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ABSTRACT

PURPOSE Gut microbiota injury in allogeneic hematopoietic cell transplantation (HCT)
recipients and patients with AML has been associated with adverse clinical
outcomes. Previous studies in these patients have shown improvements in
various microbiome indices after fecal microbiota transplantation (FMT).
However, whether microbiome improvements translate into improved clinical
outcomes remains unclear. We examined this question in a randomized,
double-blind, placebo-controlled phase II trial.

METHODS Two independent cohorts of allogeneic HCT recipients and patients with AML
receiving induction chemotherapy were randomly assigned in a 2:1 ratio to
receive standardized oral encapsulated FMT versus placebo upon neutrophil
recovery. After each course of antibacterial antibiotics, patients received a study
treatment. Up to three treatments were administered within 3 months. The
primary end point was 4-month all-cause infection rate. Patients were followed
for 9 months.

RESULTS In the HCT cohort (74 patients), 4-month infection density was 0.74 and 0.91
events per 100 patient-days in FMT and placebo arms, respectively (infection
rate ratio, 0.83; 95% CI, 0.48 to 1.42; P 5 .49). In the AML cohort (26 patients),
4-month infection density was 0.93 in the FMT arm and 1.25 in the placebo arm,
with an infection rate ratio of 0.74 (95% CI, 0.32 to 1.71; P 5 .48). Unique donor
bacterial sequences comprised 25%-30% of the fecal microbiota after FMT.
FMT improved postantibiotic recovery of microbiota diversity, restored several
depleted obligate anaerobic commensals, and reduced the abundance of ex-
panded genera Enterococcus, Streptococcus, Veillonella, and Dialister.

CONCLUSION In allogeneic HCT recipients and patients with AML, third-party FMT was safe
and ameliorated intestinal dysbiosis, but did not decrease infections. Novel
findings from this trial will inform future development of FMT trials.

INTRODUCTION

Patients with AML and recipients of allogeneic hematopoietic
cell transplantation (HCT) experience major disruptions to
their intestinal microbiota.1,2 Dysbiosis patterns in these pa-
tients are largely similar3 and characterized by microbiota
community domination,4-6 diversity loss,7-9 and pathogen
outgrowth.10-12 Dysbiosis has been associatedwithmortality,7,8

acute graft-versus-host disease (aGVHD),13-20 poor immune
reconstitution,21-23 and relapse.24,25 Fecal microbiota trans-
plantation (FMT) has been successful in ameliorating
dysbiosis26-32 and treating refractory aGVHD.33-38 However,

whether FMT-mediated modulation of the microbiota
prevents subsequent adverse clinical outcomes remains
unclear.Most reported FMT trials in these patients have been
small, single-arm, and open-label trials, with a microbiota
endpoint as the primary objective.

To evaluate the clinical efficacy of FMT when used as a
prophylactic approach, we conducted a randomized, double-
blind, placebo-controlled phase II trial using a third-party,
oral encapsulated product and with a clinical primary end
point. We chose infection as the primary end point because
(1) it has a high clinical burden, (2) commensal microbiota
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enhance antiinfective immunity not only against intestinal
pathogens but also distant infections of extraintestinal or-
igin,39 and (3) various types of infection after HCT and in-
duction chemotherapy (eg, bloodstream,5,6,40,41 Clostridioides
difficile [CDI],42 and respiratory tract infections43-45) have been
associated with intestinal dysbiosis.

METHODS

Trial Oversight

This trial (ClinicalTrials.gov identifier: NCT03678493) was
conducted in two parallel independent cohorts of adults treated
at the University of Minnesota: allogeneic HCT recipients (HCT
cohort) and patients with AML receiving inpatient induction
chemotherapy (AML cohort). The Protocol (online only) was
approvedbyour institutional reviewboard andopened to accrual
in September 2019. All patients provided written informed
consent. Safetymonitoring and stopping rules are detailed in the
Data Supplement (Supplementary Methods 1, online only).

The trial reached its accrual goal for the HCT cohort in February
2022 after 72 HCT recipients received dose 1. Because of slow
accrual in the AML cohort, this cohort was closed to new accrual
at the same time. Patientswhohadalreadybeenenrolledbuthad
not yet received dose 1 (two patients) continued on study and
were included in the analysis. Data cutoff and unblinding oc-
curred on August 5, 2022, once the last subject in each cohort
completed follow-up for the last clinical end point.

Study Design

Patients age 18 years and older were enrolled in this ran-
domized, double-blind, placebo-controlled, phase II trial at
the time of admission to the hospital to start conditioning for
a T-replete allogeneic HCT or induction chemotherapy for

AML. A second set of eligibility criteria were checked when
absolute neutrophil count (ANC) reached >1 3 109/L from
nadir and antibacterial antibiotics (except those used for
Pneumocystis jirovecii prophylaxis) were discontinued for 2
days. If all acute toxicities had resolved to grade 2 or lower at
that time and patients were able to swallow capsules and had
no evidence of relapse/progression, they received the first
study treatment (dose 1). This occurred within 3 days of
confirming eligibility, usually on the same day. Consented
patients who did not reach the time point for second eligi-
bility screening and those who reached that time point but
did not meet the criteria for dose 1 were replaced.

Simple randomization was used to assign patients in a 2:1
ratio to receive third-party FMTor placebo in the formoffive
oral capsules taken all at once. Details of treatment admin-
istration are provided in theData Supplement (Supplementary
Appendix). For patients re-exposed to antibacterial antibi-
otics after dose 1, up to twomore doses of the same type (one
dose per exposure) were given until 3 months after consent.
The criteria for redosing were similar to those used for dose 1.
The protocol did not recommend any changes to the standard
of care. We generally use acyclovir for viral, an azole for
fungal, and levofloxacin for bacterial prophylaxis for the
duration of neutropenia (ANC <1 3 109/L), and cefepime for
empiric frontline treatment of neutropenic fever. Patients
were followed for 9 months.

The primary end point was all-cause infection rate within
4 months after dose 1. Both microbiologically and clinically
documented infections were included. Microbiological
documentation included a positive culture or clinically
consistent findings from other microbiological assays (eg,
polymerase chain reaction). Controversial cases were re-
solved after consultation with the infectious diseases team.
Blood culture isolates considered to be skin-associated
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bacteria (including viridans group Streptococcus spp. and
coagulase-negative Staphylococcus spp.) were classified as
bloodstream infection (BSI) if the organism was recovered
in ≥2 blood culture sets.46 Clinically documented infection
was defined by compelling clinical evidence without a
positive microbiological workup (eg, fever and a new lung
infiltrate). Secondary end points included specific types of
infection (bacterial, viral, or fungal), grade II-IV aGVHD47

(HCT cohort only), and BSI within 7 days after each dose.

Study product manufacturing is detailed in the Data Sup-
plement (Supplementary Appendix). Each FMT capsule
contained ≥1 3 1011 bacteria with ≥40% viability and each
dose consisted of five capsules. This dose was previously
found to be effective in treatment of recurrent CDI.48 Product
from four different donors was used and each patient re-
ceived material manufactured from a single donor.

Statistical Analysis

The two cohorts were analyzed independently. The only
study procedure that occurred between the two eligibility
screening time points was the collection of baseline samples
after consent, and only objective criteria (neutrophil re-
covery and discontinuation of antibacterial antibiotics) were
used to determine the second eligibility time point. All pa-
tients who met both eligibility criteria were included in
safety and efficacy analyses. The expected all-cause infec-
tion density in the control arms of both cohorts was 0.9-1.3
events per 100 patient-days in thefirst 4months after day 30
of chemotherapy or transplantation, on the basis of our
institutional pilot and published data.49 Using Poisson rates
to model recurrent event data in each arm, their ratio as
measure of treatment efficacy, and a variance-stabilized test
statistic, we calculated that a minimum of 72 patients in each
cohortwould provide 80%power to detect a 50% lower rate of
infection in the FMT arm compared with the placebo arm at a
two-sided alpha level of 5% (PASS 14, NCSS, LLC, Kaysville,
UT). An expected rate of 1.3 events per 100 patient-days was
considered for the placebo arm in both cohorts. The inter-
vention was a package defined as up to three treatments
within 4months after dose 1. The objective of the studywas to
evaluate whether the experimental package as a whole would
reduce infections startingwith dose 1.With this definition and
considering that infection rate over 4months rather than time
to the first infection was the measured end point, we did not
censor patients at the time of second or third dose.

Infection data were summarized using infection density.
Mean cumulative number of events, estimated by the
Nelson-Aalen method,50 was plotted for each arm. The re-
current infection data were compared between the two arms
of each cohort using the multiplicative intensity method
developed by Wang et al,51 which models the occurrence of
recurrent events by a subject-specific nonstationary Poisson
process via a latent variable. The treatment arm was con-
sidered as the predictor and death as an informative
terminal event. Thismethod shares the samespirit as the joint

frailty scale-change model but treats death events as infor-
mative censoring rather than terminal events.52 Post hoc
multivariable regression was performed in the HCT cohort to
adjust for conditioning intensity because of its large, by-
chance imbalance between the two arms. Package reReg in
R 4.2.0 (R Foundation for Statistical Computing, Vienna,
Austria)was used for both preplanned and post hoc analyses of
the primary end point,52 with 95% CIs and P values estimated
from 1,000 bootstraps. A two-sided P < .05 was considered
statistically significant. The cumulative incidenceof grade II-IV
aGVHD until 6 months after HCT was calculated in the HCT
cohort with death as a competing risk and compared between
the two arms using a Gray’s test. Post hoc Fine and Gray
multivariableproportional-hazardmodelingwasused toadjust
for the GVHD prophylactic regimen, which was not balanced
between the two arms. The sample collection schedule and
methods formicrobiota sequencing and analysis are detailed in
the Data Supplement (Supplementary Methods 2).

RESULTS

All patients meeting both sets of eligibility criteria were
treated. The HCT cohort included 74 patients (FMT, 49;
placebo, 25) who received 1 (58 patients), 2 (13 patients), or 3
(3 patients) study treatments. The AML cohort included 26
patients (FMT, 18; placebo, 8) who received 1 (16 patients) or
2 (10 patients) study treatments. Therewas no loss to follow-
up and no missing data (Fig 1).

HCT Cohort

Baseline characteristics were balanced between the two arms
(Table 1), except more patients (63.3% v 36.0%) in the FMT
arm received reduced-intensity conditioning and fewer
(44.9% v 76.0%) received GVHD prophylaxis using a post-
transplantation cyclophosphamide (PTCy) backbone.
Thirty-three of the 34 patients receiving myeloablative
conditioning also received PTCy, indicatingmulticollinearity
between GVHD prophylaxis and conditioning intensity.
Given the randomized group assignment, we considered the
imbalance in one of these variables to have occurred by
chance and the imbalance in the other variable followed due
to multicollinearity. All patients were exposed to antibac-
terial antibiotics before dose 1 (Data Supplement [Supple-
mentary Fig 1]), which was given at a median of 23 (range,
12-62) and 26 (range, 11-63) days after HCT in FMT and
placebo arms, respectively. Six patients in the FMT arm and
three in the placebo armdied during follow-up. Deaths in the
FMT arm were due to aGVHD (three patients), idiopathic
pneumonia syndrome (one patient), cryptogenic organizing
pneumonia (one patient), and seizure (one patient). All three
deaths in the placebo arm were due to relapse.

Grade 31 adverse events (AEs) are summarized in the Data
Supplement (Supplementary Table 1). The most frequent of
such events in the FMT arm was aGVHD, occurring as a
Common Terminology Criteria for Adverse Events grade 31 AE
in 9 (18.4%) patients versus none in the placebo arm. BSI
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occurred in 8 (16.3%) FMT recipients versus 3 (12.0%) placebo
patients. Details of BSIs are provided in the Data Supplement
(Supplementary Table 2). No grade 31 AE occurred within

24 hours of a dose. There was only 1 grade 31 GI AE (diarrhea)
within 7 days after FMT. BSI within 7 days after FMT occurred
in one patient. This was a case of cytomegalovirus (CMV)

HCT CohortA
Patients met first set of eligibility criteria (N = 84)

Did not reach second eligibility time point (n = 6)
  Remained on antibacterial antibiotics       (n = 5)
  Early death       (n = 1)
  Withdrew consent       (n = 3)

Included for analysis of primary end point   (n = 49)
Included for safety analysis        (n = 49)
Included for acute GVHD analysis       (n = 47)
Excluded due to GVHD onset before         (n = 2)
  first study treatment

Completed follow-up for primary end point (n = 49)
Completed follow-up for acute GVHD       (n = 49)
Completed follow-up for safety end point    (n = 49)

Assigned to receive FMT        (n = 49)
   Received one study treatment              (n = 40)
   Received two study treatments         (n = 7)
   Received three study treatments         (n = 2)

Completed follow-up for primary end point (n = 25)
Completed follow-up for acute GVHD       (n = 25)
Completed follow-up for safety end point    (n = 25)

Assigned to receive placebo          (n = 25)
   Received one study treatment       (n = 18)
   Received two study treatments         (n = 6)
   Received three study treatments         (n = 1)

Included for analysis of primary end point   (n = 25)
Included for safety analysis        (n = 25)
Included for acute GVHD analysis       (n = 24)
Excluded due to GVHD onset before         (n = 1)
  first study treatment

Reached second eligibility time point (n = 75)
  Eligible                (n = 74)
  Not eligible (ongoing toxicity)             (n = 1)

B AML Cohort
Patients met first set of eligibility criteria (N = 39)

Did not reach second eligibility time point (n = 12)
   Remained on antibacterial antibiotics        (n = 3)
   No neutrophil recovery        (n = 3)
   Progressive disease        (n = 3)
   Early death         (n = 3)
Withdrew consent                         (n = 1)

Assigned to receive FMT        (n = 18)
   Received one study treatment                    (n = 11)
   Received two study treatments         (n = 7)

Completed follow-up for primary end point (n = 18)
Completed follow-up for safety end point    (n = 18)

Completed follow-up for primary end point (n = 8)
Completed follow-up for safety end point    (n = 8)

Assigned to receive placebo        (n = 8)
   Received one study treatment       (n = 5)
   Received two study treatments                   (n = 3)

Included for analysis of primary end point   (n = 18)
Included for safety analysis        (n = 18)

Included for analysis of primary end point   (n = 8)
Included for safety analysis        (n = 8)

Reached second eligibility time point (n = 26)
Eligible                (n = 26)

FIG 1. CONSORT diagram: (A) HCT cohort and (B) AML cohort. FMT, fecal microbiota transplantation;
GVFD, graft-versus-host disease; HCT, hematopoietic cell transplantation.
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TABLE 1. Baseline Characteristics

HCT Cohort

Variable FMT (n 5 49) Placebo (n 5 25) Total (N 5 74)

Age at transplant, years

Mean 6 SD 54.2 6 14.6 48.8 6 15.6 52.4 6 15.0

Male sex, No. (%) 26 (53.1) 16 (64.0) 42 (56.8)

Underlying disease, No. (%)

Acute leukemia 33 (67.3) 20 (80.0) 53 (71.6)

MDS/MPN 7 (14.3) 2 (8.0) 9 (12.2)

Nonmalignant disorders 6 (12.2) 2 (8.0) 8 (10.8)

CLL/NHL 3 (6.1) 1 (4.0) 4 (5.4)

HCT-CI, No. (%)

Median (range) 2 (0-8) 2 (0-5) 2 (0-8)

0-1 22 (44.9) 8 (32.0) 30 (40.5)

2 or greater 27 (55.1) 17 (68.0) 44 (59.5)

HCT donor, No. (%)

Matched unrelated 32 (65.3) 17 (68.0) 49 (66.2)

Matched sibling 14 (28.6) 6 (24.0) 20 (27.0)

Haploidentical 2 (4.1) 2 (8.0) 4 (5.4)

Cord blood 1 (2.0) 0 (0) 1 (1.4)

Conditioning intensity, No. (%)

Reduced intensity 31 (63.3) 9 (36.0) 40 (54.1)

Flu/Cy/low-dose TBI 25 8 33

Cy/ATG 2 0 2

Other 4 1 5

Myeloablative 18 (36.7) 16 (64.0) 34 (45.9)

Cy/TBI 17 16 33

Flu/Bu4 1 0 1

HCT graft source, No. (%)

Peripheral blood 40 (81.6) 21 (84.0) 61 (82.4)

Bone marrow 8 (16.3) 4 (16.0) 12 (16.2)

Cord blood 1 (2.0) 0 (0) 1 (1.4)

GVHD prophylaxis, No. (%)

Tac/MMF/PTCy 22 (44.9) 19 (76.0) 41 (55.4)

MMF/Tac 25 (51.0) 6 (24.0) 31 (41.9)

Other 2 (4.1) 0 (0) 2 (2.7)

ATG, No. (%)

Not used 36 (73.5) 21 (84.0) 57 (77.0)

Used 13 (26.5) 4 (16.0) 17 (23.0)

Dose 1, days from HCT

Median (range) 23 (12-62) 26 (11-63) 24 (11-63)

Doses administered, No. (%)

1 40 (81.6) 18 (72.0) 58 (78.4)

2 7 (14.3) 6 (24.0) 13 (17.6)

3 2 (4.1) 1 (4.0) 3 (4.1)

AML Cohort

Variable FMT (n 5 18) Placebo (n 5 8) Total (N 5 26)

Age at start of chemotherapy, years

Mean 6 SD 54.0 6 12.1 54.9 6 9.99 54.3 6 11.3

Male sex, No. (%) 8 (44.4) 5 (62.5) 13 (50.0)

(continued on following page)
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viremia and the only event that counted toward the stopping
rule. ThepatientwasCMV-seropositive and theirHCTandFMT
donors were both CMV-seronegative, making a relationship
with FMT unlikely.

Seventy infections occurred during the infection monitoring
window (Data Supplement [Supplementary Figs 2A and 2B],
Data Supplement [Supplementary Table 3]). The infection
density within 120 days after dose 1 was 0.74 and 0.91 events
per 100 patient-days in FMT and placebo arms, respectively.
At 120 days after dose 1, the mean cumulative number of
events per patient was 0.89 (95% CI, 0.60 to 1.19) and 1.09
(95% CI, 0.55 to 1.64) in the FMT and control arms, re-
spectively, with an infection rate ratio of 0.83 (95% CI, 0.48
to 1.42; P 5 .49; Fig 2A). After adjusting for conditioning
intensity, the infection rate ratio declined to 0.70 (95% CI,
0.38 to 1.30; P 5 .26; Data Supplement [Supplementary
Table 4]). Subgroup analysis for bacterial and viral infections
did not indicate a treatment effect (Data Supplement
[Supplementary Table 5]). The number of events was not
large enough for FMT donor-specific subset analysis.

Sixteen grade II-IV aGVHD events (14 with GI involvement)
occurred by day 180 after HCT, with a cumulative incidence
of 29.8% (95% CI, 16.5 to 43.0) and 8.3% (95% CI, 0 to 19.6)
in FMT and placebo arms, respectively (P 5 .05; Fig 2C). The
cumulative incidence of grade II-IV aGVHD with GI in-
volvement was 25.8% (95% CI, 13.1 to 38.6) and 4.3% (95%
CI, 0 to 12.9) in FMT and placebo arms, respectively (P5 .03;
Fig 2D). After adjustment for GVHD prophylaxis, the hazard
ratio for FMT versus placebo was 3.1 (95% CI, 0.6 to 14.2;
P 5 .15) for grade II-IV aGVHD and 5.5 (95% CI, 0.7 to 44.0;

P 5 .11) for grade II-IV aGVHD with GI involvement (Data
Supplement [Supplementary Table 6]). Further adjustment
for conditioning intensity was not possible due to multi-
collinearity. All 6 cases of stage III-IV GI aGVHD and all three
fatal cases of aGVHD occurred in the FMT arm.

AML Cohort

Baseline characteristics were balanced between the two arms
(Table 1). All patients were exposed to antibacterial antibi-
otics before dose 1 (Data Supplement [Supplementary Fig 1]),
which was given at a median of 43 (range, 25-78) and 38
(range, 27-67) days after starting chemotherapy in FMT and
placebo arms, respectively. One patient (FMT arm) died
during follow-up, due to relapse. Grade 31 AEs are sum-
marized in the Data Supplement (Supplementary Table 1).
The most frequent of such events in the FMT arm was BSI,
occurring in 10 (55.6%) patients versus 2 (25.0%) patients in
the placebo arm. Details of BSIs are provided in the Data
Supplement (Supplementary Table 2). No grade 31 AE oc-
curred within 24 hours and no grade 31 GI AE within 7 days
after FMT. No event counted toward the stopping rule.

Thirty-two infections occurred during the infection moni-
toring window (Data Supplement [Supplementary Figs 2C
and 2D], Data Supplement [Supplementary Table 3]). The
infection density within 120 days after dose 1 was 0.93 and
1.25 events per 100 patient-days in the FMT and placebo arm,
respectively. At 120 days after dose 1, the mean cumulative
number of events per patient was 1.12 (95% CI, 0.57 to 1.67)
and 1.50 (95% CI, 0.35 to 2.65) in FMT and control arms,
respectively, with an infection rate ratio of 0.74 (95%CI, 0.32

TABLE 1. Baseline Characteristics (continued)

AML Cohort

Variable FMT (n 5 18) Placebo (n 5 8) Total (N 5 26)

Disease, No. (%)

De novo 11 (61.1) 6 (75.0) 17 (65.4)

Secondary/treatment-related 7 (38.9) 2 (25.0) 9 (34.6)

Induction type, No. (%)

7 1 3 or similar 15 (83) 8 (100) 23 (88)

ATRA 1 ATO 3 (17) 0 3 (12)

Inductions, No. (%)

1 14 (77.8) 6 (75.0) 20 (76.9)

2 4 (22.2) 2 (25.0) 6 (23.1)

Dose 1, days from start of chemotherapy

Median (range) 43 (25-78) 38 (27-67) 42 (25-78)

Doses administered, No. (%)

1 11 (61.1) 5 (62.5) 16 (61.5)

2 7 (38.9) 3 (37.5) 10 (38.5)

Abbreviations: 7 1 3, cytarabine plus an anthracycline (with or without additional agents; Vyxeos was included in the same class); ATG,
antithymocyte globulin; ATO, arsenic trioxide; ATRA, all-trans retinoic acid; Bu, busulfan; CI, comorbidity index; CLL, chronic lymphocytic leukemia;
Cy, cyclophosphamide; Flu, fludarabine; FMT, fecal microbiota transplantation; GVHD, graft-versus-host disease; HCT, hematopoietic cell
transplantation; MDS, myelodysplastic syndrome; MMF,mycophenolatemofetil; MPN,myeloproliferative neoplasm; NHL, non-Hodgkin lymphoma;
PTCy, post-transplantation cyclophosphamide; Tac, tacrolimus; TBI, total-body irradiation.
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to 1.71; P 5 .48; Fig 2B). Subgroup analysis for bacterial and
viral infections did not indicate a treatment effect (Data
Supplement [Supplementary Table 5]). Six patients in the
FMT arm and five in the placebo arm proceeded to HCT. Of
these, four patients and one patient developed grade II-IV
aGVHD, respectively.

Microbiota Effects of FMT

After preprocessing and filtering, 287 stool samples con-
taining 2,126 unique amplicon sequence variants ASVs

(5 phyla, 27 families, and 45 genera) were analyzed.
Microbiota in HCT and AML cohorts clustered together (Data
Supplement [Supplementary Fig 3A]), consistent with
similar patterns of injury and recovery as reported previ-
ously.3 Thus, we combined these cohorts in future analyses.
No clustering per treatment arm was apparent at baseline
(P 5 .27; Fig 3A) or before dose 1 (P 5 .85; Fig 3B).

Even at baseline, patient microbiota clustered away from
donor microbiota, indicating injured communities (Data
Supplement [Supplementary Fig 3B]). Patient microbiota at
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baseline was enriched in frequently pathogenic (eg, En-
terococcus, Staphylococcus), mucolytic (Ruminococcus
gnavus/torques groups),53 and typically oral (eg, Rothia,54

Dialister55) genera and depleted in several obligate anaerobic
bacteria (eg, Faecalibacterium) known to produce butyrate.56

Expansion of mucolytic bacteria in patients with acute
leukemia and HCT recipients has been reported.18,40,57-59

Further expansion of genera such as Enterococcus and
Staphylococcus and depletion of the largely butyrogenic
family Lachnospiraceae and genera Blautia, Roseburia, and
Faecalibacterium occurred between baseline and before dose
1 (Data Supplement [Supplementary Fig 4]).

Postintervention samples clustered according to the treatment
arm (Figs 3C-3E), with post-FMT microbiota moving toward
donor microbiota, indicating an FMT effect. Post-FMT sam-
ples were enriched in obligate anaerobic commensal families
Coriobacteriaceae (eg, genus Collinsella) and Rikenellaceae
(eg, genus Alistipes), whereas postplacebo samples were
enriched in Streptococcus, Enterococcus, Veillonella, and
Dialister (Data Supplement [Supplementary Fig 5]). FMT was
highly effective in decreasing Enterococcus and Dialister,
which had expanded greatly before dose 1 and restoring
Collinsella, which had drastically declined before dose 1 and
failed to have any spontaneous recovery after placebo. Both
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arms showed Blautia recovery toward donor levels (Fig 4).
Microbiota alpha diversity was similar at baseline and predose
1 between the two arms. After treatment, while diversity in
postplacebo samples showed slight recovery over time, it did
not reach baseline values. By contrast, diversity in post-FMT
samples significantly increased and even exceeded baseline
(Fig 5A).

Sustained donor microbiota engraftment of approximately
25%was achieved (Fig 5B; Data Supplement [Supplementary
Analysis 1]). Taxa with the largest donor attribution were
Actinobacteria (genus Collinsella), Faecalibacterium, Fusi-
catenibacter, and Anaerostipes (Figs 5C and 5D). Faecali-
bacterium and Anaerostipes are butyrate producers60

depleted in aGVHD.61 Exploratory analyses did not offer a
microbiome explanation for the higher incidence of aGVHD
in the FMT arm (Data Supplement [Supplementary
Analysis 2]).

DISCUSSION

To our knowledge, we conducted the first randomized,
double-blind, placebo-controlled trial of third-party FMT
with a clinical primary end point in allogeneic HCT recipients
and patients with AML. Because some degree of spontaneous
microbiota recovery is expected to occur after normalization
of diet and discontinuation of antibiotics, randomization
uniquely positioned us to evaluate the additional effects of
FMT on the trajectory of microbiota recovery. Several novel
observations were made. First, FMT was highly effective in
decreasing the fecal abundance of Enterococcus and oral
bacteria such as Dialister. Enterococcus expansion has been
associated with aGVHD,62 BSI,5,6 and mortality.4 Similarly,
ectopic colonization of oral bacteria in the gut has been as-
sociated with colitis and inflammatory bowel disease.63

Second, FMT was essential for the recovery of Collinsella.
Collinsella depletion has been associated with neutropenic
fever after HCT64 and microscopic colitis.65 This genus elicits
systemic immunoglobulin responses in inflammatory bowel
disease66 and has been associated with response to FMT in
patients with ulcerative colitis.67 At least one strain of Col-
linsella is known to produce butyrate.68 Finally, Blautia showed
equivalent recovery in both arms, arguing against an essential
FMT impact. Blautia depletion has been associated with an
increased risk of fatal aGVHD.69 FMT improved microbiota
diversity, consistent with a previous randomized trial.30

Although these favorable effects on the microbiota support
the potential efficacy of FMT in preventing adverse clinical
outcomes associated with microbiota injury such as aGVHD,
infections, and mortality, we could not demonstrate im-
proved outcomes in the FMT arm. We chose all-cause in-
fections, rather than a specific infection type/site, as the
primary end point to test whether FMT could modulate
systemic immunity not only against infections of intestinal
origin but also distant-site infections originating from
extraintestinal pathogens. As an example, the gutmicrobiota

has been linked to susceptibility to respiratory tract
infections.43-45 Including infections unrelated to the gut
microbiota in the same composite end point might have
diluted a potential protective FMT effect. For safety reasons,
we did not administer the study product before hemato-
poietic engraftment. With the pre-engraftment period being
the highest-risk interval for infections,70 the incidence of a
large fraction of infections could not be influenced by FMT,
and this might have also diluted an overall beneficial effect.
FMT did not result in BSI, similar to a recent report.71 Strict
donor and product evaluation was key in this safety and
should continue in future studies.

The unexpected higher incidence of aGVHD in the FMT arm
is best explained by the imbalance in the GVHD prophylactic
regimen between the two arms despite randomization. Grade
II-IV aGVHD rates in the control arm where GVHD pro-
phylaxis was predominantly PTCy-based were markedly
lower than our historical rates without PTCy (8.3% v ap-
proximately 40%). The high frequency of PTCy use in the
placebo arm likely decreased aGVHD incidence. In addition,
the trial was not powered for aGVHDas a secondary endpoint
and the number of events was small.

The optimal schedule and route of administration of FMT is
unknown. Most studies have administered FMT on a single
day or on two consecutive days. FMT was administered as
oral capsules over 2 days at amedian of 27 days after HCT in a
previous trial, with improvement in microbiota indices.29

Besides oral encapsulated form,29,35,38 FMT has been ad-
ministered by enema,26,28,30 via nasogastric/nasoduodenal
tube,26,27,31,33,36 or by upper32 or lower endoscopy.34 The
source of FMT has been third-party26,27,31,32,34,36 or autolo-
gous,28,30 with no compelling comparative data.We preferred
a third-party product because many patients have already
been exposed to antibiotics by the time their own stool could
be banked for FMT. Patient subsets more likely to benefit
from FMT are also unknown. In one study, 25 allogeneic HCT
recipients were randomly assigned after neutrophil en-
graftment to receive autologous FMT versus no interven-
tion.30 A unique aspect of this study was that only patients
with a low fecal abundance of Bacteroidetes were treated.
Themost frequent time frame for FMT in HCT recipients has
been after neutrophil engraftment, consistent with the
observed association between microbiota diversity at the
time of engraftment and transplant-related mortality.7

Some studies administered FMT before HCT to eradicate
pre-existing MDROs.32

The minimum required engraftment for clinical efficacy is
also unknown.33,35 Our engraftment rate is in the same range
as in previous FMT trials in patients with AML and HCT
patients.29,34,36 The current product (single dose, same dose
range) yielded engraftment rates of 50%-60% in patients
with CDI.72 The reasons for a lower engraftment rate in this
trial are unclear but likely include more severe mucoepi-
thelial damage and a less-receptive environment for new
microbiota. With short-amplicon sequencing, donor

5316 | © 2023 by American Society of Clinical Oncology

Rashidi et al



engraftment results may underestimate true engraftment
rates. This is because while novel donor strains often replace
related strains of the same species in the patient, completely
novel donor species are less likely to be competitive against
the patient’s indigenous microbiota.73 Because taxonomy
deeper than the genus level is not reliable in short-amplicon
sequencing, unique donor strains (and even species) cannot
be identified with certainty. Shotgun sequencing can par-
tially overcome this barrier.

In conclusion, this randomized, double-blind placebo-
controlled trial confirmed safety of FMT and its efficacy
on the microbiota in patients with AML and patients with
allogeneic HCT. The findings from this trial should inform
the design of future definitive trials. A randomized trial in
allogeneic HCT recipients with acute GVHD as the primary
end point and with stratification for GVHD prophylaxis and

conditioning intensity is warranted. Our observed small
effect size for infection argues against using infection as the
primary end point in future trials unless several hundred
patients can be enrolled. If such a large trial is infeasible, we
recommend limiting the inclusion criteria to patients with
known or likely more severe microbiota injury (eg, recent
CDI or pathogen colonization, exposure to antianaerobic
antibiotics) in whom the impact of FMT may be greater. In
the AML cohort, we enrolled only patients receiving inpa-
tient chemotherapy. The increasing use of novel primarily
outpatient antileukemia regimens reduced the pool of eli-
gible inpatients, thereby slowing accrual. FMT trials tar-
geting such patients who also have significant antibiotic
exposure and likely develop dysbiosis will be of interest.
Finally, a larger total microbiota dose delivered over several
days might improve engraftment and potentially treatment
efficacy.
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