10 Fig. Effects of light intensity on burst-and-coast swimming in groups of 5 fish. a-c

Probability density function (PDF) of kick duration τ, kick length l, and peak speed v0 respec-

tively, at different light intensities: 0.5, 1, 1.5, 5 and 50 lx (from dark to light blue). d-f Average

value of kick duration hτi, kick length hli, and peak speed hv0i respectively, at different light

intensities. Solid circles are the average values on all experiments; error bars represent the stan-

dard error. Red dashed lines show the trend of the average value with the light intensity.

(PDF)

S11 Fig. Effects of light intensity on burst-and-coast swimming in groups of 25 fish. a-c

Probability density function (PDF) of kick duration τ, kick length l, and peak speed v0 respec-

tively, at different light intensities: 0.5, 1, 1.5, 5 and 50 lx (from dark to light blue). d-f Average

value of kick duration hτi, kick length hli, and peak speed hv0i respectively, at different light

intensities. Solid circles are the average values on all experiments; error bars represent the stan-

dard error. Red dashed lines show the trend of the average value with the light intensity.

(PDF)

S12 Fig. Quantification of collective behavior in groups of 5 fish. Probability density func-

tions (PDF) of a,d the distance to the wall rw, b,e the relative angle to the wall θw, c,f the dis-

tance to the nearest neighbor NND, g,j dispersion D, h,k polarization P, and i,l milling M, for

five different light intensities 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). Solid lines (a-c,

g-i) correspond to experimental measures, dashed lines (d-f, j-l) to numerical simulations of

the model.

(PDF)

S13 Fig. Quantification of collective behavior in groups of 25 fish. Probability density func-

tions (PDF) of a,d the distance to the wall rw, b,e the relative angle to the wall θw, c,f the dis-

tance to the nearest neighbor NND, g,j dispersion D, h,k polarization P, and i,l milling M, for

five different light intensities 0.5, 1, 1.5, 5, and 50 lx (from dark to light blue). Solid lines (a-c,

g-i) correspond to experimental measures, dashed lines (d-f, j-l) to numerical simulations of

the model.

(PDF)
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