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Abstract

Nicotinic acetylcholine receptors (nAChRs) have been historically defined as ligand-gated 

ion channels and function as such in the central and peripheral nervous systems. Recently, 

however, non-ionic signaling mechanisms via nAChRs have been demonstrated in immune cells. 

Furthermore, the signaling pathways where nAChRs are expressed can be activated by endogenous 

ligands other than the canonical agonists acetylcholine and choline. In this review, we discuss the 

involvement of a subset of nAChRs containing α7, α9, and/or α10 subunits in the modulation of 

pain and inflammation via the cholinergic anti-inflammatory pathway. Additionally, we review the 

most recent advances in the development of novel ligands and their potential as therapeutics.
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1. Introduction

Nicotinic acetylcholine receptors (nAChRs) isolated from the electric organ of the Torpedo 
marmorata ray were first visualized using electron microscopy by Changeux and colleagues 

in 1973 [1,2]. These studies revealed that the receptors present in the ray electric organ 

were pentameric structures with a central pore that presumably allowed the flux of ions. 
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Later studies would demonstrate that upon ligand-binding the pentameric structure would, 

in fact, rotate to open the channel and allow ion flux across the cell membrane generating 

an electrical current. Nicotinic receptors were later classified as the first member of a 

superfamily of ligand-gated ion channels that would expand to include γ-aminobutyric acid 

(GABAA), glycine, 5-hydroxytryptamine type 3, and zinc-activated channels [3,4]. Through 

molecular biology techniques, it was later discovered that nAChRs are composed of five 

individual subunits rather than one large polypeptide. In fact, the nAChR subtype found 

at the neuromuscular junction is composed of four different gene products [5,6]. A total 

of 16 nicotinic genes have been identified in the human genome and code for α1-α7, α9, 

α10, β1-β4, δ, ε, and γ subunits. Myriad nAChR subtypes can be formed by different 

combinations of these subunits. For example, α4 and β2 subunits assemble together and 

comprise the most abundant nAChR subtype, α4β2 * (the asterisk denotes the potential 

presence of other subunits), in the mammalian brain. In the peripheral nervous system, 

α3β4 * nAChRs are most abundant. Subtypes containing more than one gene product 

are classified as heteromeric while those formed from a single gene product are known 

as homomeric nAChRs. Human homomeric subtypes have historically only included α7 

and α9, but very recently we demonstrated that α10 subunits can assemble as functional 

homopentamers when heterologously expressed in Xenopus laevis oocytes [7]. Regardless 

of subunit combination, long-standing scientific precedent has held that nAChRs function as 

ligand-gated ion channels, but recent work in immune cells has challenged this notion [8].

Immune cells, especially monocytes and lymphocytes, are known to express several nAChR 

subunits [9–12]. Importantly, distinct subtypes of these cells express α7, α9, and/or α10 

subunits [13,14]. The potential nAChR subtypes expressed by immune cells are shown in 

Fig. 1. However, patch-clamp electrophysiology studies have failed to detect acetylcholine-

mediated currents in these cells [15]. Ionic currents mediated by α7 nAChRs have been 

observed in differentiated macrophages from the human THP-1 monocyte cell line, however 

[16]. Several ligands of α7, α9, and α10 nAChRs have been shown to modulate the 

release of inflammatory cytokines from immune cells [17–19]. These ligands include the 

canonical neurotransmitters acetylcholine and choline, but recently conjugates of choline 

and phosphocholine with soluble proteins including albumin and C-reactive protein have 

been shown to act as ligands of α7 and α9α10 nAChRs [20–23]. It is notable that 

immune cells are not considered ‘excitable’ yet express ion channels that are generally 

associated with neurons and other excitable cells. Though the exact mechanisms of how 

signal transduction occurs in immune cells is not fully understood, it is likely that canonical 

ion-channel functions are not involved. In this work, we review the involvement of nAChRs 

containing α7, α9, and/or α10 subunits in the modulation of pain and inflammation with a 

focus on novel ligands and mechanisms.

1.1. α7 nAChRs are broadly implicated in modulating the inflammatory responses of 
immune cells

Seminal studies in the early 2000s identified α7 nAChRs as prominent players in the 

modulation of inflammatory cytokine release by immune cells. Stimulation of the vagus 

nerve releases acetylcholine into the blood stream and activates nAChRs expressed by 

circulating immune cells. In vitro studies using human macrophages showed that stimulation 
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with acetylcholine inhibited the release of the inflammatory cytokines interleukin-1β 
(IL-1β), IL-6, IL-18 and tumor necrosis factor-α (TNF-α) [24]. Initially the nAChR 

mediating this response was unknown, but later experiments identified α7 as the principal 

subtype [25]. The link between the nervous system and the immune system can therefore be 

attributed to immune cell expressed α7 nAChRs along with the vagus nerve and collectively 

comprise two critical components of the cholinergic anti-inflammatory pathway (CAP) 

[26,27]. Mechanistically, stimulation of α7 nAChRs expressed by macrophages activates 

a number of important biochemical pathways involved in the inflammatory response. 

One pathway inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) and another activates the janus-kinase-2 (JAK)-signal transducer and activator of 

transcription-3 (STAT3) pathway (JAK2-STAT). Inhibition of NF-κB signaling reduces the 

expression of and ultimately the release of TNF-α by macrophages and monocytes. A third 

pathway has been proposed that involves interleukin-1 receptor-associated kinases (IRAK) 

[28]. Stimulation of monocytes and macrophages with lipopolysaccharide (LPS) induces 

IRAK expression and TNF-α release through toll-like receptors (TLRs). Increased IRAK 

expression functions as a negative regulator of TLR functions. Human peripheral blood 

mononuclear cells (PBMCs) stimulated with nicotine showed up-regulation of IRAK-M 

expression, and this effect was dependent on α7 nAChR-mediated activation of the JAK2-

STAT3 pathway [19]. Macrophages are just one example where a non-ionic mechanism 

of action mediated by α7 nAChRs has been demonstrated [29]. Non-ionic mechanisms 

have also been shown in a number of primary monocytes and monocytic cell lines and 

lymphocytes. In human pathologies, the expression and function of α7 nAChRs by immune 

cells may attenuate excessive inflammation. Clinical outcomes in patients with sepsis 

have been shown to closely correlate with levels of α7 nAChR mRNA in PBMCs [30]. 

Patients with lower levels of α7 nAChR mRNA experienced worse clinical outcomes 

including increased mortality, whereas those with higher levels showed attenuated signs 

and symptoms of sepsis. The inflammatory response that occurs in sepsis is reminiscent of 

the ‘cytokine-storm’ that occurs in COVID-19 disease, and α7 nAChRs have been proposed 

as pharmacological targets for attenuating the associated inflammatory response [31, 32]. 

Not surprisingly, broad involvement of α7 nAChRs in a variety of inflammatory conditions 

has generated immense interest in developing drugs that targets these receptors [33]. A 

summary of the interaction between α7 nAChRs and the downstream biochemical pathways 

is presented in Fig. 2.

1.2. Novel compounds that target α7 nAChRs are analgesic and antiinflammatory

The development of drugs that target α7 nAChRs is a major focus of research at several 

academic institutions and in the pharmaceutical industry, and a number of candidate 

compounds have been developed. Extensive research indicates that activation of α7 

nAChRs is antiinflammatory and analgesic. However, recently developed compounds 

show a more diverse range of mechanisms rather than simple receptor agonism. These 

mechanisms include partial agonism, silent agonism, and positive allosteric modulation 

[34,35]. Some ligands show functional properties of both orthosteric agonists and positive 

allosteric modulators (PAM) and are called ago-PAMs. Agonists of α7 nAChRs have 

demonstrated efficacy in numerous models of pain and inflammation (Table 1). Two 

such compounds, PNU-282987 [36] and PHA-543613 [37], have been tested in a wide 
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range of disease models including neuropathic and inflammatory pain, chemotherapeutic-

induced neuropathic pain (CIN), acute lung injury, inflammatory bowel disease (IBD), 

and chronic pain related to posttraumatic stress disorder (PTSD). In the rat chronic 

constriction injury (CCI) model of neuropathic pain, PNU-282987 was demonstrated to 

produce acute analgesia in response to noxious mechanical stimuli as measured by an 

Analgesy-meter [38]. Daily administration of PNU-282987 reduced macrophage infiltrate 

and attenuated pathophysiological changes of the sciatic nerve that are associated with CCI 

injury. Certain chemotherapeutics such as oxaliplatin, paclitaxel, and vincristine produce 

a type of neuropathy in humans that is characterized by decreased pain tolerance and 

severe cold allodynia. In a model of CIN, cold allodynia (cold plate test) and hyperalgesia 

(paw pressure and von Frey tests) were reduced by treatment with PNU-282987 [39]. Rats 

administered the chemotherapeutic oxaliplatin showed lower levels of α7 nAChR protein in 

the sciatic nerve, DRG, and spinal cord and PNU-282987 prevented this downregulation. 

PNU-282987 and another α7 nAChR agonist (R)-ICH3 also produced modulatory effects on 

microglia and astrocyte populations in the oxaliplatin model. Microglia numbers increased 

in the dorsolateral-periaqueductal grey, thalamus, and somatosensory areas in the brain 

but not in the dorsal horn of the spinal cord. By contrast, glial-fibrillary acidic protein-

positive astrocyte numbers were increased in both the dorsal horn and in pain-related 

areas of the brain. Stimulation of glial cell and astrocyte populations by α7 nAChR 

agonists was hypothesized to be neuroprotective by preventing the pathophysiological 

changes to neurons and nerves induced by oxaliplatin. Both PNU-282987 and PHA-543613 

also produced analgesia in the formalin model of inflammatory pain in mice [40,41]. 

Analgesia was observed in both the acute and tonic phases of pain that are induced by 

formalin administration. The antinociceptive effects of PNU-282987 were not observed 

in α7 knockout mice. Both compounds were also effective in the dextran sodium sulfate 

(DSS) model of colitis in rodents, but there were differences in their clinical profiles. 

PNU-282987 reduced referred mechanical hyperalgesia (von Frey test) associated with DSS-

induced colitis but failed to attenuate the associated pathophysiological changes in colonic 

histology [42]. By contrast, PHA-543613 showed disease modifying properties including 

preservation of colon length and prevention of mucosal ulceration [43]. Interestingly, the 

disease modifying effects of PHA-543613 were only observed in male but not female 

mice. Although PNU-282987 failed to reduce myeloperoxidase activity, a marker of 

polymorphonuclear leukocyte recruitment, and levels of keratinocyte-derived chemokine in 

DSS, it was effective in modifying immune cell activity in the rat model of postoperative 

ileus (POI) and acute lung injury. Macrophage, but not neutrophil, infiltration into the 

muscle layer of the intestines was reduced in POI by administration of PNU-282987 [44]. 

In a model of acute lung injury, neutrophil recruitment, levels of TNF-α, IL-1β, IL-6 levels, 

and NF- κB activity were all reduced with PNU-282987 [45]. Similarly, PHA-543613 

suppressed reactive astrocyte numbers and decreased spinal IL-1β and TNF-α levels in 

the rat PTSD-related chronic pain model [46]. Lastly, in an inflammation-driven model of 

systemic skin fibrosis, PHA-543613 prevented or reversed fibrosis in mice [47].

One potential issue with stimulation of α7 nAChRs to treat disease is the fact that this 

receptor subtype is highly expressed in multiple systems in the body, and over stimulation 

may result in unwanted effects on systems not related to the disease target of interest. A 

Hone and McIntosh Page 4

Pharmacol Res. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potential solution would be to use a ligand that lacks full efficacy or to increase endogenous 

cholinergic tone through allosteric modulation. Partial agonists are ligands that activate the 

receptor or increase endogenous tone but to a lesser extent than the natural neurotransmitter, 

and silent agonists are those that lack intrinsic agonist activity and function by working 

through non-conducting states of the receptor. Examples of such ligand are GTS-21 [48] 

and NS-6740 [49]. GTS-21, an analog of the plant alkaloid anabasine (Nicotiana glauca), 

is a partial agonist of α7 nAChRs and has been shown to be analgesic in models of 

inflammatory pain. In the complete Freund’s adjuvant (CFA) model, GTS-21 attenuated 

mechanical hyperalgesia (von Frey test) and thermal hyperalgesia (Analgesia Meter and cold 

plate test) [50]. Likewise, in the formalin model NS-6740 reduced nocifensive behaviors 

(paw licking) and was analgesic in both the acute and tonic phases of the inflammatory 

pain response [41]. In a different study, NS-6740 reduced mechanical allodynia (von Frey 

test) in mice subjected to CCI [51]. Ligands, such as GAT-107, that bind to the orthosteric 

binding-site as well as an allosteric modulatory site are called ago-PAMs [52,53]. In a 

mouse model of experimental autoimmune encephalomyelitis (EAE), GAT-107 reduced 

signs and symptoms of neuroinflammation as well as meningeal infiltration of immune 

cells in the spinal cord [35]. Mechanical allodynia (von Frey test) was also attenuated 

in CCI and LPS-induced inflammatory pain by GAT-107 treatment [54]. Interestingly, 

ligands that have no intrinsic agonist activity, but show only positive allosteric modulation, 

have also been shown to be analgesic and anti-inflammatory. The PAM PNU-120596 was 

analgesic in phase II of the formalin model [40,41] and was remarkably effective at reducing 

the signs and symptoms of DSS-induced colitis in mice including reduced severity of 

pathophysiological changes in colon histology [43]. These studies suggest that increasing 

the endogenous cholinergic tone through positive allosteric modulation might be an effective 

therapeutic strategy for the treatment of pain and inflammation without the risk of inducing 

desensitization which could result in antagonism of the CAP. However, in some cells over 

stimulation of α7 nAChRs with PNU-120596 proved to be cytotoxic from elevated levels of 

intracellular calcium [55]. Nevertheless, these studies provide strong evidence that ligands 

of α7 nAChRs exert their analgesic and anti-inflammatory properties through modulation 

of the activities of immune cells and specifically through inhibition of pro-inflammatory 

cytokine and chemokine release by these cells. A number of other compounds not mentioned 

here have been developed and assessed for their potential as analgesic and anti-inflammatory 

drugs as well as treatments for disorders of cognition [56–62]. Lastly, natural products such 

as formulated curcumin have shown promising results in rodent models of inflammatory 

pain and CIN [63,64].

1.3. Nicotinic acetylcholine receptors containing α9/α10 subunits are novel targets for 
pharmacological intervention in pain and inflammatory conditions

CHRNA9 and CHRNA10 are the most recently discovered genes in the nAChR family 

[15, 69–71]. Initially discovered through a rat cDNA library screen, in situ hybridization 

studies showed that CHRNA9 expression was localized to a discrete set of tissues outside 

of the central nervous system including the cochlea, pars tuberalis, and olfactory bulb. In 

humans, α9 was discovered in epidermal and oral keratinocytes and functionally regulates 

keratinocyte adhesion [72]. Some years after the discovery of the rat α9 subunit, human 

CHRNA9 and CHRNA10 were discovered through the screening of libraries obtained from 
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whole embryo and tonsil [15,71]. Importantly, α9 and α10 mRNAs were found in tonsil 

tissue-derived B-, and T-cells, peripheral blood lymphocytes, and monocytes. Subsequent 

work refined the expression patterns of α9 and α10 to CD3 +, CD4 +, and CD8 + T-cells 

as well as CD19 + and CD80 + B-cells [13]. These studies have spurred investigations into 

the role of α9 and α10 subunits in immune-system function including pathophysiological 

conditions such as cancer [73,74]. A summary of the interaction between α9/α10 nAChRs 

and the downstream biochemical pathways is presented in Fig. 3.

1.4. α-Conotoxins are analgesic, anti-inflammatory, and reduce signs and symptoms of 
disease in models of neuropathic pain

The expression of α9 and α10 subunits by immune cells suggests that α9/α10 nAChRs 

are involved in immune cell functions. Some of the first studies that implicated α9/α10 

nAChRs in neuropathic pain came from experiments with α-conotoxins that selectively 

target α9/α10 nAChRs. One such α-conotoxin, Vc1.1, was shown to accelerate functional 

recovery of damaged nerves and alleviate pain in the rat CCI model of neuropathic pain 

[75]. Vc1.1 later entered human clinical trials as ACV-1 but failed to show the same efficacy 

for reducing human neuropathic pain, consistent with its low affinity for the human α9α10 

subtype [76–78]. A second α-conotoxin called [S4Dap]Mr1.1 that is similar in sequence 

to Vc1.1 has recently been shown to be analgesic in the rat CCI model [79]. α-Conotoxin 

RgIA has been used in a number of neuropathic and inflammatory pain models and shown 

to be effective in reducing pain and inflammation. In the rat CCI model, RgIA reduced the 

signs and symptoms of neuropathy [80]. Specifically, RgIA reduced the histological changes 

in nerve morphology including decreased axonal compactness and diameter, loss of myelin 

sheath, and decreased nerve-fiber numbers. The therapeutic effects produced by RgIA in this 

model may be attributed to modulation in the activity of immune cells since inflammatory 

infiltrate including lymphocytes and CD86+ macrophages was reduced in the affected nerve 

and dorsal root ganglion (DRG) [80,81]. These disease-modifying effects were not limited to 

peripheral nerves as RgIA prevented the activation of microglia and astrocytes in the dorsal 

horn of the spinal cord. Further evidence that RgIA modulates the activity of immune cells 

was found in the DSS model of inflammatory bowel diseases (IBD) in mice [82]. In this 

study, colonic levels of TNF-α were reduced and pathological changes in colon morphology 

were prevented by administration of RgIA. Therapeutic effects were also observed in models 

of CIN. Morphological changes in rat DRG induced by oxaliplatin administration were 

significantly attenuated and the number of glial fibrillary acidic-protein positive astrocytes in 

the dorsal horn reduced [83]. Analogs of RgIA with increased potency were also analgesic 

in CIN. RgIA4 prevented oxaliplatin-induced cold allodynia and neuropathic pain in mice 

[84], and the therapeutic effects were dependent on the presence of CD3+ T-cells [85]. 

Strikingly, RgIA4 provided sustained protection against oxaliplatin-induced nerve injury in 

mice long after the last dose of the peptide [86]. Additional analogs of RgIA with increased 

potency and biostability are being developed as potential therapeutics for treatment of 

human neuropathic pain conditions [87–90].

Other α-conotoxins and small molecules that target α9α10 nAChRs have also been shown 

to be therapeutic in various neuropathy models. GeXIVA and is an α-conotoxin that is 

structurally quite different than Vc1.1, [S4Dap]Mr1.1, and RgIA yet was also analgesic and 
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reduced mechanical hyperalgesia (von Frey test) in rats subjected to CCI [88,91]. Small 

non-peptidic molecules have been synthesized that are analgesic and anti-inflammatory 

in CCI-induced neuropathy, formalin-induced inflammatory pain, and CIN. The tetrakis-

quaternary ammonium compound ZZ-204G was analgesic across a battery of pain models 

including CCI, formalin-induced inflammatory pain, and the tail-flick model of thermal 

nociception [92]. The related compound ZZ1–61c prevented the induction of neuropathy 

by the chemotherapeutic vincristine [93]. Structurally diverse ligands selective for α9α10 

nAChRs that are analgesic provide strong evidence in support of targeting α9/α10 nAChRs 

for treating neuropathic and inflammatory pain [94,95].

The ligands discussed above are all antagonists of α9α10 nAChRs, but some studies suggest 

that agonist ligands may have anti-inflammatory and/or analgesic properties. Recently, a 

number of novel small molecule agonists and antagonists that target α9α10 nAChRs were 

reported [96]. One of these compounds, the agonist pCF3 diEPP, was effective at inhibiting 

LPS-induced release of IL-6 from primary mouse macrophages and IL-6, TNF-α, and IL-1β 
from whole human blood cultures [97]. Additionally, pCF3 diEPP inhibited ATP-induced 

release of IL-1β from human peripheral blood mononuclear leukocytes. Choline is an 

agonist of α9α10 nAChRs and has analgesic and anti-inflammatory properties, but most 

studies attribute the analgesic effects of choline to agonism of α7 nAChRs. It is noteworthy 

that choline concentrations in the mM range were required for inhibition of TNF-α release 

from cultured mouse macrophages [98]. In other cell types such as human U937 monocytes, 

10 μM choline was sufficient to inhibit IL-1β release [21]. Naturally occurring derivatives 

of choline have been shown to inhibit the release of cytokines from several immune cell 

types. Cytidine-5′-diphosphate choline, or CDP-choline, has been shown to be analgesic, but 

again most of these studies attribute the effects to α7 nAChRs [99–102]. Phosphocholine 

is an agonist of human monocyte expressed nAChRs containing α7, α9, and α10 subunits 

[20,21]. In these studies, both choline and phosphocholine inhibited ATP-stimulated release 

of IL-1β from human and murine monocytes and from the human monocyte U937 cell 

line. The effects of choline and phosphocholine were significantly inhibited by the potent 

and selective antagonist RgIA4, suggesting that α9α10 nAChRs are involved in the in 

modulation of immune cell function by choline and its derivatives. There is a large disparity 

between the potency of choline for activation of α7 vs α9-containing nAChRs; choline 

activates α9 and α9α10 nAChRs [71] in the low μM range whereas mM concentrations are 

required for activation of the α7 subtype. Concentrations in the mM range are probably not 

achieved in human blood [103], and thus it remains an open question as to which nAChR 

subtype mediates the therapeutic effects of choline. (Table 2).

1.5. Alternative mechanisms for the therapeutic effects of α-conotoxins that target α9α10 
nAChRs

Certain α-conotoxin ligands that target α9α10 nAChRs have been shown to act as agonists 

of GABAB receptors [104–110]. Structure-activity studies have correlated potency for 

GABAB receptors with analgesia suggesting that a portion of the therapeutic effects might 

be accounted for by this mechanism. GABAB receptors are present in DRG, spinal cord and 

brain. Baclofen is a clinically used GABAB agonist with analgesic activity in animal models. 

However, its modest therapeutic effects are thought to be mediated through action on central 
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nervous system (CNS) rather than DRG expressed GABAB receptors [111–113]. The size 

and charge of α-conopeptides would likely significantly limit CNS concentrations of the 

peptides precluding therapeutic effects at spinal cord or brain GABAB receptors. Separately, 

it is noteworthy that highly potent α-conopeptide antagonists of α9α10 nAChR, that show 

analgesic activity, lack effects on GABAB receptors [84,89, 90]. In addition, studies utilizing 

mice with germline deletions of the α9 nAChR subunit indicate that analgesic activity of 

the peptides in CIN are dependent on the α9 nAChR subunit [84,85,90]. Furthermore, as 

reviewed above, disease-modifying aspects of analgesic α-conopeptides are consistent with 

immune system modulation mediated by α9-containing nAChRs; similar properties have not 

been noted for baclofen or other GABAB receptor agonists (for further review see [94,114] 

and references therein).(Table. 3).

2. Conclusions

A growing body of evidence establishes nAChRs containing α7, α9, and/or α10 subunits 

as promising molecular targets for pharmacotherapy of disease that involves pain and 

inflammation. It appears increasingly likely that inhibition of pain and inflammatory states 

by nAChRs occurs through modulation of immune cell function. However, at the present 

time the exact composition and stoichiometry of the nAChRs involved in modulating 

immune cell function isn’t precisely known. Long-standing convention holds that α7 

subunits form homopentamers and that α9 and α10 subunits are expressed together as 

heteropentamers in human. Recently, however, it was demonstrated that α7 subunits can 

combine with β2 subunits to form α7β2 heteromers and are expressed in certain areas of 

mammalian basal forebrain [118–120]. Immune cells are also known to express β2 subunits, 

and it is unknown whether they combine with α7 subunits in these cells. The stoichiometry 

of immune cell expressed receptors containing α9 and α10 subunits is perhaps more 

complicated. Not only can α9α10 nAChRs vary with respect to the ratio of α9 to α10 

subunits [78,121], which alters the pharmacology of the receptor, but the individual subunits 

themselves can also be expressed as homopentamers [7,69,71]. Nevertheless, studies using 

ligands selective for α7 and α9α10 nAChRs strongly suggest that a number of immune cell 

types express these two subtypes [122]. Prospective pharmacotherapeutics may benefit from 

being subtype selective to avoid off-target effects such as reinforcing behaviors that, for 

example, have hindered the development of an analgesic drug that targets α4β2* nAChRs 

[123]. As mentioned above, agonists and PAMs of α7 nAChRs may produce unwanted 

side effects from elevated intracellular calcium levels which can be cytotoxic. Furthermore, 

α7 nAChRs are highly expressed in numerous areas of the CNS and PNS. Human adrenal 

chromaffin cells, for example, have enriched expression of α7 nAChRs and are involved in 

the stimulus-secretion coupling response [124]. Ligands that activate α7 nAChRs have been 

shown to be excitatory and increase catecholamine release from human chromaffin cells 

[125,126]. Such actions could increase plasma catecholamine levels and potentially trigger 

cardiovascular side effects. Therefore, research investigating potential side effects that may 

occur from systemic administration of α7 nAChR ligands is essential. Pharmacotherapeutics 

targeting α9α10 nAChRs might produce fewer side effects because of their restricted 

expression patterns in comparison to α7 nAChRs. α9α10 nAChR are expressed by immune 

cells, skin, anterior pituitary, and a limited number of other tissues but not in the CNS [127], 
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and therefore agonist ligands would likely be devoid of reinforcing behaviors. Interestingly, 

mRNA for the α9 subunit has been found in human [128] and α10 in rat [129] DRG though 

responses attributable to α9α10 nAChRs have thus far not been identified. Additional 

research is needed to further understand the physiological as well as the pathological roles of 

α7 and α9α10 nAChRs in pain and inflammation.
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CIN chemotherapy-induced neuropathic pain
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PAM positive allosteric modulator
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Fig. 1. 
The nicotinic acetylcholine receptors (nAChRs) involved in pain and inflammation. 

(A) Cartoon rendition of the cryo-EM structure of the human homomeric α7 nAChR 

(PDB:7KOX) [130]. (B) A 20 Å spherical view of the orthosteric ligand-binding site shown 

with the frog neurotoxin epibatidine (yellow) from Epipedobates tricolor. (C) A 20 Å 

spherical view of the allosteric ligand-binding site. The labeled residues are involved in 

binding different ligands and are cyan colored. (D) Several immune cell types including 

lymphocytes, monocytes/macrophages, and granulocytes are known to express nAChRs 

containing α7, α9, and/or α10 nAChR subunits. These subtypes may include homomeric 

α7 (green), α9 (red) or α10 (blue) nAChRs. Heteromeric α9α10 (red and blue) are 

also expressed although the stoichiometry and ratio of α9 to α10 subunits has yet to 

be elucidated. The structures are color coded to depict graphically the different nAChR 

subtypes and generated using the α7 structure (PDB:7KOO) [130]. The receptors are in 

the closed position and oriented looking through the channel from extracellular space. All 

images were generated using PyMOL.
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Fig. 2. 
Nicotinic acetylcholine receptor (nAChR) α7 inhibits the production of inflammatory 

cytokines by suppressing downstream pathways triggered by stimulation of toll-like 

receptors (TLR) by damage-associated molecular patterns (DAMPS) and pathogen-

associated molecular patterns (PAMPS). In this model, stimulation of α7 nAChRs activates 

the Janus Kinase-2 (JAK2) signal-transducer and activator of transcription-3 (STAT3) 

signaling pathway. JAK2 phosphorylates STAT3 which dimerizes and translocates to the 

nucleus where it interferes with nuclear factor kappa-B (NF-κB) binding to DNA and 

prevents the transcription of genes for inflammatory cytokines. Interleukin-1 receptor 

associated kinase-M (IRAK-M), an IRAK specific to monocytes and macrophages, inhibits 

the phosphorylation of IRAK-1 by IRAK-4. The downstream effects are to inhibit 

the oligomerization of tumor necrosis-factor receptor-associated factor-6 (TRAF-6) and 

IRAK-1. The TRAF-6/TRAK-1 complex activates NF-κB which translocates to the nucleus 

and binds to DNA to initiate the production of inflammatory cytokines. How IRAK-M 

becomes activated by stimulation of α7 nAChRs is currently under investigation but may 

involve other intermediary molecules such as G-proteins. For brevity, not all intermediaries 

in the pathways are shown; for a thorough review of NF-κB signaling see Liu et al., [131].
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Fig. 3. 
Stimulation of α9α10* (the asterisk indicates that the stoichiometry of the receptor 

expressed by immune cells is unknown and may also include other subunits) nicotinic 

acetylcholine receptors (nAChR) inhibits the production of inflammatory cytokines. Danger 

signals including stimulation of toll-like receptors (TLR) by damage-associated molecular 

patterns (DAMPS) and pathogen-associated molecular patterns (PAMPS), and stimulation of 

purinergic P2×7-Rs by ATP increases the production of inflammatory cytokines including 

interleukin-1β (IL-1β). Stimulation of both TLRs and P2X-Rs is needed for the expression 

and assembly of the inflammasome complex (not shown) and subsequent cleavage of pro-

IL-1β by activated caspase-1. In this model, agonists of monocytic α9α10* nAChRs such 

as nicotine, choline, and phosphocholine inhibit IL-1β release as demonstrated in human 

monocytes [20,21]. The mechanisms of how this occurs is currently under investigation, but 

one potential mechanism involves activation of the Janus Kinase-2 (JAK2) signal-transducer 

and activator of transcription-3 (STAT3) signaling pathway as demonstrated in breast cancer 

cells [132]. Stimulation of α9α10* nAChRs has also been shown to inhibit the release of 

tumor necrosis factor-α (TNF-α) and IL-6, but not the anti-inflammatory cytokine IL-10 in 

human whole blood cultures [97].
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Table 2

Antagonists that target α9-containing nAChRs, mechanism of action, and effects in models of pain and 

inflammation.

Ligand Mechanism of 
Action

Disease Model Pharmacological Effects Ref.

Vc1.1 Antagonist CCI-induced neuropathic 
pain

Reduced mechanical allodynia, mechanical hyperalgesia, 
infiltration of immune cells; disease modifying effects.

[75, 81]

Mr1.1 Antagonist CCI-induced neuropathic 
pain

Reduced mechanical hyperalgesia. [79]

RgIA Antagonist CCI-induced neuropathic 
pain CIN

Reduced mechanical allodynia and mechanical 
hyperalgesia, infiltration of immune cells. Reduced 
mechanical hyperalgesia, cold allodynia; disease 
modifying effects

[81]
[83, 115]

RgIA4 Antagonist CIN Reduced mechanical hyperalgesia and cold allodynia; 
disease modifying effects.

[84, 85, 116]

RgIA-5474 Antagonist CIN Prevention of cold allodynia induction. [89]

RgIA-5628 Antagonist CIN Prevention of cold allodynia induction. [87]

RgIA-5524 Antagonist CIN Prevention of cold allodynia induction. [90]

GeXIVA Antagonist CCI-induced neuropathic 
pain CIN

Reduced mechanical hyperalgesia. Long-lasting 
inhibition of mechanical and cold allodynia.

[88]
[91, 117]

ZZ-204 G Antagonist CCI-induced neuropathic 
pain Formalin-induced 
inflammatory pain

Reduced mechanical hyperalgesia
Reduced inflammatory pain.

[92]
[92]

ZZ1–61c Antagonist CIN Reduced mechanical allodynia and mechanical 
hyperalgesia.

[93]

CCI, chronic constriction injury; CIN, chemotherapeutic-induced neuropathic pain.
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Table 3

Small molecules that target nAChRs containing α7, α9, or α10 subunits, mechanism of action, and 

pharmacological effects.

Ligand Receptor 
Target

Mechanism of 
Action

Pharmacological Effect Ref.

Choline α7 α9α10 agonist partial 
agonist

Decreased TNF-α release from mouse macrophages; inhibition of 
IL-1β from primary human monocytes.

[21,98]

CDP-choline α7 agonist Reduced oxaliplatin-induced neuropathic pain in mice; reversal of 
CCI-induced mechanical hyperalgesia in mice; decreased mechanical 
hyperalgesia and paw edema in carrageenan-induced inflammatory 
pain.

[100–102]

Phosphocholine α9α10 agonist Inhibition of IL-1β from human U937 monocytes, monocytic THP-1, 
THP-1 derived M1-like macrophages, primary monocytes, and PBMCs.

[21,22]

pCF3 diEPP α9α10 partial agonist Inhibition of TNF-α, IL-1β, and Il-6 release from whole human 
blood cultures; reduced IL-1β release from PBMCs, monocytic THP-1, 
THP-1 derived M1-like macrophages, and primary monocytes.

[97]

CDP-choline; cytidine-5′-diphosphate choline; PBMCs, peripheral blood mononuclear cells.
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