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Abstract
Motivation: The precise characterization of cell-type transcriptomes is pivotal to understanding cellular lineages, deconvolution of bulk transcrip-
tomes, and clinical applications. Single-cell RNA sequencing resources like the Human Cell Atlas have revolutionised cell-type profiling. However,
challenges persist due to data heterogeneity and discrepancies across different studies. One limitation of prevailing tools such as CIBERSORTx is
their inability to address hierarchical data structures and handle nonoverlapping gene sets across samples, relying on filtering or imputation.

Results: Here, we present cellsig, a Bayesian sparse multilevel model designed to improve signature estimation by adjusting data for multilevel
effects and modelling for gene-set sparsity. Our model is tailored to large-scale, heterogeneous pseudobulk and bulk RNA sequencing data
collections with nonoverlapping gene sets. We tested the performances of cellsig on a novel curated Human Bulk Cell-type Catalogue, which harmo-
nizes 1435 samples across 58 datasets. We show that cellsig significantly enhances cell-type marker gene ranking performance. This approach is
valuable for cell-type signature selection, with implications for marker gene validation, single-cell annotation, and deconvolution benchmarks.

Availability and implementation: Codes and the interactive app are available at https://github.com/stemangiola/cellsig; and the database is
available at https://doi.org/10.5281/zenodo.7582421.

1 Introduction

The estimation of cell-type representative transcriptomes is an
essential endeavour in modern biology, facilitating the molec-
ular characterization of cellular lineages, enabling precise
single-cell annotation (Aran et al. 2019) aiding in the decon-
volution of bulk transcriptomes (Newman et al. 2015,
Monaco et al. 2019), and serving as valuable clinical predic-
tors (Foroutan et al. 2021, Pal et al. 2021, Sun et al. 2021).
Single-cell RNA sequencing resources like the Human Cell
Atlas (Osumi-Sutherland et al. 2021) have become invaluable
for cell-type profiling. To scale cell-type signature estimation
to vast single-cell datasets with thousands of biological sam-
ples, a common practice is aggregating single cells into pseu-
dobulk samples. This approach reduces data dimensionality
and enables the utilization of established analytical tools
(Squair et al. 2021). In parallel, cell-type-specific bulk tran-
scriptomes obtained through experimental purification meth-
ods, such as antibody-based flow-sorting, represent a rich and
independent resource, as cell types are discerned based on

protein expression rather than RNA abundance. While the
exponential growth in the availability of cell-type transcrip-
tional profiles promises unprecedented opportunities, it is ac-
companied by significant challenges. These challenges arise
from the heterogeneity across data sources. Samples within
each study tend to exhibit self-similarity based on the experi-
mental design, and some datasets possess an order of magni-
tude more samples than others, potentially skewing the
transcriptional representation of cell types. In addition, gene
sets may partially overlap across datasets.

CIBERSORTx (Newman et al. 2019), a widely adopted
tool for estimating cell-type transcriptional profiles from cell-
type-specific transcriptomes, relies on complete gene overlap
among samples and does not account for the hierarchical
structure of the data. Adjusting for multilevel effects (e.g.
study) and handling nonoverlapping gene sets could address
these limitations and enhance the signature estimation perfor-
mance of this popular method. Multilevel (i.e. random-effect)
statistics can model hierarchical sources of variability,
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including samples and studies, which can avoid weighting
biases when distinct studies have wildly different sizes. Here,
we introduce cellsig, a novel plugin method designed to aug-
ment the signature estimation capabilities of CIBERSORTx
by adjusting transcriptomes for hierarchical effects (study/
dataset) and addressing data sparsity.

cellsig is a Bayesian multilevel generalized linear model tai-
lored to RNA sequencing data. It uses joint hierarchical model-
ling to preserve the uncertainty of the mean-variability
association of the gene-transcript abundance [similar to the
outlier detection method ppcseq (Mangiola et al. 2021b)]. The
joint modelling of mean-variability association, performed on
latent parameters rather than observed data, does not require
harsh filtering of lowly abundant gene transcripts, which is key
for modelling cell-type-specific markers transcribed in specific
cell populations. Also, cellsig models nonoverlapping gene sets
across samples as missing information.

Although multilevel models already exist (Bates et al. 2015,
Yirga et al. 2020), they do not actively allow data adjustment.
Those methods and other nonmultilevel that are tailored to
RNA sequencing, such as edgeR (Robinson et al. 2010),
DESeq2 (Love et al. 2014), and limma-voom (Law et al.
2014) estimate feature-wise dispersion from the mean-
variability association; however, the uncertainty of this asso-
ciation is not part of the model, and requires filtering of the
lowly abundant genes (Mangiola et al. 2021a,b). Also, the
current methods do not model missing information but rely
on external imputation.

To evaluate the effectiveness of cellsig, we tested the perfor-
mance in deconvolution and gene ranking of CIBERSORTx-
generated signatures with or without multilevel adjustment.
We tested cellsig on the novel Human Bulk Cell-type Catalogue
(HBCC), a comprehensive resource harmonizing 1435 samples
from 58 diverse datasets, encompassing 67 distinct cell types.
Accessible via a user-friendly web interface (https://github.com/
stemangiola/cellsig), this catalogue is an invaluable resource for
bulk and single-cell-based research, enabling specific biological
investigations through its intuitive interface. We show that cell-
sig improves cell-type marker gene ranking performance,
resulting in higher deconvolution accuracy.

In conjunction with the HBCC, our method represents a
valuable resource for cell-type signature selection, with pro-
found implications for marker gene validation, single-cell an-
notation, and deconvolution benchmarks. cellsig empowers
researchers to estimate cell-type signatures from large-scale
complex cell-type transcriptional catalogues, further advanc-
ing our understanding of cellular diversity and function.

2 Materials and methods

2.1 Data acquisition and harmonization

We collected 58 transcriptome datasets (Table 1), including
experimentally purified (e.g. cell sorting or bead purification)
or primary culture (only controls) samples. Most samples
were derived from tissue; few were derived from in vitro

activation assays (including cases of type-I and II macro-
phages and conventional dendritic cells). We procured the
raw read counts for most datasets (n¼ 53) with an exception
for a few (n¼ 5), which only contained the normalized read
counts. We processed and aligned the RNA-seq reads from
the raw paired-end FASTQ files for some of the datasets that
do not have the read counts information available. Firstly, we
trimmed the sequencing adapter sequences by the Trim-
Galore tool (Krueger 2015) running on a paired-end option
with other parameters set to default. The quality of the
trimmed reads was checked through the FastQC tool
(Andrews 2010). Finally, the read alignment was achieved
through the STAR aligner (Dobin et al. 2013) against the hu-
man genome annotation data from assembly version
GRCh38, and the default alignment parameters were utilized.

After the acquisition, datasets were further processed to
have consensus gene feature keys across the datasets; for in-
stance, NCBI gene IDs/Ensembl gene IDs were converted to
the associated HGNC gene symbols using the
‘AnnotationDbi’ and ‘org.Hs.eg.db’ packages. In cases of an-
notating multiple IDs to the same gene symbol, we only se-
lected the information of the first entry. We also dropped the
transcripts which were not annotated to any gene symbols
from the gene-ID conversion process. Next, duplicated
transcript-abundance pairs were aggregated to have a unique
transcript-abundance value for each gene across every sample.
In addition, we filtered out the transcripts with missing abun-
dance counts. Finally, all the datasets were uniformly struc-
tured to have the following information: gene symbol, sample
IDs, cell-type nomenclature from the source dataset, and ref-
erence ID of the source dataset.

As the collected datasets were assembled from several stud-
ies with diversified experimental designs, they contained sam-
ples with varying cell-type nomenclatures despite their
biological and functional similarities. Therefore, to harmonize
the samples representing a well-defined broad cell-type group,
we redefined the source-cell-type—nomenclatures of the sam-
ples with similar cellular characteristics to a more conven-
tional cell-type nomenclature (Supplementary Table S1). For
instance, we specified the cell type as ‘CD56dim NK’ for the
samples we phenotypically characterized as CD56dimCD57þ,
CD56dimCD57�, CD56dimCD94þ, CD56dimCD94�, and
CD56dimCD16þ NK cells.

To remove potentially duplicated samples from the cata-
logue, we filtered samples from the same dataset through the
tidybulk package (remove_redundancy function) (Mangiola
et al. 2021a). The top 1000 most-variable genes of each sam-
ple within a dataset are screened first, and then the pairwise
Pearson correlation coefficients were estimated between all
the samples of that dataset. Finally, samples with a correlation
value >0.99 were dropped from the catalogue. Following this
workflow, from the initially gathered 1629 samples, we ended
up with 1435 nonredundant transcriptome samples, which
constructed the final catalogue (Supplementary Table S2).

2.2 Bayesian sparse random-intercept model of

transcript abundance

Noise model: The regression model (Figure 1) is based on a
negative binomial distribution. The binomial distribution is a
discrete probability distribution with a lower bound at zero.
This distribution models the number of failures in a series of
independent and identically distributed Bernoulli trials up to a
specified number of successes. The negative binomial is here

Table 1. Datasets included in the HBCC database.

Name Samples Cell types Reference

ENCODE 382 25 Luo et al. (2020)
BLUEPRINT 84 29 Fernández et al. (2016)
GSE107011 106 19 Monaco et al. (2019)
Other sources 770 117 (see Supplementary Table S4)

2 Al Kamran Khan et al.

https://github.com/stemangiola/cellsig
https://github.com/stemangiola/cellsig
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad685#supplementary-data


parameterized by mean (log link) and overdispersion (log
link) [Equation (1)]. This parameterization is convenient for
our linear modelling.

NB njl; hð Þ ¼ nþ h� 1
n

� �
l

lþ h

� �n h
lþ h

� �h

(1)

Mean: The mean transcript abundance (log link) is mod-
elled as a combination of a group-level [i.e. random; e.g.
dataset; Equation (2)] effect and a population-level (i.e.
fixed) effect. The mean of the negative binomial distribution
for each gene is calculated as the sum of the expected value
for the population and the group-level transcript
abundance.

Xaþ Zb (2)

Group-level mean and standard deviation: The variability
across group effects is modelled gene-wise with the stan-
dard deviation parameter q [Equation (3)]. x and o are the
mean and standard deviation hyperpriors of q [Equations
(4) and (5)].

b � normal 0; qð Þ (3)

q � gamma x; oð Þ; with x > 1 and o > 1 (4)

x;o � normal 3; 1ð Þ (5)

Population-level overdispersion: The overdispersion is
modelled gene-wise by the parameter r. The parameter r
represents the negative log overdispersion from Equation
(10). The prior of the overdispersion parameter r is condi-
tional to the means a [Equation (6)]. The positive associa-
tion between the log mean and its log over-dispersion is
modelled as a hierarchical linear function. c0 and c1 are
the intercept and slope of the log overdispersion-log mean
association. d is the standard deviation. These parameters
have hyperpriors defined by variables set outside the model,
informed by the datasets analyzed in this study and left
nonstringent, and can alternatively be set by the user
[Equations (7–9)]. Given that those hyperpriors are exter-
nally provided, we identified that setting the standard devi-
ation at 20% of the mean achieved model convergence
while allowing flexibility.

rg � normal k0 þ k1 � ag; d
� �

(6)

Figure 1. Graphical plated representation of the inference model representing the Equations (1–15). The empty circles represent observed data or the

constants of the hyperpriors given as data. The full circles represent parameters (reals, vectors, or matrices). The shaded frames represent the

dimensionality of the variables. The squares include the description of the variables.
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k0 � normal k�0;
jk�0j

5

� �
; where k�0 is calculated outside the model

(7)

k1 � normal k�1;
jk�1j

5

� �
; where k�1 is calculated outside the model

(8)

d � normal d�;
jd�j

5

� �
; where d� is calculated outside the model

(9)

Scaling the mean for sequencing depth: The differences in
sequencing depth across biological replicates are modelled
with a (log-)scaling factor � that multiplies the transcript’s
expected abundance (mean). The scaling factor is given as
known, calculated from the trimmed mean of M values
(TMM) (Robinson and Oshlack 2010) and the library size [as
calculated by tidybulk (Mangiola et al. 2021a)]. This scaling
principle is also used through diverse approaches by some
popular methods for differential gene-transcript abundance,
such as DESEeq2 (Love et al. 2014), edgeR (McCarthy et al.
2012), and ppcseq (Mangiola et al. 2021b).

Ys;g � NegativeBinomial exp Xs;gac;g þ Zs;rbr;g þ �s
� �

; exp rgð Þ
� �

(10)

Core model: The data is modelled as generated from a
Negative Binomial distribution with the above parameters
[Equation (10)].

Mean prior: The expected log abundance a across genes is
modelled as generated by a skewed normal distribution,
where l represents the mean, w represents the standard devia-
tion and v the skewness [Equation (11)]. These parameters
have hyperpriors defined by variables set outside the model,
informed by the datasets analyzed in this study, and can alter-
natively be set by the user [Equations (12–14)].

a � skewNormal l; exp wð Þ; tð Þ (11)

l � normal l�;
jl�j

5

� �
; where l� is calculated outside the model

(12)

w � normal w�;
jw�j

5

� �
; where w� is calculated outside the model

(13)

t � normal t�;
jt�j

5

� �
; where t� is calculated outside the model

(14)

Inference: This set of sampling statements and the data is
provided to Stan (Carpenter et al. 2017) to sample from a
joint posterior distribution of the model parameters
[Equation (15)]. Stan uses a dynamic Hamiltonian Monte
Carlo sampling algorithm, a variation on the Markov-chain

Monte Carlo sampling method. By default, four Markov
chains are run. The number of burn-in iterations is 300 for
each chain, and the number of sampling iterations is 500 per
chain, giving a base of 50 draws for the 2.5% and 97.5%
quantiles.

P k0; k1; d;l;w; t;x;oð Þ
YG
g¼1

P rgjag; k0; k1; d
� �

P qgjx;o
� �

YG
g¼1

YC
c¼1

P ag;cjl;/; t
� �YG

g¼1

YR
r¼1

P bg;cjx; o
� � (15)

2.3 Data missingness

A missing data point is a gene missing from a set of samples,
for which the missingness cannot be attributed to being zero-
count. Our model naturally allows for data missingness. At
the estimation time, sample/gene pairs are fitted against the
parameters by Stan, sequentially. Missing data points are sim-
ply omitted from the fitting process.

2.4 Generation of adjusted data

To obtain study-effect-free transcriptome datasets, cellsig gen-
erates data from the fitted posterior distribution (posterior-
predictive simulation) only from the population-level (i.e.
fixed) cell-type effects. We generate the same number of sam-
ples as the raw data for consistency. As a form of regulariza-
tion, we generate data within the 80% credible interval of the
marginal distributions of each sample-transcript pair.

2.5 Data analysis

To model the transcript-abundance distribution for a particu-
lar cell type with many heterogeneous samples from diversi-
fied data sources, we apply cellsig on raw data and provide
cellsig-adjusted data to signature selection methods (i.e.
CIBERSORTx in this study). This approach was applied to
23 of the most common immune and nonimmune cell types
within the human bulk transcriptional catalogue (HBCC),
covered by a large number of transcriptome datasets. We se-
lected endothelial cells, epithelial cells, fibroblast cells, mast
cells, memory B cells, naı̈ve B cells, eosinophil, monocyte,
neutrophil, CD56bright NK cells, CD56dim NK cells, cd-T cells,
immature myeloid dendritic cells, mature myeloid dendritic
cells, M1-macrophages, M2-macrophages, naı̈ve CD8þ T-
cells, helper T-cells, regulatory T-cells, central CD4þ memory
T-cells, effector CD4þ memory T-cells, central CD8þ memory
T-cells, and effector CD8þ memory T-cells.

For this data, cellsig estimated the heterogeneity for cell-
type transcriptomes, modelling population (i.e. fixed) and
group (i.e. random; e.g. study) effects. We organized cell types
into a differentiation hierarchy. For each node of the hierar-
chy, cellsig allows for missing information due to partial gene
overlap across samples (e.g. missing gene-sample pairs). The
generated dataset is then input to CIBERSORTx to generate
the transcriptional signatures.

2.6 Cell-type-specific feature selection

We utilized the signature generation module of CIBERSORTx
(Newman et al. 2019). This algorithm identifies cell-type-
specific marker genes by comparing the transcriptomes of
multiple cell types, producing a transcriptional signature ma-
trix of the cell types that can be used for the deconvolution of
bulk-tissue transcriptomes. We utilized this tool to generate
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transcriptional signature matrices for 23 different cell types
(see subsection Data analysis). We used two input datasets for
the signature generation; (i) the dataset containing raw tran-
scriptomes and (ii) a simulated transcriptome dataset with
transcript abundances estimated from the Bayesian modelling.
For the raw count dataset, the number of genes is inconsistent
across these cell types, so we first selected only those genes
present across all 23 cell types in at least 1 sample. Then we
imputed the missing transcript abundances for each of the
samples of a given cell type. As for the simulated dataset from
Bayesian modelling, we followed the workflow described in
the previous section.

For both dataset types, we prepared transcriptional signa-
ture matrices with varying sizes (50, 100, 200, 500, 1000,
and 2000 markers) by adjusting the G.min and G.max param-
eters of CIBERSORTx (signatures and the specific parameters
are provided in Supplementary Table S3). For both input
types and all the different signatures, the q-value parameter
was always specified to 0.01, and the rest of the other param-
eters were kept default.

2.7 Deconvolution benchmark

We evaluated the performance of the adjusted signatures in
deconvolving artificial tissue transcriptomes with known
composition. Signatures that lead to a small error of the esti-
mated cell-type proportions from their true proportions are
deemed better in deconvolution. One hundred in silico mix-
tures were simulated by in silico mixtures with known pro-
portions randomly generated from Dirichlet distributions.
These in silico mixtures were prepared using the cellsig pack-
age (generate_mixture_from_proportion_matrix function).
These randomly generated proportions were used as the
ground truth. We benchmarked the ability of the cell-type sig-
natures estimated with CIBERSORTx from raw or adjusted
data to produce accurate deconvolution. We used three
deconvolution methods: CIBERSORT (Newman et al. 2015),
EPIC (Racle and Gfeller 2020), and linear least-square regres-
sion (LLSR) (Abbas et al. 2009) implemented in the tidybulk
package (deconvolve_cellularity function). Finally, the mean-
absolute-error values were obtained for each signature from
the deconvolution of a transcriptome mixture data with the
following equation.

Mean absolute error ¼

X
jðReference proportion of

a cell type� Estimated proportion of that cell typeÞj
Total number of cell types

In addition, we used the Philentropy package (Drost 2018)
to calculate the Jensen–Shannon divergences (Lin 1991) from
the estimated and ground truth proportions. To assess the
deconvolution accuracy, we calculated the Pearson correla-
tion coefficients (Benesty et al. 2009) between the ground
truth and the estimated cell proportions. To provide another
line of evidence about the performances of cellsig, we evalu-
ated the cell-type specificity of each marker to one cell type
preferentially (i.e. a gene marker highly transcribed in one cell
type and lowly transcribed in all the others). First, we ranked
the cell types for each marker based on descending transcrip-
tional abundance. Next, we compared the fold difference in
transcriptional abundances between the first and the second
cell type, which we referred to as ‘second-fold-change’
(Fig. 1).

2.8 User interface

To allow visualization of the catalogue and the Bayesian
estimates of transcriptional profiles, we developed an inter-
active web application using RShiny v1.7.2 running on R
v4.2.0. The first tab in the application allows for visual in-
spection of the gene’s relative abundances across 23 cell
types in the form of violin plots. The transcript-abundance
level is represented as a log10-transformed version of
TMM-scaled-counts. The estimates of the transcript abun-
dances are represented by a red quantile bar overlayed on
top of the violin plots. The lower and upper bars represent
the 80% credible intervals of the Bayesian-estimated abun-
dances. Also, the cell-type-cluster-specific transcript-abun-
dance patterns of the query gene can be visualized through
the PCA plot. This PCA clustering of the samples has been
done based on the identified markers from the Bayesian
simulated-1000 signature described in the previous section.
The top-left PCA plot allows the cluster-specific visualiza-
tion of the transcript abundances, while the top-right PCA
plot guides the cell clusters. The second tab lets users down-
load the database.

3 Results and discussion

3.1 The HBCC catalogue harmonizes 1435 bulk

samples across 67 cell types

To create a comprehensive and harmonized data source, we
curated the cell type annotation of the HBCC catalogue,
which includes RNA sequencing samples from 58 studies, us-
ing a cell differentiation ontology spanning 67 cell types. Of
these, 49 represent differentiation endpoints (e.g. CD8
Memory T cells), and 18 nodes represent cellular differentia-
tion intermediates (e.g. T cell) (Supplementary Fig. S1).

Across all datasets, 72% of samples were isolated from
the tissue by flow sorting; 28% were primary cultures (in-
cluding in vitro differentiated cells). Of those samples, only
controls (untreated or unstimulated) were included. Samples
derived from cell lines were excluded. Overall, 194 highly
correlated (R-square > 0.99) samples were excluded to
avoid experimental duplicates and studies with extremely
low variability. For each cell type, we harmonized the tran-
scriptome samples from several datasets (Fig. 2A and B,
Table 1).

After filtration and curation, the catalogue included 1435
samples, of which 1006 were annotated at the higher-order
nodes of the cell-developmental hierarchy outlining the broad
generic cell types (e.g. T and B cells). In contrast, the remain-
ing 429 samples belong to the more branched nodes for fully
differentiated cell subsets (e.g. CD8 effector memory T cells)
(Supplementary Fig. S1). The library size (i.e. total gene-
transcript count per sample) ranged from 706 to 63 925
across samples, with a median of 27 237.

Due to the diversity of the data sources, the set of genes
with transcript-abundance information varied across samples.
The nature of gene missingness cannot be easily identified for
heterogeneous catalogues. Therefore, we adopted the
parsimonious approach of treating genes with no transcript-
abundance information as missing data, leaving the estima-
tion to be influenced by observed information. A total of 739
genes are shared across 90% of samples, and 20 878 genes
are shared across 50% of samples (Fig. 2C).

cellsig: a Bayesian sparse random-effect model to support cell-type marker selection 5
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3.2 The web interface of the HBCC catalogue

facilitates interactive gene marker exploration

To enable easy access and navigation of the HBCC database,
we developed a Shiny-based interactive web interface (avail-
able at github.com/stemangiola/cellsig/). This interface allows
downloading the entire HBCC database in CSV format and
provides an interactive platform for exploring gene markers.
Through the gene-expression-comparison tab, users can visu-
alize the abundance distribution of a particular gene across
different cell types using violin and principal component
analysis (PCA) plots of the clustered samples (Fig. 3).
Comparisons of transcript abundances for 21 714 genes
across cell types can be visualized in this tab. Users can select
a gene of interest from the drop-down selection and focus on
the count distribution in the immune or nonimmune cell clus-
ters by choosing the appropriate cellular compartment.

The violin plots are generated from the scaled read counts
of the selected transcript for each cell type and overlaid with
the adjusted abundance distributions for the selected gene,
represented by a red-coloured 80% credible interval bar of

the modelled abundance. Users can also download the com-
plete HBCC database as a compressed RDS file via the
‘Download Dataset’ tab or retrieve the harmonized transcrip-
tome datasets for a specific cell type. The downloadable data-
sets include raw transcript abundances, sample identifiers,
data sources, and designated cell-type information. This web
interface provides an intuitive and user-friendly tool for ex-
perimental and computational biologists to explore and uti-
lize the HBCC data for their research.

3.3 The sparse-information random-intercept model

accurately estimates transcription variability on

heterogeneous catalogues

Modelling gene-transcript abundance from multiple data
sources without a consistent experimental design poses
unique challenges that require a tailored and flexible model to
represent the hierarchy of samples within studies. Standard
transcriptomic analyses focus on variability across samples;
however, in a multisource catalogue, the dominant variability
is across studies (Fig. 4A). For some genes, the mean

Figure 2. Summary of the HBCC database. Bar plots showing the (A) sample-to-datasets and (B) samples-to-cell-type distribution variations. Each

coloured bar indicates a cell type. (C) Bidirectional bar plot showing the variation of library sizes across the included samples with the database. (D) PCA

plot with the identified markers of 24 selected cell types representing distinct sample-clustering for each cell type.
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transcription is consistent across studies (Fig. 4B, bottom
panel), and the variability dominates at the sample level,
whereas for most genes (Figs 4A and 3B, top panel), the vari-
ability dominates at the study level.

To address this issue and produce accurate estimates com-
patible with missing data and hierarchical data structure (e.g.
samples within studies/datasets), we developed a Bayesian
sparse multilevel model tailored to RNA sequencing data
(Fig. 4C). For each gene, our model estimates the mean tran-
script abundance of each study, modelling samples as re-
peated observations (Fig. 4C, first subpanel). The variability
for a gene-study pair is modelled separately under a hierarchi-
cal prior. The mean-variability association, typical of RNA se-
quencing data, is modelled in the log space at the population
level (i.e. fixed effect) (Fig. 4C, second subpanel). The group-
level (i.e. across datasets) transcriptional abundance is esti-
mated as the mean across studies, with each study represent-
ing an independent observation (Fig. 4C, third subpanel). The
group-level gene variability is estimated by mapping the
group-level gene transcript abundance to the mean-variability
association (Fig. 4C, fourth subpanel). A theoretical data dis-
tribution is drawn from the joint parameter distribution, rep-
resenting the generative data process underlying the multilevel
observed data source (Fig. 4C, fifth subpanel).

Compared to the mean-variability association estimated on
the observed counts by several frequentist methods
(Introduction section; Fig. 4D), our approach has the advan-
tages of (i) hierarchically modelling the association in the la-
tent space between estimated means and variabilities, (ii)

using log space, and (iii) parameterizing gene variability as
overdispersion. This approach allows for identifying a linear
relationship (Mangiola et al. 2021a,b) (Fig. 4E) without gene
filtering (Law et al. 2016). The group-level estimates and their
uncertainties make it possible to identify the differential abun-
dance and cell-type marker ranking based on quantiles with-
out standard hypothesis testing. For example, suitable
upregulated marker genes can be identified among the genes
with low variability and high mean abundance for endothelial
cells compared with epithelial, fibroblasts, and immune cells
(Fig. 4F). Ideally, marker genes for a cell type are character-
ized by a low within- and across-group variability (Fig. 4G).

3.4 Sparse, multilevel modelling enhances cell-type

signature estimation

To evaluate the benefits of using our Bayesian modelling in
the cell-type signature selection, we tested CIBERSORTx sig-
nature estimation using raw data and cellsig-adjusted data.
CIBERSORTx provides a robust pipeline for generating tran-
scriptional signatures (with gene marker selection) from repli-
cated bulk cell-type transcriptomes (Newman et al. 2019).
Considering that the self-similarity of samples from the same
dataset and the unbalanced dataset size could bias the signa-
ture estimation process, we sought to determine whether
modelling and adjusting for these effects improves signature
estimation. Specifically, we tested if adjusting the input data
(for the CIBERSORTx signature estimation algorithm) for
study-level effects and imbalance between study size (using
multilevel modelling), allowing for missing information (i.e.

Figure 3. The interactive web interface of HBCC. Raw and Bayesian-modelled transcript-abundance distribution of the EPCAM gene across 23 different

cell types are presented here. Top-left PCA plot highlights the expression of this gene in different cell-type clusters where luminosity indicates expression

levels, dots that are not colour-coded represent the samples which do not have any expression information for the query transcript.

cellsig: a Bayesian sparse random-effect model to support cell-type marker selection 7



sample-gene pairs) can improve the cell-type signatures, the
marker-gene ranking, and the deconvolution accuracy from
those signatures.

We estimated the signature from the raw and adjusted data
and compared the deconvolution accuracy across popular
deconvolution methods that allow for custom input signa-
tures, including CIBERSORT (support vector regression) and
EPIC (constrained linear regression). cellsig provided a signifi-
cant performance improvement for the adjusted input tran-
scriptomes across signature sizes (n¼ 50, 100, 200, 500,
1000, and 2000) and deconvolution methods (Fig. 5A–C).
The second-fold-change scoring showed the highest enrich-
ment in robust cell-type-specific markers in the top marker

rank after cellsig adjustment (Fig. 5D, Supplementary Fig.
S2C). This better gene-marker ranking likely contributed to
the improved deconvolution accuracy.

For comparative purposes, we tested the differences in
deconvolution accuracy using a vanilla, outlier-sensitive
deconvolution method, such as the linear least-square regres-
sion (LLSR). The adjusted reference performs significantly
better than the raw reference for small signature sizes.

The raw reference shows no significant association between
deconvolution accuracy and signature size (a proxy of gene
rank); on the contrary, the adjusted reference shows a nega-
tive association (Fig. 5E). This finding suggests that the most
informative marker genes are concentrated in the top gene

Figure 4. Random intercept model multisource catalogue. (A) Significance of ANOVA test (on negative binomial generalized linear model) of each gene/

cell type across datasets. Each dot is a gene/cell-type pair, coloured by cell type. The dashed line represents the significance threshold of 0.05 false-

discovery rate. (B-top) A selection of three genes/cell-type pairs representing significant clustering according to the dataset. (B-bottom) A selection of

three pairs in which transcript abundance is consistent across datasets. (C) Cartoon of the Bayesian random intercept model estimates gene/cell-type

transcript abundance representing one gene-cell-type pair and four datasets. The four bright densities are the observed data distributions. The four bright

dots are the point estimates. The dark distributions are the posterior densities for the estimates group –log mean transcript abundance. The purple

dashed line is the posterior density for the group-level log-mean transcript abundance; the brown dashed density is the group-level standard deviation of

transcript abundance. The thick line in the histogram represents the mean generated data distribution informed by the log-mean posterior density. In

contrast, the thin lines represent the part of the generated data distribution informed by the overdispersion posterior density. (D) The edgeR trend of the

tag-wise dispersion, on which estimation shrinkage is based. (E) The association between log-mean and log-overdispersion is linear compared to the

association between log count per million and coefficient of variation modelled by edgeR (D). Red dots are point estimates, and the ellipse represents the

uncertainty described by the posterior distribution (95% credible interval). (F) Marker genes (red-shaded points) have high transcription (x-axis) and low

variability across datasets (y-axis, for the comparison of endothelial versus immune, fibroblasts, and epithelial). (G) The variability of gene-transcript

abundance across datasets (x-axis) and within datasets (y-axis) are not associated (for endothelial cells).
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ranks and increasing the signature size beyond 500 increases
the noise-to-information ratio, which affects the accuracy of
llsr. Although the effect is noticeable, the difference in accu-
racy is limited due to our highly heterogeneous training and
test sets (including 829 samples, Supplementary Fig. S3).

4 Conclusion

In recent years, the scientific community has produced a vast
amount of single-cell transcriptomes, including the Human
Cell Atlas (Osumi-Sutherland et al. 2021), and bulk, experi-
mentally purified transcriptomes such as ENCODE and ad
hoc studies (ENCODE Project Consortium 2012,
Abugessaisa et al. 2016, Fernández et al. 2016). This data
richness creates unprecedented opportunities to estimate cell-
type transcriptomics profiles; however, it poses challenges due
to data heterogeneity. The transcriptional heterogeneity is es-
pecially present across studies, for which datasets are often
unbalanced in size, biasing the signature estimation process.

Addressing these unique challenges, our Bayesian model
provides a novel approach to estimating cell-type transcrip-
tional signatures, adjusting the raw data before using signa-
ture estimation and marker-gene selection methods such as
CIBERSORTx. Our models sample-level and study-level vari-
ability from sparse data (i.e. nonoverlapping gene sets across
samples) and can generate data from the study-level-free

underlying distribution. Our benchmark showed the efficacy
of cellsig to improve CIBERSORTx gene ranking, leading to
downstream improved deconvolution accuracy.

Our benchmark was performed on a novel, large-scale, cu-
rated human bulk transcriptional catalogue that harmonizes
1435 samples across 58 datasets and 67 cell types. We share
this catalogue with the community through a web Shiny inter-
face to explore gene markers and visualize gene-expression
comparisons. Such an interface bridges the gap between this
vast dataset and biologists, facilitating easier data extraction
and visualization.

In an era where vast data enables comprehensive profiling
of human-tissue cell types, cellsig emerges as a useful tool for
scaling up signature estimation, impacting tissue deconvolu-
tion, single-cell annotation, and marker-gene validation.
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