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Abstract 

Whether and how the spatial arrangement of a population influences adaptive evolution has puzzled evolutionary biologists. 
Theoretical models make conflicting predictions about the probability that a beneficial mutation will become fixed in a population 
for certain topologies like stars, in which “leaf” populations are connected through a central “hub.” To date, these predictions have 
not been evaluated under realistic experimental conditions. Here, we test the prediction that topology can change the dynamics of 
fixation both in vitro and in silico by tracking the frequency of a beneficial mutant under positive selection as it spreads through 
networks of different topologies. Our results provide empirical support that meta-population topology can increase the likelihood 
that a beneficial mutation spreads, broaden the conditions under which this phenomenon is thought to occur, and points the way 
toward using network topology to amplify the effects of weakly favored mutations under directed evolution in industrial applications.
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Lay summary 

Most natural populations are spatially structured, meaning that they are geographically subdivided and connected by migration. 
Whether spatial structure impacts adaptive evolution has been less clear as different theoretical approaches to modeling the spread 
of beneficial mutations through spatially structured populations make contrasting predictions. Our work uses evolution experiments 
and numerical simulations to show that spatial structure can impact the pace of adaptive evolution. Certain topologies, specifically a 
four-patch star with bidirectional migration through a central hub to each of three “leaf” populations, can accelerate the rate at which 
a beneficial mutation spreads through a population relative to an unstructured, well-mixed population. The cause of this acceleration 
is a reduced probability that beneficial mutations are stochastically lost when rare because they get concentrated in the central hub 
and then disperse outwards to the leaves. Our results offer the first experimental support for models of adaptive evolution in space 
based on evolutionary graph theory, may help understand the spread of invasive species or pathogens, and could be used in industrial 
settings to selectively enrich desired traits or biomolecules of interest.

The last two decades have seen the development of an empiri-
cally grounded theory of mutation-driven adaptation built on the 
assumption of a large, well-mixed population adapting through 
mutation to a uniform environment that remains constant in 
time (Bailey & Bataillon, 2016; Kassen, 2014; Lang et al., 2013; 
Lenski, 2017; Martin & Lenormand, 2008; Orr, 2005; Schoustra 
et al., 2009; Tenaillon et al., 2016). Yet most natural populations 
occupy environments that are far more ecologically complex 
than this theory assumes. One common form of ecological com-
plexity is spatial structure, where a population is composed of a 
series of subpopulations connected by dispersal (also known as a 
metapopulation). How spatial structure impacts adaptive evolu-
tion, and in particular, the dynamics of substitution, in an other-
wise uniform environment is not well understood.

By contrast, a rich theoretical literature exists on the effects 
of different forms of spatial structure on the population genet-
ics of neutral variation (Hanski & Gilpin, 1997; Harrison & 
Hastings, 1996; Pannell & Charlesworth, 2000; Slatkin, 1985) and 

the interplay between migration and selection in adaptation 
(Blanquart et al., 2012; Guillaume, 2011; Yeaman & Otto, 2011). 
Empirical work has considered the impact of spatial structure 
through habitat fragmentation on trait evolution (Cheptou et 
al., 2017; Urban et al., 2008), how population subdivision mod-
ulates the extent of adaptive change (Bailey et al., 2021; Baym et 
al., 2016; Chao & Levin, 1981; Habets et al., 2006, 2007; Korona et 
al., 1994; Kryazhimskiy et al., 2012; Miralles et al., 1999; Nahum 
et al., 2015; Perfeito et al., 2007; Zhang et al., 2011) and commu-
nity resilience (Limdi et al., 2018). Other work in microbiology has 
examined the emergence and fate of diversity in spatially struc-
tured environments associated with colony growth or biofilms 
(Borer et al., 2020; Celik Ozgen et al., 2018; France et al., 2018, 
2019; Kerr et al., 2002; Nadell et al., 2010, 2016; Steenackers et 
al., 2016; Trubenová et al., 2022) but lacks explicit descriptions 
of spatial structure or conflates it with variation in conditions of 
growth that generate divergent selection (Chen & Kassen, 2020; 
Leale & Kassen, 2018). Missingare explicit tests of theory on how 
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the spatial arrangement of populations in space impacts the 
dynamics of adaptive evolution, including the rate of spread of a 
beneficial mutation and the probability of fixation.

Here we explore the impact of network topology—the pat-
tern of connectivity among subpopulations—on adaptive evolu-
tion by testing key predictions from two theoretical frameworks: 
one rooted in classic population genetics and the other in evo-
lutionary graph theory (EGT). Population genetic models track 
the effects of migration and selection on gene frequencies, often 
under the simplifying assumption of infinite population size, and 
predict little effect of network topology on the fixation probabil-
ity of a beneficial mutation (Maruyama, 1970; Slatkin, 1981). By 
contrast, models employing EGT, in which individuals occupy the 
vertices of a graph and edges represent dispersal routes between 
neighboring sites, predict that fixation probabilities can change 
based on how the nodes are connected (Lieberman et al., 2005).

To see this more clearly, it is helpful to consider the predictions 
of each model in one of the simplest possible scenarios: a four-
deme “star” network composed of satellite “leaves” and a central 
“hub” (Figure 1). Both migration-selection models in population 

genetics and EGT predict that a rooted -star-network, where 
one deme supplies more individuals to others than it receives 
(Figure 1A, left panel), can decrease (suppress) fixation probabil-
ities relative to a well-mixed system (Figure 1A, middle panel). A 
beneficial mutant is likely to spread through this topology only 
if it arises, as in the case illustrated, in the hub, and selection 
is substantially stronger than migration. The predictions made 
by standard population genetic models and EGT differ for star 
networks with connections clustered at a few vertices (Figure 1A, 
right panel). Relative to a well-mixed system, population genetic 
models predict no effect of topology on the rate or probability of 
spread, while EGT predicts fixation probabilities can increase, an 
effect termed amplification, because beneficial mutations aris-
ing in a leaf can spread to all other patches via the central hub 
(Lieberman et al., 2005; Pavlogiannis et al., 2018).

The EGT approach has inspired a rich theoretical literature 
exploring the potential for ever more complicated network struc-
tures to serve as amplifiers of selection (Galanis et al., 2017; 
Pavlogiannis et al., 2018; Tkadlec et al., 2021), including claims 
that certain topologies, like the so-called “superstar,” could 

Figure 1.  Network Topologies and experimental design: (A) Three network topologies among four subpopulations. Arrows depict dispersal among 
subpopulations (green circles). (B) Experimental schematics.
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asymptotically amplify even very small fitness differences. Others 
(Galanis et al., 2017; Jamieson-Lane & Hauert, 2015) tempered 
these findings by showing that this prediction depends on model 
details like the ordering of birth and death steps (Hindersin & 
Traulsen, 2015; Tkadlec et al., 2020) and that perfect amplification 
would require unlimited space and time (Tkadlec et al., 2021). In 
any case, the central claims of EGT remain untested by experi-
ment in any biological system, and so its relevance to real-world 
situations remains uncertain. Moreover, because EGT rests on a 
stochastic model of evolution in finite populations (Moran, 1962) 
in which individuals occupy the nodes of the graph, the empirical 
robustness of its predictions to alternative scenarios where nodes 
are composed of subpopulations, variable rates of dispersal, or 
migration asymmetries (Adlam et al., 2015; Constable & McKane, 
2014; Houchmandzadeh & Vallade, 2011, 2013; Marrec et al., 2021) 
remains unclear.

Here, we evaluate the impact of network topology on the fix-
ation dynamics of a beneficial mutation directly through experi-
ment. Specifically, we focus on the spread of an antibiotic-resistant 
mutant through a star topology across a range of dispersal rates, 
as this is the simplest network structure where EGT and standard 
population genetics make divergent predictions. The well-mixed 
topology serves as a control. Our experiment tracks the spread of 
an initially rare (1:1000) ciprofloxacin-resistant (cipR) mutant of 
Pseudomonas aeruginosa strain 14 (PA14-gyrA) invading four-patch 
metapopulations varying in topology and dispersal rate (Figure 
1B). Selection is uniform across all patches and is imposed by 
supplementing growth media with subinhibitory concentrations 
of ciprofloxacin adjusted to provide a ~20% fitness advantage to 
the resistant mutant. Dispersal occurs during daily serial transfer 
by first mixing samples from the appropriate subpopulations and 
then diluting the mixture to adjust dispersal rates (see Methods 
for details). Since the theory makes predictions about the fix-
ation of a single beneficial mutation, we focus on the first 5–6 
days (~6.67 generations/day: ~35–40 generations) to minimize the 

opportunity for de novo mutations rising to high frequency. We 
keep track of the frequency of the beneficial mutant over time, 
which should closely approximate the probability of fixation 
because the larger the frequency of a mutant at time t, the more 
likely it is to eventually fix. As such, we use “amplification” here to 
mean the increased rate of spread of a beneficial mutation relative 
to that expected from the well-mixed case at a given time, rather 
than the fixation probability itself. We check our experimen-
tal results and the correspondence between rate of spread and 
probability of fixation, with a new agent-based simulation (see 
Methods and Supplementary Information) in which an individual 
is represented by an agent that competes for finite spaces in a 
node and can disperse along edges. Together, our results allow us 
to test directly, both in vitro and in silico, whether network topol-
ogy modulates the fixation process that drives adaptive evolution, 
and if so, how this occurs.

Results
Our results show that the effect of network topology on the spread 
of the cipR mutant depends on migration rate (Figure 2). The ben-
eficial mutant spreads faster through a well-mixed than a star 
topology at migration rates above 10% (Figure 2A; final frequency 
of cipR in networks with 30% migration: χ2 = 15.348, p < 0.0001; 
20% migration: χ2 = 9.0148, p = 0.0027), while the rate of spread is 
statistically indistinguishable at the intermediate migration rates 
of 10% and 1% (10% migration: χ2 = 0.7082, p = 0.4001; 1% migra-
tion: χ2 = 0.2168, p = 0.6415). Below migration rates of 0.01% we see 
evidence that cipR spreads modestly faster in a star network than 
in a well-mixed system, consistent with the prediction from EGT 
that bidirectional star networks can amplify selection. Notably, 
the amplification effect is transient, being maximal at intermedi-
ate time steps (0.01%: relative frequency of cipR to WT on Day 5: 
χ2 =13.825, p = 0.0002 and 0.001%: frequency of cipR on Day 4: χ2 = 
5.2577, p = 0.0218) and disappearing on Day 5 or 6, depending on 

Figure 2.  The proportion of cipR mutant in replicate metapopulations propagated by either star (blue) or well-mixed (red) networks with unweighted 
migration. The bright lines depict the nonlinear least squares (NLS) fit for each metapopulation structure. Panel A shows experimental results; 
simulation results are shown in (B) and (C). Migration rates are noted in the inset of each plot. Migration rates in the simulation means a low, 
intermediate, or high value relative to the effective carrying capacity of the patch. Five days in the experiment is equivalent to approximately 5 
days or 240 timesteps in the simulation (see methods for details on how time steps in simulations compare to days in experiment). (C) Histograms 
from the simulations showing the minimum generations required for the cipR to reach a frequency of at least 50% in a metapopulation under each 
combination of network type and migration rate. Each data point represents the mean proportion of all of the replicate metapopulations on that day, 
and error bars represent standard error (SE).

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
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the migration rate (see Supplementary Table 3), an effect that has 
not been previously observed in models of EGT.

Our results suggest that star topologies can increase the rate at 
which a beneficial mutation spreads, although its effects appear 
limited to very low migration rates. An alternative explanation 
is that the increased rate of spread in our experiments was due 
to the de novo evolution of second-site beneficial mutations in 
the cipR background. Three lines of evidence argue against this 
interpretation. First, there should be no inherent evolutionary 
advantage to any treatment in our experiment because mutation 
supply rates, being the product of population size and mutation 
rate, did not differ across treatments. Second, we observed novel 
colony morphotypes in the more abundant wild-type background 
only that, when present, had undulate morphologies indicative 
of biofilm formation. Third, we never recovered mutants more 
resistant than our focal cipR strain, even after propagating the 
wild type for 10 days under identical conditions (see Methods, 
Supplementary Figure 8), suggesting that spontaneous resistant 
mutations, if present, remained too rare to influence our results. 
Our observation that the amplification of an initially rare bene-
ficial mutant occurred in spite of potential competition from de 
novo mutants in the more abundant competitor class thus makes 
our results even more compelling.

To confirm these results are not an idiosyncratic feature of 
our biological system, and to provide additional insight into the 
mechanisms driving amplification, we simulated the population 
dynamics of selection in metapopulations under the same topol-
ogies and migration rates using an agent-based model. The model 
tracks competition between wild-type and resistant bacteria for a 
fixed number of spaces in each patch with dispersal along edges 
between patches, with fitness being given by the probability of 
being killed by the antibiotic, and population sizes within each 
patch being allowed to vary between zero and a fixed carrying 
capacity. Our model thus allows us to capture the dynamics of 
slow, but nonequilibrium, migration. Simulation (Figure 2B-C) and 
experimental results match closely, with the well-mixed topol-
ogy being faster at spreading the beneficial mutant than the star 
network at high migration rates. As in our experimental results, 
transient amplification was seen at low migration rates (Figure 
2B). Closer inspection reveals amplification is most likely to occur 
when the expected number of mutant migrants per generation 
along each edge, at the effective carrying capacity of mutants, is 
on the order of one. This corresponds to:

Expectedmigrants = (Migration rate) × (Spaces per node)
×[1−Antibiotic/Resistance] ∼ 1

where Antibiotic is the antibiotic concentration and Resistance 
represents the reduction in the kill rate of mutants normalized 
by their growth rate, so that all of them would be killed when 
(Antibiotic/Resistance) ≥ 1. This result suggests that amplification 
associated with “slow” migration rates is caused by seeding events 
of mutants into a new subpopulation if and only if the mutants 
have already successfully colonized a previous subpopulation. 
Substitution occurs in a more predictable and stepwise fashion 
under slow, relative to fast, migration rates because beneficial 
mutants have more time to rise to high frequency in the subpop-
ulation they previously colonized, and so are less likely to be lost 
due to drift when colonizing a new subpopulation. Moreover, a 
star network that concentrates incoming migrants into the hub 
will alleviate genetic drift more than a well-mixed network, and 
should, in principle, act as a stronger amplifier of selection. By 
contrast, when migration introduces beneficial mutants at a rate 
faster than they are lost due to genetic drift, a better-connected 

well-mixed network spreads beneficial mutants faster than a star 
network where leaves are only connected via the hub.

Recent theoretical work (Marrec et al., 2021; Yagoobi & Traulsen, 
2021) treating nodes as subpopulations rather than individuals, 
as in our experiments, shows that migration asymmetry between 
leaves and hub can potentially amplify fixation probabilities rel-
ative to the well-mixed case. Specifically, star networks with net 
outward or inward migration are predicted to be suppressors or 
amplifiers of selection, respectively, while those with no asymme-
try (balanced) migration should have no advantage over a well-
mixed network in fixing a beneficial mutant (Marrec et al., 2021). 
Our first experiment (Figure 2) adjusted the migration rate, m, to 
ensure all patches received the same number of mutants. Using 
the same experimental setup, we can test these predictions by 
manipulating the relative amount of migration between the hub 
and the three leaves of the star network in both experiments and 
simulations.

Our results are consistent with the predictions of the theory. 
At high migration rates (Figure 3A), the rate at which the cipR 
mutant spreads is never statistically significantly higher than 
that of the well-mixed topology under both forms of asymmet-
ric migration (middle and bottom panels; χ2 = 1.1888, p = 0.2756 
(OUT>IN) and χ2 = 0.4124, p = 0.5208 (IN>OUT), respectively; see 
Supplementary Table 4), and is substantially slower when migra-
tion rates were balanced among the nodes (top panel) (IN=OUT: 
relative frequency of cipR on Day 9: χ2 = 12.234, p = 0.0005). At low 
migration rates (Figure 3B), however, the dynamics of cipR spread 
are indistinguishable (see Supplementary Table 4) from those of 
the well-mixed case for both balanced migration (top panel, χ2 
= 0.1848, p = 0.6673) and net outward migration (middle panel, 
χ2 = 0.5233, p = 0.4694), as expected from theory. When inward 
migration exceeds outward migration (bottom panel), however, 
the cipR mutants gain a significant advantage in the latter stages 
of the experiment (IN>OUT: relative frequency of cipR on Day 9: 
χ2 = 5.2917, p = 0.0214). The results of our simulations are shown 
in the panels in Figure 3B and agree well with our experimental 
results.

Whether or not amplification occurs should depend on the 
balance between two dynamic processes—the rate of fixation 
within a patch and the rate of dispersal to new patches. When 
migration rates are fast, an initially rare beneficial mutant cannot 
reach a sufficiently high frequency in its native patch to guaran-
tee dispersal to other patches. Consequently, if it does manage to 
get dispersed to a novel patch, the beneficial mutant is initially so 
rare that it is likely to be lost due to drift. Under slow migration, 
however, selection increases the frequency of a beneficial mutant 
faster in its native patch than it is dispersed to novel patches, 
ensuring that it can be repeatedly dispersed to novel patches 
and so reduce the likelihood of drift loss upon arrival. Amplifying 
topologies act in a similar way when dispersal is slow, by allowing 
beneficial mutants to first fix in the patch where they were intro-
duced, and then funneling them through a central hub, so the 
likelihood of drift loss before other leaves are seeded is reduced. 
Under well-mixed conditions, migration overwhelms selection, 
such that the constant influx of lower fitness migrants from other 
patches means the beneficial mutant cannot accumulate to a 
sufficiently high frequency in its focal patch before it is dispersed 
to other patches, where it is rare and likely to be lost due to drift.

We evaluated this interpretation by examining the dynam-
ics of the cipR mutant as it spreads among subpopulations in 
our experiment. Fixation is expected to occur first in the leaf in 
which the beneficial mutant was initially inoculated followed by, 
in an amplifying star network, accumulation in the hub and then 

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
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spread to other leaves of the network. In a well-mixed metapo-
pulation, however, the spread of the cipR mutant should occur 
in both hub and leaf subpopulations at the same time. Indeed, 
when we examine the dynamics of the cipR mutant in star and 
well-mixed metapopulations at a low migration rate (0.001%) 

where amplification is seen in the former but not the latter, we 
see the expected patterns (Figure 4). The cipR mutant first fixes 
in the leaf where it was initially inoculated for both networks, 
as expected. Although there is substantial variation among rep-
licates, our results show that the cipR mutant spreads differently 

Figure 3.  The proportion of cipR mutant in replicate metapopulations propagated on either star (blue) or well-mixed (red) networks with weighted 
migration. Bright lines are the nonlinear least squares (NLS) fit to the two network treatments. (A) shows results from the experiments under high and 
low migration rates, whereas (B) shows the results of the agent-based model only under the low migration rate. The respective dispersal asymmetries 
are provided in the inset of each plot. Each data point represents the mean proportion of all of the replicate metapopulations on that day, and error 
bars represent standard error (SE).

Figure 4.  The proportion of the cipR mutants in the constituent subpopulations of each replicate metapopulation propagated as either star (both A 
and B, first row) or well-mixed (both A and B, second row) networks with unweighted migration of 0.001% (~100 individuals). (A) is the data from the 
experiment, and (B) is the data from the agent-based model. Subpopulation nomenclature: P3 = node of introduction of the cipR mutant, P2 = hub and 
P1 and P4 = rest of the peripheral leaves. In (A), cipR fixation dynamics in four subpopulations of each of the 24 replicate metapopulations under each 
network are shown (top = star, bottom = well-mixed). The black solid lines in (B) are the overall proportion of cipR mutants in a metapopulation. In (B), 
five replicate instantiations (each run for 200 generations) of the simulation are shown for each network (top = star, bottom = well-mixed).
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among the remaining three subpopulations in the two kinds of 
network: In the star network, there is a clear tendency for the 
mutant to spread from the initial subpopulation to the hub (P2) 
first, whereas in the well-mixed network, the mutant is equally 
likely to spread to the hub as any additional subpopulation 
(Figure 4A). These experimental results are closely mirrored by 
those of the simulation (Figure 4B).

We see similar dynamics of spread among subpopulations in 
our experiments examining migration asymmetry. In well-mixed 
systems and those star networks where amplification was not 
observed (high migration rates), the cipR mutant rapidly spreads 
into both hub and leaves after near fixation in the patch of intro-
duction (Figure 5A). In contrast, the cipR mutant spreads to the 
hub first in the most strongly amplifying star topology (IN>OUT), 
consistent with the idea that beneficial mutants are more likely 
to avoid stochastic loss due to drift by being concentrated in the 
hub (Figure 5B).

If avoiding “drift loss” under low migration rate is indeed the 
mechanism for amplification, then imposing more severe drift 
should increase the magnitude and duration of the observed 
amplification. We tested this hypothesis by enforcing a stricter 
bottleneck, and thus stronger drift, during daily transfers and 
tracking the spread of resistant mutants in a star metapopu-
lation with in-weighted migration (IN>OUT) and a well-mixed 
metapopulation at a low migration rate (~1,000 individuals). The 
results are consistent with our prediction (Figure 6): For interme-
diate time points (Days 5 and 6), there was a significantly higher 
proportion of mutants (Day 5: χ2 =17.255, p = 3.269e-05, Day 6: χ2 
=16.17, p = 5.79e-05) in the star-like metapopulations compared to 
the wild type. In other words, we observed an amplification with a 
higher magnitude and longer duration (stable for ~30 generations, 
which was nearly the entire length of our previous experiments). 
This result is consistent with our hypothesis that the likelihood 
of drift loss is lower in star-like metapopulations when the migra-
tion rate between subpopulations is low and asymmetric migra-
tion concentrates mutants through the hub. Our results thus lend 

strong support to the idea that a reduction in the probability of 
drift loss is responsible for the amplification effect in star-like 
topologies. Moreover, this result emphasizes the need for future 
theoretical and experimental work to focus on fine-tuning evolu-
tionary forces such as stochastic drift, selection, and migration to 
determine the magnitude of amplification in different topologies.

Discussion
We have shown experimentally and through simulation that 
metapopulation structure can impact the dynamics of adaptive 
substitution. Star metapopulations, in which leaf subpopulations 
exchange migrants through a central hub, can act as amplifiers 
of selection, leading to faster rates of spread than a comparable 
well-mixed population where all subpopulations share migrants 
equally. Amplification is most pronounced when selection is 
strong relative to migration, a scenario that reduces the proba-
bility that a rare beneficial mutant in a newly colonized patch 
will be lost due to drift, and when the topology of dispersal con-
centrates the beneficial mutant in a central hub (“inward” > “out-
ward” migration). In other words, amplification occurs because 
rare mutants are less likely to be lost, not because the strength of 
selection itself increases.

This result is remarkable because it was not anticipated by 
standard theory in population genetics, in which population struc-
ture usually has little effect on the probability of fixation for ben-
eficial mutants. This conclusion likely derives from the tradition 
in population genetics of considering allele frequency changes 
in the limit of infinite populations and high migration rates. Our 
results, by contrast, show how stochastic effects associated with 
finite population sizes can alter the dynamics of adaptive sub-
stitution in ways that are consistent with predictions from EGT 
where individuals are assigned to nodes of a graph. Importantly, 
our results show that amplification can occur under a broader 
and arguably more realistic set of conditions where populations, 
not individuals, occupy the nodes. Our work emphasizes the 

Figure 5.  The proportion of the cipR mutants in the constituent subpopulations of each metapopulation propagated by either asymmetric star or 
well-mixed networks under high (A: 1% or 105 individuals) and low (B: 0.001% or 102 individuals) weighted migration. Subpopulation nomenclature: 
P3 = node of introduction of the cipR mutant, P2 = hub and P1 and P4 = rest of the peripheral leaves. In both (A) and (B), cipR fixation dynamics in 
four subpopulations of each of the six replicate metapopulations using each of the three asymmetric star networks and the well-mixed network are 
shown (see plot insets for details) under high and low migration rates, respectively.
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previously overlooked importance of migration rate and serves 
as a first step toward bridging these two approaches, with infinite 
populations on the one hand and finite populations focused on 
the dynamics of individuals on the other.

More generally, it will be useful to expand the analytical frame-
work of EGT to include more biological realism and to articulate 
more precisely the range of conditions under which amplifica-
tion can occur. It should be possible, for example, to use network 
topology to amplify the selection of even a slightly favored muta-
tion for the purpose of experimentation or the directed evolution 
of desired traits in industrial applications. A more comprehensive 
theory of evolution on structured landscapes will also be impor-
tant in other aspects of biology, including the spread of invasive 
species, pathogens, and the resistance factors they possess.

Methods
The SANCTUM model
Each node (Ai) has ni spaces that can each be empty, occupied by 
a wild type, or occupied by a mutant. For these experiments, all 
the n values are set to 1,600. For each generation of the simula-
tion, there are three phases: (i) Death, (ii) Birth, and (iii) Migration. 
Death: An agent is removed during the death step with a proba-
bility that depends on the antibiotic concentration divided by its 
individual resistance. Birth: Each agent has a chance of reproduc-
ing an identical agent in an empty space of the same node during 
the birth step. Similar to the Lotka–Volterra model of population 
growth, the probability of reproduction increases with the num-
ber of empty spaces in the node. Migration: There is a probability 
of migration that varies based on the experimental condition. If 
an agent is selected to migrate, it randomly moves to an adjacent 
connected node with a probability proportional to the weight of 

that edge (w). These definitions are interpreted in the model as 
follows:

Effective carrying capacitywith antibiotic = (1− Z ∗A/R)K

where Z is first-order kill rate of the mutants by the antibiotic, 
A is the antibiotic concentration, R is growth rate of mutants, and 
K is the total number of spaces per node (the unmodified carrying 
capacity). Using the effective carrying capacity of mutants lim-
ited by the antibiotic:

Expectedmigrants per step per edge =
(Migration rate)× (Effective carrying capacity)
= (Migration rate)× [(1− Z ∗A/R) K]
= (Migration rate)× (Spaces per node)× [1−Antibiotic/Normalized resistance]

Here, R/Z represents the Normalized Resistance, which reflects 
the balance between the death and growth rates. This value also 
sets the threshold for A, above which all the mutants would be 
eliminated. The initial system is randomly seeded with one thou-
sand agents across all nodes, and one of these is selected to be 
the mutant (not in the hub). Time in the simulation is calculated 
as below:

Total simulation time = (time equivalent in experiment
(days)× 24hr× 60min)/t

where t is the doubling time (generation time) for PA14 ~ 30 
min. Therefore, 5 days of experiment is equivalent to 240 time 
steps in the simulation. For each simulated condition, the meta-
population fraction is averaged over 100 instantiations. For runs 
that ultimately fix, the number of generations until the mutants 
are the majority of agents is also recorded.

Microbial strains and conditions
For all experiments, clonal populations of Pseudomonas aeruginosa 
strain 14:gyrA (PA14:gyrA) and PA14:lacZ, isogenic to PA14 except 
with a point mutation in the gyrA gene and an insertion in the lacZ 

Figure 6.  The proportion of cipR mutant in replicate metapopulations propagated on either an inward star (blue) or well-mixed (red) networks 
with low population size (105 CFU/ml) and low migration rate (103 CFU/ml). Bright lines are the nonlinear least squares (NLS) fit to the two network 
treatments. Each data point represents the mean proportion of all of the replicate metapopulations on that day, and error bars represent standard 
error (SE).
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gene, respectively, were used. Colonies possessing the lacZ inser-
tion appear blue when cultured on agar plates supplemented 
with 40 mg/l of 5-bromo-4-chloro-3-indolyl-beta-d-galactopyra-
noside (X-Gal), and are visually distinct from the PA14:gyrA white 
coloration. The neutrality of the lacZ marker was confirmed in 
our experimental environments by measuring the fitness of the 
marked strain relative to the unmarked strain. Populations were 
cultured in 24-well plates with 1.5 ml of media in each well, in an 
orbital shaker (150 RPM) at 37 °C. The culture media consisted of 
Luria Bertani broth (LB: bacto-tryptone 10 g/l, yeast extract 5 g/l, 
NaCl 10 g/l) supplemented with 20 ng/ml of the fluoroquinolone 
antibiotic, ciprofloxacin. This concentration of ciprofloxacin con-
fers ~20% selective advantage to PA14:gyrA relative to PA14:lacZ 
(Supplementary Figure 7). All strains and evolving populations 
were frozen at −80 °C in 20% (v/v) glycerol.

Evolution experiment
A single metapopulation consisted of four subpopulations, one 
subpopulation being located on each of four different 24-well 
plates. Plate 2 was always assigned as the hub, and plates 1, 3, 
and 4 were treated as the leaves. This design allows us to track 
up to 24 replicate populations using just four multiwell plates. 
The experiment was initiated by inoculating each subpopulation 
with ~107 colony forming units/ml of PA14:lacZ descended from 
a single colony picked from an agar plate and grown overnight 
in liquid LB at 37°C with vigorous shaking (150 RPM). The cipR 
mutant, derived from frozen cultures in the same way, was intro-
duced simultaneously into one subpopulation (plate 3) at a den-
sity ~104 PA14:gyrA cells producing an initial ratio of resistance to 
wild-type cells of ~1:1000 in this subpopulation. Metapopulations 
were transferred daily following dispersal among subpopulations 
(see below) by taking an aliquot corresponding to ~107 CFUs per 
ml and inoculating into fresh medium. The population density in 
each subpopulation reached ~109 CFUs, so this transfer regime 
corresponds to ~6.67 daily generations of growth.

We constructed distinct network topologies by mixing subpop-
ulations prior to serial transfer following the schematic shown 
in Supplementary Figure 4. Briefly, well-mixed networks were 
created by combining equal volume aliquots from all subpop-
ulations into a common dispersal pool, diluting this mixture to 
the appropriate density to achieve the desired migration rate, 
and then mixing the dispersal pool with aliquots from each sub-
population (so-called “self-inoculation”) before transfer. Star net-
works, which involve bidirectional dispersal between the hub and 
leaves, were constructed in a similar way to the well-mixed situ-
ation, only now the dispersal pool consisted of aliquots from just 
the leaves and aliquots from the hub (plate 2) were mixed with 
“self-inoculation” samples from each leaf prior to serial transfer. 
Further details on how each network topology and migration rate 
were achieved are provided in the supplementary material.

Tracking the spread of resistance
We tracked the spread of the cipR mutant (PA14:gyrA) relative 
to the wild type (PA14:lacZ) by plating samples from each sub-
population as well as a mixture of the entire metapopulation on 
LB agar plates supplemented with X-gal allowing us to use blue-
white screening to track the relative frequency of each type over 
time.

Statistical analyses
All statistical analyses were conducted using R statistical software 
(R Core Team, 2020). We used two complementary approaches to 
analyze our experimental data.

The first models the spread of resistance (see Figures 2 and 
3) as a three-parameter logistic growth model using nonlinear 
least squares with a fixed N0 (NLS) (Nash, 2016). This model, as 
with comparable approaches focused on population growth 
in resource-limited environments, allows us to estimate the 
rate at which resistance spreads (equivalent to rmax in logistic 
growth) and the final frequency of cipR mutants at the end of the 
experiment (equivalent to the carrying capacity, K, from logistic 
growth models) in each replicate metapopulation. Contrasts of 
maximal growth rates between treatments (star or well-mixed) 
were performed using a linear model (lm function from base R). 
Comparable contrasts for the maximum proportion of resistant 
mutants fixed on the final day of the experiment used a gener-
alized linear mixed model (GLMM) using methods as described 
below.

The second approach modeled the change in proportion for 
the cipR mutants directly using a GLMM with quasibinomial error 
distribution (and logit link function), using the glmmPQL func-
tion from the MASS package in R (Venables & Ripley, 2002). We 
focus on the main effects of time and network structure (star vs. 
well-mixed) and their interactions at each migration rate treat-
ment. Logistical constraints prevented us from conducting exper-
iments that manipulate both network structure and migration 
rate simultaneously, so we elected to run separate experiments 
at each migration rate to focus on the effect of contrasting net-
work structures, as this is the focus of EGT. Our model treats “net-
work” as a fixed effect and “replicate” as a random effect, while 
accounting for repeated measures through time. This approach 
produces estimates of the pairwise difference between the slopes 
(vs. time) for the network treatment (e.g., - Time:Network star - 
Time:Network well-mixed) that were further analyzed using the 
EMTRENDS function from the EMMEANS package (analogous to 
a Tukey post hoc test) (Lenth, 2020). These contrasts allow us to 
determine the magnitude and direction of the difference between 
the star and well-mixed networks for the whole experiment.

The approaches above, which focus on estimating the best-
fit main effects and interactions, are useful for helping to visu-
alize the dynamics of spread across many instantiations of an 
inherently noisy process. We additionally focus our attention on 
contrasts between the fraction of cipR mutants between star and 
well-mixed treatments at specific days (a) when the fitted logistic 
model for the star was higher than that of the well-mixed over 
the course of the complete experiment or (b) when the fitted 
models reveal a transient “crossover” event at intermediate time 
steps. We used a GLMM as described above to contrast the frac-
tion of cipR mutants in star versus well-mixed networks at a par-
ticular day, treating replicate as a random factor. The analysis of 
variance of the GLMMs was performed with the ANOVA function 
from the CAR package.

Full_model <- glmmPQL(Proportion~Time*Treatment, random = 
1|Replicate, family = quasibinomial, data)

em1< - emtrends(Full_model, pairwise ~ Treatment, var = “Time”)

model_K < - glmmPQL(Proportion ~ Treatment, random= ~1|Rep, 
family = quasibinomial, data) 

model_R< - lm(R~Treatment, data)

Supplementary material
Supplementary material is available online at Evolution Letters.

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad047#supplementary-data
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