
2274

Journals of Gerontology: Medical Sciences
cite as: J Gerontol A Biol Sci Med Sci, 2023, Vol. 78, No. 12, 2274–2281

https://doi.org/10.1093/gerona/glac190
Advance Access publication September 15, 2022

© The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America. 
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Research Article

The Association of Epigenetic Age Acceleration and 
Multimorbidity at Age 90 in the Women’s Health Initiative
Purva  Jain, PhD, MPH,1,*,  Alexandra  Binder, ScD, ScM,2,3 Brian  Chen, PhD,1 
Humberto Parada Jr., PhD, MPH,4,5,  Linda C. Gallo, PhD,4 John Alcaraz, PhD,5 Steve Horvath, 
PhD, ScD,6,7 Parveen Bhatti, PhD,8,  Eric A. Whitsel, MD, MPH,9 Kristina Jordahl, PhD,10 
Andrea  A.  Baccarelli, MD, PhD,11 Lifang  Hou, MD, PhD,12 James  D.  Stewart, PhD,9 
Yun Li, PhD,13,14,15,  Michael J. LaMonte, PhD, MPH,16 JoAnn E. Manson, MD, DrPH,17 and 
Andrea Z. LaCroix, PhD1

1The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, 
USA. 2Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. 3Department of Epidemiology, Fielding 
School of Public Health, University of California, Los Angeles, California, USA. 4Division of Epidemiology and Biostatistics, School of 
Public Health, San Diego State University, San Diego, California, USA. 5San Diego Moores Cancer Center, University of California, San 
Diego, California, La Jolla, California, USA. 6Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, 
California, USA. 7Department of Biostatistics, School of Public Health, University of California, Los Angeles, California, USA. 8Cancer 
Control Research, BC Cancer, Vancouver, British Columbia, Canada. 9Department of Epidemiology, Gillings School of Public Health and 
Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA. 10Department of Epidemiology, 
School of Public Health, University of Washington, Seattle, Washington, USA. 11Department of Environmental Health Sciences, Mailman 
School of Public Health, Columbia University Irving Medical Center, New York, New York, USA. 12Institute for Public Health and Medicine, 
Northwestern University, Chicago, Illinois, USA. 13Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, 
USA. 14Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 15Department of Computer Science, 
University of North Carolina, Chapel Hill, North Carolina, USA. 16Department of Epidemiology and Environmental Health, School of Public 
Health and Health Professions, University at Buffalo―SUNY, Buffalo, New York, USA. 17Department of Medicine, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, Massachusetts, USA.

*Address correspondence to: Purva Jain, PhD, MPH, The Herbert Wertheim School of Public Health and Human Longevity Science, University of 
California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail: jpurva89@gmail.com

Received: February 3, 2022; Editorial Decision Date: August 26, 2022

Decision Editor: Lewis A. Lipsitz, MD, FGSA

Abstract

Background: Epigenetic age acceleration (EAA), a measure of accelerated biological aging, has been associated with an increased risk of 
several age-related chronic conditions. This is the first study to prospectively examine the relationship between EAA and both multimorbidity 
count and a weighted multimorbidity score among long-lived postmenopausal women.
Methods: We included 1 951 women from the Women’s Health Initiative who could have survived to age 90. EAA was estimated using the 
Horvath pan-tissue, Hannum, PhenoAge, and GrimAge “clocks.” Twelve chronic conditions were included in the multimorbidity count. The 
multimorbidity score was weighted for each morbidity’s relationship with mortality in the study population. Using mixed-effects Poisson 
and linear regression models that included baseline covariates associated with both EAA and multimorbidity, we estimated relative risks (RRs) 
and 95% confidence intervals (CIs) for the relationships between each EAA measure at the study baseline with both multimorbidity count and 
weighted multimorbidity score at age 90, respectively.
Results: For every one standard deviation increase in AgeAccelPheno, the rate of multimorbidity accumulation increased 6% (RR = 1.06; 
95% CI = 1.01–1.12; p = .025) and the multimorbidity score by 7% (RR = 1.07; 95% CI = 1.01–1.13; p = .014) for women who survived 
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to age 90. The results for a one standard deviation increase in AgeAccelHorvath, AgeAccelHannum, and AgeAccelGrim with multimorbidity 
accumulation and score were weaker compared to AgeAccelPheno, and the latter 2 did not reach statistical significance.
Conclusion: AgeAccelPheno and AgeAccelHannum may predict multimorbidity count and score at age 90 in older women and, thus, may be 
useful as a biomarker predictor of multimorbidity burden in the last decades of life.

Keywords:  Biomarkers, Epidemiology, Multimorbidities, Successful aging

In the United States (U.S.), the number of individuals who are 90 
or older is expected to quadruple from 1.9 million in 2016 to 7.6 
million individuals in 2050 (1). Women outnumber men 3 to 1 
among those 90 or older (2). Among Medicare beneficiaries in 2008, 
82.3% of women ages 85 or older had multimorbidity, defined by 
the U.S. Department of Health and Human Services as the presence 
of 2 or more chronic conditions (3). There is substantial evidence 
supporting the relationship between multimorbidity and reduced 
functional status and quality of life, as well as an increased risk of 
mortality (4–10).

Recently, the National Institutes of Health (NIH) developed a 
framework highlighting the influence of factors that may cause, in-
crease the risk for, or exacerbate multimorbidity, and the potential 
for these factors to inform prevention strategies to achieve signifi-
cant public health impact (11). Relatedly, biological aging focuses 
on biological mechanisms that are fundamental to aging-related in-
creases in disease and disability as one ages and may serve as tar-
gets for prevention (12). Individuals with the same chronological age 
may experience different rates of biological aging, and faster bio-
logical aging is associated with chronic disease onset, morbidity, and 
mortality (13). Healthy longevity can be characterized as having a 
biological age less than one’s chronological age and is closely linked 
with the concept of healthspan. Healthspan prioritizes physical 
and cognitive functioning with advancing age, and preservation of 
healthspan targets both primary and secondary prevention of im-
paired function (14).

For a biomarker to be a useful indicator or predictor of healthy 
longevity and healthspan, it should move beyond the prediction 
of all-cause mortality and be capable of predicting multimorbidity 
burden at an advanced age. Epigenetic age is a composite measure 
of DNA methylation (DNAm) levels across specific cytosine-guanine 
dinucleotides (CpG) sites that are associated with chronologic 
and phenotypic age. These DNAm signatures are associated 
with age-related diseases and all-cause mortality, independent of 
chronologic age (15–17). Epigenetic age acceleration (EAA) is 
then the residual variation between one’s measured epigenetic age 
and their epigenetic age predicted by their chronological age and 
is indicative of whether one is aging slower or faster than their 
chronological age.

To the best of our knowledge, all other evaluations of EAA 
with multimorbidity count were cross-sectional (18). A  meta-
analysis including 9 studies from 4 unique cohorts was con-
ducted to assess the relationship of a 1-year increase in EAA 
and multimorbidity count at the time of blood draw. Overall, all 
EAA measures showed a statistically significant association with 
cross-sectional multimorbidity count. The previous study limited 
the multimorbidities that were included in the age-related condi-
tions available in each cohort, did not consider the risk of mor-
tality associated with each condition, was not restricted to older 
age groups, and did not examine associations with multimorbidity 
at a specific older age when all participants would have the same 
amount of chronological aging.

The NIH report on multimorbidity additionally recom-
mended the use of prospective, age-based, epidemiologic studies to 
examine potential mechanisms that may be intervened in to target 
multimorbidity among older adults (11). No prospective studies 
have examined the relationship between EAA and multimorbidity 
among women who survive to older ages (90+ years). The aims of 
this study, therefore, were to examine the relationships between EAA 
and both multimorbidity count and weighted multimorbidity score 
at age 90. We hypothesized that women who experienced acceler-
ated biological aging, as measured by epigenetic age, would have 
higher multimorbidity counts and weighted multimorbidity scores 
at age 90.

Method

Study Population
In 1993, the Women’s Health Initiative (WHI) was created in order to 
identify strategies to prevent heart disease, osteoporosis, and breast and 
colorectal cancers among postmenopausal women (19,20). The current 
study included three WHI ancillary studies, 2 designed as nested case–
control studies and 1 nested cohort of WHI clinical trial participants, 
that previously assayed genome-wide DNAm. The Bladder Cancer 
and Leukocyte Methylation Ancillary Study identified methylation 
profiles associated with bladder cancer risk among 468 women with 
and 468 women without bladder cancer (Study 1) (21). The Epigenetic 
Mechanisms of Particulate Matter-Mediated Cardiovascular Disease 
Ancillary Study identified the pathophysiological mechanisms that 
underlie particulate matter-related cardiovascular disease using a 
random sample of 2 200 WHI clinical trial participants (Study 2) (22). 
The Integrative Genomics for Risk of Coronary Heart Disease and 
Related Phenotypes in the WHI Cohort Ancillary Study included 1 070 
women with and 1 070 women without coronary heart disease (Study 
3) (23). DNA methylation was evaluated before the diagnosis of inci-
dent bladder cancer and incident coronary heart disease (CHD).

The current study included women that were eligible to survive 
to age 90 between baseline and the end of the most recent obser-
vation period (September 30, 2020)  and also had baseline assays 
of genome-wide DNAm. There were a total of 2 079 women who 
were eligible to survive to age 90 (443 from Study 1, 694 from Study 
2, and 942 from Study 3). After excluding women who had an un-
known vital status the final analytic sample included 1 951 women 
(94%) of which 1 022 women survived to age 90, and 929 women 
died before reaching age 90. The study protocols were approved by 
the WHI Papers and Publication Committee, and all women pro-
vided informed consent in writing or by phone.

Measures
Epigenetic age
In each ancillary study, DNAm was measured using the Illumina 
Infinium 450K platform (Illumina, San Diego, CA). The minfi R 
package was used to read in all DNAm data files, check for failed 
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samples, and implement normalization and quality control steps. The 
basic quality controls excluded probes targeting cytosine-guanine 
(CpG) sites on the Y chromosome, probes with detection p values > 
.01 in > 1% of samples, probes with a bead count <3 in >10% of sam-
ples, and probes that measure non-CpG methylation. Normalization 
was completed using beta-mixture quantile normalization and imple-
mented in beta-mixture quantile dilation (BMIQ) (24).

Epigenetic age was estimated using four established “clocks,” 
including the Horvath pan-tissue, Hannum, PhenoAge, and 
GrimAge. Hannum et al. (17) used 71 CpG sites in the blood to 
predict age and Horvath (16) used 353 CpG sites to predict age 
across several different tissues. PhenoAge (25) used 513 CpG sites 
and was trained on a “phenotypic age” measure created using 9 
clinical biomarkers associated with time-to-death. GrimAge (18) 
used 1  030 CpG sites and was developed by predicting time-to-
death using age, sex, DNAm-based surrogate biomarkers of 
plasma protein levels, and a DNAm-based estimator of smoking 
pack-years. A description of each clock estimate is summarized in 
Supplementary Table 1, and these clocks have also been previously 
compared in greater detail (26).

Multimorbidity outcomes
There were 12 chronic conditions included in our multimorbidity 
count and weighted multimorbidity score (Table 1). These condi-
tions were selected due to their prevalence among older women in 
the United States, their strong influence on physical functioning and 
quality of life, as well as guidance from current literature (27,28). 
Certain conditions such as sensory impairment, cognitive impair-
ment, hip fracture, frequent faller, and urinary incontinence were 
added due to their high prevalence in this study of older women and 
previous examination in WHI studies of multimorbidity. While con-
ditions such as hypertension, hyperlipidemia, and obesity were con-
sidered, they were not included due to their role as major risk factors 
for many conditions included in the definition and to maintain focus 
on conditions that were disease endpoints.

These conditions were identified as part of the WHI follow-up 
protocol using both self-report on annual or semiannual outcome 
forms, followed by physician adjudication for selected outcomes of 
major interest within WHI. For self-reported items, the following 
question was used for ascertainment, “Since the date on the front of 
this form, has a doctor told you that you have any of the following 
conditions or have you had any of the following procedures?” 
The following conditions were self-reported: Alzheimer’s disease, 

diabetes characterized by self-reported use of diabetic medications, 
depression characterized by self-reported treatment of medication or 
therapy, sensory impairment self-reported as moderate to severe vi-
sion or hearing loss, urinary incontinence self-reported as ever leaking 
urine and feeling extremely bothered by it and frequently falling 
self-reported as falling at least 2 times in the past 12 months. The 
primary outcomes of the WHI study were adjudicated throughout 
the study by a physician using medical records, including incident 
CHD, cerebrovascular disease, cancer, and hip fracture. Participants 
who reported “yes” for any of the multimorbidity conditions or were 
classified as such through adjudication from baseline to follow-up 
through reaching age 90 were classified as having the condition at 
age 90. This approach was taken in recognition of the chronicity of 
the conditions under study.

There were 2 outcomes for this study: multimorbidity count and 
weighted multimorbidity score. Multimorbidity count was defined 
as the total number of morbidities from baseline to follow-up to 
age 90 or the last follow-up for those who did not reach age 90. 
Weighted multimorbidity score was a derived score based on the 
association of each morbidity with survival status among women eli-
gible to survive to age 90. The weights were created using the subset 
of women from WHI included in the analytic sample. Each condition 
was placed in an univariate model with survival status at age 90, 
and the weight was calculated as the beta of each condition over the 
beta of urinary incontinence, which had the lowest beta and served 
as a reference weight of 1 (Table 1). This method was developed and 
applied in a previous study that examined multimorbidity among 
hospitalized individuals (29). The final multimorbidity score was the 
sum of the relative weights based on all of the conditions a woman 
had acquired from baseline to age 90 or her last study visit before 
the date of death. The purpose of the weighted multimorbidity score 
was to capture the degree to which each disease was life-threatening, 
and assign value accordingly using a weighted versus absolute count.

Covariates
Covariates were measured at WHI baseline and selected due to their 
associations with both EAA and multimorbidity. Covariates in-
cluded age at blood draw, estimated blood cell composition using 
the Houseman method (30) (CD8+ T Cells, CD4 T cells, Natural 
Killer cells, B lymphocyte cells, monocytes, and granulocytes), race/
ethnicity (Black/African American), Hispanic (Latino), White not 
of Hispanic origin, Unknown (not one of the above), education 
(high school/general education development or less, some college, 

Table 1. Definition of 12 Chronic Conditions and Assigned Weighted Score in Multimorbidity Count and Multimorbidity Score Outcomes

Chronic Condition Definition Weighted Score 

Stroke One or more of the following: carotid artery disease, stroke, and transient ischemic attack 18.4
Coronary disease One or more of the following: coronary heart disease, clinical myocardial infarction, congestive 

heart failure, coronary artery bypass graft, or percutaneous transluminal coronary angioplasty
16.5

Cancer Any cancer (excluding nonmelanoma skin cancer) 15.8
Chronic obstructive 
pulmonary disease

Self-reported physician diagnosis 14.6

Sensory impairment Self-reported moderate to severe trouble with vision or hearing loss 13.0
Diabetes Self-reported physician diagnosis of diabetes and treatment for diabetes (pills and insulin) 11.7
Frequent faller Self-reported ≥2 falls within 1 year 7.5
Cognitive impairment Self-reported physician diagnosis with dementia or Alzheimer’s 6.4
Hip fracture Broken hip 4.5
Osteoarthritis Self-reported physician diagnosis 4.0
Depression Self-reported treatment for depression (pills or therapy) 3.1
Urinary incontinence Self-reported very or extremely bothersome urinary leakage 1.0
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and college graduate or more), walking frequency (rarely or never, 
1–3 times/mo, 1 time/wk, 2–3 times/wk, 4–6 times/wk, and 7+ 
times/wk), body mass index categories (underweight [<18.5 kg/m2], 
normal [18.5–24.9 kg/m2], overweight [25.0–29.9 kg/m2], and obese 
[≥30  kg/m2]), alcohol consumption (nondrinker, past drinker, <1 
drink/mo, <1 drink/wk, 1–<7 drinks/wk, and 7+ drinks/wk), pack-
years smoking (never smoker, <5, 5–20, and 20+), and physical func-
tion score (RAND-36 10-item physical function subscale (31), range 
0–100, higher score reflects higher function).

Statistical analysis
Baseline characteristics were examined by PhenoAgeAccel quar-
tiles, and differences across quartiles were tested using Pearson’s 
chi-squared tests for categorical variables and F-tests for continuous 
variables. Unadjusted and fully-adjusted Poisson and linear regres-
sion models with a random intercept for the ancillary study were 
used to estimate relative risks (RRs) and 95% confidence intervals 
(CIs) for the associations between each EAA measure (one standard 
deviation increase) with multimorbidity count and multimorbidity 
score, respectively. For the analysis that included all women who 
were eligible to survive to age 90, a log link offset was used to 
account for differential follow-up times (ie, differential time to ac-
cumulate comorbidities). Adjusted models included all covariates as 
described earlier and inverse probability weights to account for the 
case–control sampling of two ancillary studies and the oversampling 
of racial/ethnic minorities in the third ancillary study to create an 
analytic study population more representative of the WHI overall. 
The weights were the inverse of the selection probability in Study 
1–3 for each individual in order to downweight cases. The sample 
was reweighted, so the sum of the weights approximated the original 
sample size of the analytic sample using the WHI arm for which the 
participant was originally sampled.

The primary analyses were conducted among women who sur-
vived to age 90. The rationale for the primary analysis restricted to 
women who survived to age 90 is to understand how useful these 
epigenetic clocks may be in predicting a woman’s health status as 
defined by their comorbidity burden at age 90. A sensitivity analysis 
was conducted in all women eligible to survive to age 90, regardless 
of their survival to age 90, to evaluate the robustness of the find-
ings to selective mortality. A second sensitivity analysis repeated the 
primary analysis adding an adjustment for baseline multimorbidity 
count. This analysis was done to account for the multiple morbidity 
count at the time of blood draw that could influence the prediction 
of total morbidity count at age 90 and also evaluates the prediction 
of incident multimorbidity. Additionally, a sensitivity analysis was 
conducted using a modified Charlson Comorbidity Index. The ra-
tionale for the sensitivity analysis was to assess the relationship of 
EAA with a frequently utilized measure of multimorbidity as well 
as one that primarily focuses on severe and life-threatening con-
ditions. All analyses were conducted using R Version 1.4.1106 (R 
Foundation for Statistical Computing, Vienna, Austria).

Results

The 1  022 women who survived to age 90 were followed for 
20.7 years on average (range = 10.4–25.4 years) from WHI baseline 
to age 90. The 929 women who did not survive to age 90 were fol-
lowed for 12.8 years on average (range = 0.1–24.7 years). Women 
who survived to age 90 had an average of 1.1 multimorbidities 
at baseline (range  =  0–5 multimorbidities) and 2.8 at age 90 

(range = 0–8 multimorbidities). Women who did not survive to age 
90 had an average of 1.3 multimorbidities at baseline (range = 0–5 
multimorbidities) and 3.2 by last-follow up on study (range = 0–9 
multimorbidities). The distributions of conditions by multimorbidity 
count among women eligible to survive to age 90 are shown in 
Figure 1. In brief, a large proportion of women who had 3 or fewer 
chronic conditions had arthritis, cancer, cardiovascular disease, 
sensory impairment or were frequent fallers. Additionally, among 
women who had greater counts of morbidities, the conditions 
tended to be more consistently distributed.

Women with higher EAA (accelerated biological aging) as meas-
ured by the Pheno clock were more likely to be Black or Hispanic 
than non-Hispanic White, have lower education, be obese, drink less 
alcohol, have a lower physical functioning score and accumulate a 
greater number of multimorbidities. In addition, those with higher 
AgeAccelPheno measures were more likely to have severe conditions 
such as cardiovascular disease and diabetes (Table 2). Compared 
to all women in the WHI the women in the analytic sample had 
lower levels of education, higher BMI, lower alcohol consumption, 
lower physical functioning scores and were also older on average 
(Supplementary Table 2).

The associations between baseline EAA and multimorbidity 
count and multimorbidity score at age 90 based on our adjusted 
models are reported in Table 3. For every one standard deviation 
increase in AgeAccelHorvath (5.1 years) the relative multimorbidity 
count at age 90 was 4% higher (RR = 1.04; 95% CI = 1.00–1.09; 
p =  .074) and the relative weighted multimorbidity score was 3% 
higher (RR = 1.03, 95% CI = 0.98–1.07; p = .174). For every one 
standard deviation increase in AgeAccelPheno (7.0 years), the rate 
of multimorbidity accumulation increased 6% (RR  =  1.06; 95% 
CI = 1.01–1.12; p =  .025) and the weighted multimorbidity score 
7% (RR = 1.07; 95% CI = 1.01–1.13; p = .014) for women at age 
90. The results for both AgeAccelHannum and AgeAccelGrim with 
multimorbidity count and score were null. The results were slightly 
attenuated for the covariate unadjusted analysis and remained 
similar for the sensitivity analyses that additionally adjusted for base-
line multimorbidity count (Supplementary Table 4). Additionally, the 
results for AgeAccelPheno were similar in direction and magnitude 
when examined separately among cases and controls from Study 1 
and Study 3.

The results of the sensitivity analyses in which we examined the 
adjusted associations between baseline EAA and multimorbidity 
count and multimorbidity score among all women eligible to sur-
vive to age 90 (n = 1 951 total) are reported in Table 4. For every 

Figure 1. The following is the distribution of women in each multimorbidity 
count group: 0 (n = 60); 1 (n = 264); 2 (n = 446); 3 (n = 512); 4 (n = 355); 5 
(n = 197); 6 (n = 90); 7 (n = 16); 8 (n = 9); 9 (n = 2).
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Table 2. Baseline Characteristics by PhenoAgeAccel Quartile (n = 1 951)

 

Decelerated Aging Accelerated Aging  

−31–−4.5 −4.4–0.0 0.1–4.0 4.1–29.4 

p(n = 493) (n = 516) (n = 411) (n = 529)

Age, mean (SD) 71.0 (3.5) 71.2 (3.4) 71.0 (3.6) 70.5 (3.3) .026*
Race/ethnicity, n (%)     .005*
 Black (African American) 77 (15.7) 73 (14.3) 70 (17.1) 123 (23.5)  
 Hispanic (Latino) 32 (6.5) 41 (8.0) 34 (8.3) 47 (9.0)  
 White not of Hispanic origin 365 (74.6) 378 (73.8) 289 (70.5) 342 (65.3)  
 Unknown (not one of the above) 15 (3.1) 20 (3.9) 17 (4.1) 12 (2.3)  
Education, n (%)     .027*
 HS/GED or less 119 (24.3) 133 (25.9) 117 (28.6) 174 (33.1)  
 Some college 195 (39.8) 214 (41.7) 170 (41.6) 204 (38.8)  
 College grad or more 176 (35.9) 166 (32.4) 122 (29.8) 148 (28.1)  
Walking frequency, n (%)     .062
 Rarely or never 81 (16.5) 87 (17.0) 75 (18.5) 131 (25.0)  
 1–3 times/month 74 (15.1) 74 (14.5) 55 (13.5) 77 (14.7)  
 1 time/week 53 (10.8) 59 (11.5) 40 (9.9) 53 (10.1)  
 2–3 times/week 133 (27.1) 131 (25.6) 123 (30.3) 145 (27.6)  
 4–6 times/week 104 (21.2) 113 (22.1) 84 (20.7) 84 (16.0)  
 7+ times/week 45 (9.2) 47 (9.2) 29 (7.1) 35 (6.7)  
BMI category (kg/m2), n (%)     <.001*
 Underweight (<18.5) 5 (1.0) 4 (0.8) 5 (1.2) 5 (1.0)  
 Normal (18.5-24.9) 177 (36.1) 156 (30.3) 108 (26.4) 118 (22.5)  
 Overweight (25.0–29.9) 182 (37.1) 184 (35.7) 148 (36.2) 170 (32.4)  
 Obese (≥30) 126 (25.7) 171 (33.2) 148 (36.2) 231 (44.1)  
Alcohol consumption, n (%)     .014*
 Nondrinker 79 (16.1) 56 (11.1) 48 (11.8) 80 (15.3)  
 Past drinker 94 (19.1) 112 (22.1) 87 (21.4) 126 (24.1)  
 <1 drink/month 57 (11.6) 60 (11.9) 51 (12.6) 86 (16.4)  
 <1 drink/week 96 (19.6) 116 (22.9) 82 (20.2) 93 (17.8)  
 1–<7 drinks/week 112 (22.8) 114 (22.5) 89 (21.9) 81 (15.5)  
 7+ drinks/week 53 (10.8) 48 (9.5) 49 (12.1) 57 (10.9)  
Smoking pack-years, n (%)     .961
 Never smoker 265 (55.4) 270 (54.3) 209 (52.9) 283 (55.6)  
 <5 58 (12.1) 66 (13.3) 45 (11.4) 57 (11.2)  
 5–<20 62 (13.0) 60 (12.1) 52 (13.2) 60 (11.8)  
 20+ 93 (19.5) 101 (20.3) 89 (22.5) 109 (21.4)  
Age-related condition
 Alzheimer’s 58 (11.8) 63 (12.2) 52 (12.7) 65 (12.3) .982
 Arthritis 387 (78.5) 406 (78.7) 320 (77.9) 426 (80.5) .760
 Broken hip 43 (8.7) 36 (7.0) 42 (10.2) 25 (4.7) .009*
 Cancer 155 (31.4) 154 (29.8) 130 (31.6) 187 (35.3) .272
 Cardiovascular disease 149 (30.2) 168 (32.6) 154 (37.5) 198 (37.4) .037*
 Depression 36 (7.3) 30 (5.8) 36 (8.8) 48 (9.1) .191
 Diabetes 87 (17.6) 100 (19.4) 103 (25.1) 143 (27.0) .001*
 Emphysema 25 (5.1) 33 (6.4) 25 (6.1) 34 (6.4) .784
 Frequent faller 198 (40.2) 218 (42.2) 173 (42.1) 222 (42.0) .901
 Sensory impairment 154 (31.2) 179 (34.7) 136 (33.1) 168 (31.8) .648
 Stroke 42 (8.5) 66 (12.8) 34 (8.3) 52 (9.8) .070
 Urinary incontinence 66 (13.4) 63 (12.2) 63 (15.3) 80 (15.1) .442
Physical function score, mean (SD) 76.7 (22.7) 75.0 (22.3) 72.5 (23.8) 70.0 (25.3) <.001*
Baseline multimorbidity count 1.1 (0.9) 1.2 (1.0) 1.3 (1.0) 1.4 (1.1) <.001*
Follow-up multimorbidity count 2.3 (1.5) 2.4 (1.5) 2.6 (1.5) 2.6 (1.5) .040*
Total multimorbidity count 2.8 (1.5) 2.9 (1.5) 3.1 (1.6) 3.1 (1.6) .015*
Multimorbidity score 26.0 (15.9) 27.8 (17.0) 28.8 (16.9) 30.0 (1.6) .015*
AgeAccelHorvath −3.0 (4.8) −0.9 (4.4) 0.4 (4.8) 2.9 (5.4) <.001*
AgeAccelHannum −3.2 (4.9) −1.1 (4.4) 0.9 (4.2) 2.9 (4.6) <.001*
AgeAccelGrim −1.8 (3.3) −0.8 (3.7) 0.4 (3.5) 1.9 (4.1) <.001*

Notes: AgeAccel measures are the residual between chronological age and epigenetic age as measured by each individual epigenetic clock. HS = high school; 
GED = general educational development; BMI = body mass index; kg = kilograms; m = meters; SD = standard deviation.

*Conditions include cardiovascular disease, cancer, cognitive impairment, depression, osteoarthritis, history of falls, chronic obstructive pulmonary disease, 
hypertension, diabetes, hip fracture, and cerebrovascular disease.

*p < .05.
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standard deviation increase in AgeAccelPheno (7.0 years), the rate 
of multimorbidity accumulation increased 4% (RR  =  1.04; 95% 
CI = 1.00–1.07; p =  .040) and the weighted multimorbidity score 
7% (RR  =  1.07; 95% CI  =  1.04–1.10; p < .001). The results for 
AgeAccelHannum, AgeAccelHorvath, and AgeAccelGrim with 
multimorbidity count and score were null. The results were similar 
for the covariate unadjusted analysis and slightly attenuated for 
the sensitivity analysis that additionally adjusted for baseline 
multimorbidity count (Supplementary Table 3). In the final sensi-
tivity analysis there was a similar relationship between one standard 
deviation increase in EAA and a modified Charlson Comorbidity 
Index for each of the 4 measures: AgeAccelHorvath (RR  =  1.09; 
95% CI  =  0.99–1.19; p  =  .065), AgeAccelHannum (RR  =  0.93; 
95% CI = 0.84–1.04; p = .209), AgeAccelPheno (RR = 1.16; 95% 
CI  =  1.04–1.30; p  =  .006), and AgeAccelGrim (RR  =  1.06; 95% 
CI = 0.95–1.19; p = .303).

Discussion

To the best of our knowledge, this is the first study to examine the 
relationship between EAA and multimorbidity among older women 
at the time they reach age 90. In this racially and ethnically-diverse 
group of older women, this prospective study showed that in-
creased EAA as measured by AgeAccelPheno was associated with 
an increased risk of acquiring additional multimorbidities and more 
deadly multimorbidities among women who survived to age 90. 
EAA as measured by AgeAccelHorvath was also associated with an 
increase in multimorbidity count. A similar association was observed 
among all women eligible to survive to age 90 for AgeAccelPheno. 
The results also remained similar in the covariate unadjusted models 
and the fully covariate adjusted models that included baseline 
multimorbidity count. EAA measured by AgeAccelHannum and 
AgeAccelGrim were not associated with either multimorbidity count 
or multimorbidity score over time.

To date, the few studies that have examined the relationship be-
tween EAA and multimorbidity count have been cross-sectional. Lu 
et al. conducted a cross-sectional meta-analysis between each of the 

same four EAA measures utilized in this study and multimorbidity 
count at the time of blood draw. Participants were from the WHI, 
Framingham Heart Study (FHS), Invecchiare in Chianti (InChianti), 
and Jackson Heart Study (JHS). This study as well as Lu et  al.’s 
benefitted from a large sample size and racial and ethnic diversity in 
the sample. Additionally, the magnitude of the results were similar. 
Each 1-year increase in EAA was statistically significantly associ-
ated with multimorbidity count at the time of blood draw in Lu 
et  al.’s cross-sectional analysis. Specifically, in Lu et  al.’s study the 
regression estimates for a 1-year increase in AgeAccelPheno ranged 
from 0.01 to 0.03 and were significant for InChianti, JHS, FHS, and 
WHI Study 2.  In our study, the betas for a 1-year increase from 
AgeAccelPheno and both multimorbidity count and multimorbidity 
score were also close to 0.01 for all analyses.

There were also some differences to note. Lu et al.’s study and 
ours both included the following conditions: stroke, coronary 
disease, cancer, chronic obstructive pulmonary disease, visual im-
pairment, diabetes, and cognitive impairment. However, the current 
study also included: hearing impairment, frequently falling, hip frac-
ture, osteoarthritis, and depression. Within Lu et al.’s analysis, it is 
unclear which covariates were included in the analysis of each study 
cohort and if they differed across cohorts in availability and meas-
urement. Another major difference in the Lu et al. analysis was the 
inclusion of a broad age range of adult men and women ranging from 
ages 20 to 102. These differences in study design and populations 
may explain the difference in results found for AgeAccelHorvath, 
AgeAccelHannum, and AgeAccelGrim in relation to multimorbidity 
count and score at age 90 in the present study.

Epigenetic clocks are thought to be a promising measure of bio-
logical age (32). Having accelerated biological age as measured by 
these epigenetic clocks has been associated with increased risks of 
several age-related conditions such as Alzheimer’s disease, cancer, 
coronary heart disease, cognitive performance, frailty, osteoarth-
ritis, and Parkinson’s disease among others (16–18,25). The CpGs 
that were included in the clocks during the model building phase 

Table 3. Association of Epigenetic Age Acceleration With 
Multimorbidity Count and Multimorbidity Score Among Women 
Who Survived to Age 90 (N = 1 022)

 

Multimorbidity Count Multimorbidity Score

RR (95% CI)* p RR (95% CI)* p 

AgeAccelHorvath 1.04 (1.00–1.09) .074 1.03 (0.98–1.07) .174
AgeAccelHannum 1.02 (0.97–1.07) .441 1.00 (0.95–1.05) .947
AgeAccelPheno 1.06 (1.01–1.12) .025 1.07 (1.01–1.13) .014*
AgeAccelGrim 0.98 (0.93–1.03) .436 0.96 (0.92–1.01) .117

Notes: All models were adjusted for the following baseline covariates: blood 
cell composition (CD8T, CD4T, NK, Bcell, Mono, and Gran), age, race/eth-
nicity, education, walking frequency, BMI, alcohol consumption, pack-years 
smoking, broken hip, emphysema, arthritis, depression, urinary incontinency, 
and visual/auditory sensory impairment; and RAND physical functioning 
score. RR = relative risk; CI = confidence interval; SD = standard deviation; 
BMI = body mass index.

*Results are presented for one standard deviation increase in 
DNAmAge measure: AgeAccelHorvath (SD  =  5.1  years), AgeAccelHannum 
(SD  =  5.3  years), AgeAccelPheno (SD  =  7.0  years), and AgeAccelGrim 
(SD = 3.9 years).

*p < .05.

Table 4. Association of Epigenetic Age Acceleration With 
Multimorbidity Count and Multimorbidity Score Among All Women 
Eligible to Survive to Age 90 (N = 1 951)

 

Multimorbidity Count Multimorbidity Score

RR (95% CI)* p RR (95% CI)* p 

AgeAccelHorvath 0.99 (0.96–1.02) .651 1.01 (0.98–1.04) .448
AgeAccelHannum 0.97 (0.94–1.01) .105 0.98 (0.95–1.02) .360
AgeAccelPheno 1.04 (1.00–1.07) .040 1.07 (1.04–1.10) <.001*
AgeAccelGrim 1.00 (0.97–1.04) .917 0.98 (0.95–1.01) .252

Notes: All models were adjusted for the following baseline covariates: blood 
cell composition (CD8T, CD4T, NK, Bcell, Mono, Gran), age, race/ethnicity, 
education, walking frequency, BMI, alcohol consumption, pack-years smok-
ing, broken hip, emphysema, arthritis, depression, urinary incontinency, and 
visual/auditory sensory impairment; and RAND physical functioning score. 
There were 1 022 women who survived to age 90 and 929 women who died 
before age 90. All models included an offset for age to account for differing 
lengths of follow-up. RR = relative risk; CI = confidence interval; SD = stand-
ard deviation; BMI = body mass index.

*Results are presented for one standard deviation increase in 
DNAmAge measure: AgeAccelHorvath (SD  =  5.1  years), AgeAccelHannum 
(SD  =  5.3  years), AgeAccelPheno (SD  =  7.0  years), and AgeAccelGrim 
(SD = 3.9 years).

*p < .05.
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are thought to have a relationship with the epigenetic mainten-
ance system, especially at promoters and enhancers throughout the 
genome. More specifically for the PhenoAge clock, the CpG sites 
that were more prevalent among individuals with accelerated aging 
were associated with several proinflammatory signaling pathways, 
while those that were less prevalent among those with accelerated 
aging were involved in transcriptional and translational machinery 
and DNA damage recognition and repair (25). Although the specific 
mechanisms are still under examination, the change in DNAm with 
age is most likely linked to declines in tissue function related to both 
intracellular changes that lead to a loss of cellular identity and small 
changes in cell composition over time (26). Only 41 of the 513 CpGs 
in the Horvath pan-tissue clock and only 5 CpGs in the Hannum 
clock are shared with the PhenoAge clock. DNAm PhenoAge was 
unique among the clocks examined because it was developed to pre-
dict phenotypic age rather than chronological age using biomarkers 
and risk factors related to all-cause mortality. In addition, PhenoAge 
was trained using longitudinal data that may better account for 
changes in health status over time. These differences may explain 
the associations between EAA measured by PhenoAge with both 
multimorbidity count and score that were not seen with some of the 
other epigenetic clocks. In the sensitivity analysis, all four epigenetic 
clocks had a similar relationship to that of the primary analysis using 
a modified Charlson Comorbidity Index.

This study had several strengths. The study population in-
cluded a large number of women who survived to age 90 and was 
also racially and ethnically diverse. On average, women were fol-
lowed for 2 decades with low rates of loss-to-follow-up. The WHI 
had information on relevant baseline characteristics and potential 
confounders. Epigenetic age was measured using several different 
clocks, which is currently considered best practice due to the low 
overlap in CpG sites and associated genes between the clocks. Each 
clock may be capturing potentially different biological pathways 
(32). Finally, there was also longitudinal measurement of several 
age-related chronic conditions, some of which were also adjudicated 
by trained physicians. There were also some limitations to note in 
this study. This study population included 2 ancillary studies that 
utilized nested case–control sampling, and thus the women included 
in this study were not representative of the larger WHI cohort; how-
ever, inverse probability selection weights were used to account for 
differences in the selection criteria, which is currently the recom-
mended approach (33). As this study was limited to women, it will 
be important to replicate the findings among both men and women 
with diverse racial, ethnic and geographical representation. Another 
limitation to note is that biological aging can be measured in several 
different ways (genomics, metabolomics, proteomics, microbiomics, 
transcriptomics, etc). Although EAA is the focus of this study, sev-
eral biological processes are likely to simultaneously contribute to 
age-related disease onset and progression (34). There is currently no 
gold standard to measure biological aging, and thus this research 
should be interpreted within a larger systems biology framework, 
that acknowledges the influence and interaction of many underlying 
processes.

In this study, we report that increased EAA measured by DNAm 
PhenoAge was associated with an increased number and more 
life-threatening multimorbidities at age 90 among older women. 
These results suggest that PhenoAgeAccel is a promising biomarker 
of multimorbidity burden among older women that captures the 
biological age and functional state of several organ systems and tis-
sues beyond one’s chronological age. These findings should be rep-
licated among independent populations of long-lived individuals to 

validate the observed findings. Additional studies are required to 
identify specific CpG sites that may be capturing cellular changes re-
lated to certain biological pathways and to establish PhenoAgeAccel 
as a biomarker for the prediction of multimorbidity burden among 
long-lived women. As women continue to live to more advanced ages, 
it will be increasingly important to predict the risk of age-related dis-
eases, especially those that are life-threatening and focus on the po-
tential for public health interventions to counteract the effect of EAA 
and lower overall disease burden.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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