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Abstract 

Background  Arcobacter species are considered emerging foodborne pathogens that can potentially cause serious 
infections in animals and humans. This cross-sectional study determined the frequency of potentially pathogenic 
Arcobacter spp. in both commercial and smallholder farm animals in Ghana and Tanzania. A total of 1585 and 1047 
(poultry and livestock) samples were collected in Ghana and Tanzania, respectively. Selective enrichment media, 
along with oxidase and Gram testing, were employed for isolation of suspected Arcobacter spp. and confirmation 
was done using MALDI-TOF MS. Antibiotic susceptibility was assessed through disk diffusion method and ECOFFs 
were generated, for interpretation, based on resulting inhibition zone diameters.

Results  The overall Arcobacter frequency was higher in Ghana (7.0%, n = 111) than in Tanzania (2.0%, n = 21). The 
frequency of Arcobacter in commercial farms in Ghana was 10.3% (n/N = 83/805), while in Tanzania, it was 2.8% 
(n/N = 12/430). Arcobacter was detected in only 3.6% (n/N = 28/780) of the samples from smallholder farms in Ghana 
and 1.5% (n/N = 9/617) of the samples from Tanzania. For commercial farms, in Ghana, the presence of Arcobac-
ter was more abundant in pigs (45.1%, n/N = 37/82), followed by ducks (38.5%, n/N = 10/26) and quails (35.7%, 
n/N = 10/28). According to MALDI-TOF-based species identification, Arcobacter butzleri (91.6%, n/N = 121/132), 
Arcobacter lanthieri (6.1%, n/N = 8/132), and Arcobacter cryaerophilus (2.3%, n/N = 3/132) were the only three Arco-
bacter species detected at both study sites. Almost all of the Arcobacter from Ghana (98.2%, n/N = 109/111) were 
isolated during the rainy season. The inhibition zone diameters recorded for penicillin, ampicillin, and chloram‑
phenicol allowed no determination of an epidemiological cut-off value. However, the results indicated a general 
resistance to these three antimicrobials. Multidrug resistance was noted in 57.1% (n/N = 12/21) of the Arcobacter 
isolates from Tanzania and 45.0% (n/N = 50/111) of those from Ghana. The type of farm (commercial or smallholder) 
and source of the sample (poultry or livestock) were found to be associated with multi-drug resistance.
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Background
Arcobacter species are considered emerging foodborne 
pathogens that can potentially cause human infections 
[1, 2]. Arcobacter is closely related to Campylobacter in 
terms of taxonomy and clinical symptoms. Clinically 
important pathogenic Arcobacter species include Arco-
bacter butzleri, Arcobacter cryaerophilus, and Arcobacter 
skirrowii [3]. Of these, A. butzleri is the most frequently 
isolated and associated with septicemia and gastroenteri-
tis in humans [4]. In animals, the bacterium is primarily 
transmitted horizontally from the environment or one 
animal to another and vertically from parents to progeny 
[5]. Humans mainly get infected through ingestion and 
handling of fresh or undercooked contaminated foods of 
animal origin. Most Arcobacter infections are self-limit-
ing and, hence, do not require treatment with antibiotics. 
Currently, tetracyclines and fluoroquinolones are the rec-
ommended antibiotics for treating infections caused by 
Arcobacter spp. [6].

In sub-Saharan Africa (SSA), the emergence of Arco-
bacter spp. resistant to tetracycline, aminoglycosides, and 
fluoroquinolones can be attributed to the excessive use 
of antibiotics in human medicine and animal husbandry 
[7–9]. Studies conducted in different geographical loca-
tions in SSA have reported multidrug-resistant Arcobac-
ter [10, 11]. So far, more than 50 genes associated with 
tetracycline resistance in Arcobacter isolates from envi-
ronmental samples have been described [12, 13]. Also, 
fluoroquinolone resistance associated with mutations in 
gyrA has been observed in Arcobacter species [14]. The 
World Health Organization (WHO) recently classified 
fluoroquinolone-resistant Campylobacter-like organisms 
as part of the 12 antibiotic-resistant priority pathogens 
that pose the greatest threat to human health [15].

Isolation of Arcobacter from local and imported poul-
try meat has been reported in Ghana [9]. In Ghana and 
Tanzania, poultry and livestock meat products are largely 
consumed, and most rural and semi-urban households 
own poultry [8]. Consumers may be at risk if farm ani-
mals carry pathogenic Arcobacter species. Monitoring 
and characterising Arcobacter species along the food 
chain is essential for a more accurate estimation of the 
population at risk. So far, only a few studies have been 
conducted in SSA, of which most studies focused on 
commercially produced poultry but not on the small-
holder farm level [9, 16, 17]. Therefore, this study aimed 

to determine the frequency and antimicrobial resistance 
of Arcobacter species in both commercial and small-
holder farm animals in Ghana and Tanzania.

Results
Frequency and species distribution of Arcobacter 
in smallholder and commercial farms
In Ghana, we sampled 15 commercial farms and 62 
smallholder farms, while in Tanzania, we sampled 31 
commercial farms and 71 smallholder farms. In total, 
1585 samples were collected from farms in Ghana and 
1047 from farms in Tanzania. The majority of samples 
from Tanzania were collected from smallholder farms 
(58.9%, n = 617), while in Ghana, the number of sam-
ples collected from commercial (50.8%, n = 805) and 
smallholder (49.2%, n = 780) farms were approximately 
the same. In both countries, chicken samples were the 
most frequently collected, making up 76.7% (n = 1216) 
of samples from Ghana and 74.2% (n = 777) from Tan-
zania. However, in Ghana, samples were also collected 
from other poultry birds such as turkey (n = 27), duck 
(n = 26), and quail (n = 28). Livestock samples in both 
countries were collected from cows (n = 271), goats 
(n = 138), pigs (n = 121), and sheep (n = 28). In total, 189 
(11.9%, n/N = 189/1585) presumptive Arcobacter spp. 
were recovered from the samples collected from Ghana. 
In contrast, only 49 (4.7%) presumptive Arcobacter spp. 
were recovered from the samples collected from Tanza-
nia. During freeze-storage, 5.8% (n = 11) of the presump-
tive Arcobacter spp. from Ghana and 38.8% (n/N = 19) 
from Tanzania were lost.

The relative frequency of confirmed Arcobacter 
spp. in poultry and livestock samples was higher in 
Ghana (84.1%, n/N = 111/132) than in Tanzania (15.9%, 
n/N = 21/132). The majority of the presumptive Arco-
bacter spp. that were not confirmed as Arcobacter spp. 
turned out to be Campylobacter spp. and Comamonas 
spp. Also, the relative frequency of the confirmed Arco-
bacter was higher in commercial farms in Ghana (87.4%, 
n/N = 83/95) compared to Tanzania (12.6%, n/N = 12/95). 
A total of eight different poultry (n = 4) and livestock 
(n = 4) species were sampled from commercial farms 
located in Ghana, and the incidence of Arcobacter was 
highest in pigs (45.1%, n/N = 37/82), followed by ducks 
(38.5%, n/N = 10/26), quails (35.7%, n/N = 10/28) and 
sheep (13.3%, n/N = 2/15). The remaining farm animal 

Conclusions  The high levels of MDR Arcobacter detected from farms in both countries call for urgent attention 
and comprehensive strategies to mitigate the spread of antimicrobial resistance in these pathogens.

Keywords  Arcobacter, Commercial farms, Smallholder farms, Antimicrobial resistance, Ghana, Tanzania, Arcobacter 
butzleri, Arcobacter lanthieri, Arcobacter cryaerophilus
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species had Arcobacter frequencies of less than 10%. 
The frequency of Arcobacter in chicken samples from 
commercial (3.7%, n/N = 20/545) and smallholder farms 
(4.0%, n/N = 27/671) in Ghana was similar. Table 1 pro-
vides details on the frequency of Arcobacter spp. iso-
lated from poultry and livestock faecal samples collected 
from commercial and smallholder farms in Ghana and 
Tanzania.

According to MALDI-TOF-based species identifica-
tion, the majority of Arcobacter spp. isolated from both 
Ghana (91.9%, n/N = 102/111) and Tanzania (90.5%, 
n/N = 19/21) were identified as A. butzleri. The propor-
tion of A. butzleri in commercial farms was similar to 
that of smallholder farms in Ghana and Tanzania. Three 
A. cryaerophilus were isolated, one from Ghana and two 
from Tanzania. All Arcobacter lanthieri (100%, n/N = 8/8) 
were isolated from chickens in Ghana, with the majority 

being isolated from smallholder farms (87.5%, n/N = 7/8) 
(Fig. 1).

Arcobacter frequencies by month
The monthly precipitation (lines) and percentage of 
Arcobacter isolated (bars) from Ghana and Tanzania are 
shown in Fig. 2. Unlike Ghana, where Arcobacter was iso-
lated in nine out of the 12 months of the year, in Tanza-
nia, it was isolated in six out of the 12 months. Arcobacter 
was not isolated in both countries in January, March, 
and December. The monthly frequency in Ghana ranged 
from 0% to 22.6% in April. In May, Tanzania recorded the 
highest monthly frequency of 8.6% (n/N = 3/35). Almost 
all Arcobacter from Ghana (98.2%, n/N = 109/111) and 
38.1% (n/N = 8/21) from Tanzania were isolated during 
the rainy season. In Ghana, Arcobacter were 20 times 
(95% CI 5.0–80.5) more likely to be isolated in the rainy 

Table 1  Frequency of Arcobacter spp. in commercial and smallholder farm animals in Ghana and Tanzania

n number positive, N total samples collected, and NA Not Applicable (No samples collected)

Sample type Commercial, % (n/N) Smallholder, % (n/N) Total, % (n/N)

Ghana Tanzania Ghana Tanzania Ghana Tanzania

Chicken 3.7 (20/545) 3.2 (12/371) 4.0 (27/671) 1.2 (5/406) 3.9 (47/1216) 2.2 (17/777)

Turkey 7.4 (2/27) NA NA NA 7.4 (2/27) NA

Duck 38.5 (10/26) NA NA NA 38.5 (10/26) NA

Quail 35.7 (10/28) NA NA NA 35.7 (10/28) NA

Cow 1.5 (1/65) 0 (0/40) NA 1.8 (3/166) 1.5 (1/65) 1.5 (3/206)

Pig 45.1 (37/82) 0 (0/19) NA 0 (0/20) 45.1 (37/82) 0 (0/39)

Goat 5.9 (1/17) NA 1.0 (1/98) 4.3 (1/23) 1.7 (2/115) 4.3 (1/23)

Sheep 13.3 (2/15) NA 0 (0/11) 0 (0/2) 7.7 (2/26) 0 (0/2)

Total 10.3 (83/805) 2.8 (12/430) 3.6 (28/780) 1.5 (9/617) 7.0 (111/1585) 2.0 (21/1047)

Fig. 1  Arcobacter species from commercial and smallholder farms in Ghana and Tanzania
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season than during the dry season, while in Tanzania, 
detection rates were similar in both seasons (PR = 1.1, 
95% CI 0.4–2.5).

Antimicrobial resistance in Arcobacter species
Epidemiological cut-off values (ECOFFs) were derived for 
all antibiotics tested (Additional file 1). None of the Arco-
bacter isolates from smallholder farms in either country 
was resistant to tetracycline and kanamycin (Table 2). In 
contrast, 41.7% (n/N = 5/12) and 15.7% (n/N = 13/83) of 
Arcobacter isolates from commercial farms in Tanzania 
and Ghana, respectively, were resistant to tetracycline. 
Commercial farms from both countries were 5.2 (95% 
CI 1.7–15.8) and 4.7 (95% CI 1.2–18.8) times more likely 
to harbour ciprofloxacin and streptomycin-resistant 

Arcobacter, respectively, than smallholder farms. Of 
the eight antibiotics tested, ciprofloxacin exhibited the 
fourth-highest resistance level among isolates from 
Ghana (30.6%, n/N = 34/111) and Tanzania (42.9%, 
n/N = 9/21). Arcobacter from commercial farms in Tan-
zania was 5.9 (95% CI 2.4–14.7) and 2.7 (95% CI 1.2–6.1) 
times more likely to be resistant to erythromycin and tet-
racycline, respectively, than isolates from Ghana. Except 
for erythromycin, which showed a higher degree of 
resistance in Tanzania than Ghana isolates (PR = 2.9, 95% 
CI 1.3–6.3), all other antibiotics tested showed compara-
ble resistance frequencies (Table 2).

All A. lanthieri isolates (100%, n/N = 8/8) were suscep-
tible to ciprofloxacin, erythromycin, tetracycline, and 
kanamycin, and the majority (87.5%, n/N = 7/8) were 

Fig. 2  Monthly precipitation (line graph) and percentage of Arcobacter isolated (bar graph) from farms in Ghana and Tanzania. The monthly average 
precipitation data for the Tanga Region was acquired from (https://​tcktc​ktck.​org/​tanza​nia/​tanga/​korog​we), whereas the data for the Ashanti Region 
was also obtained from (https://​tcktc​ktck.​org/​ghana/​ashan​ti)

Table 2  Antibiotic-resistant Arcobacter spp. isolated from commercial and smallholder farm animals in Ghana and Tanzania

n number positive and N total samples collected

Antibiotic Resistance rate in % (n)

Commercial farm Smallholder farm Total

Ghana (N = 83) Tanzania (N = 12) Ghana (N = 28) Tanzania (N = 9) Ghana (N = 111) Tanzania (N = 21)

Penicillin 100 (83) 100 (12) 100 (28) 100 (9) 100 (111) 100 (21)

Ampicillin 100 (83) 100 (12) 100 (28) 100 (9) 100 (111) 100 (21)

Chloramphenicol 100 (83) 100 (12) 100 (28) 100 (9) 100 (111) 100 (21)

Ciprofloxacin 39.8 (33) 58.3 (7) 3.6 (1) 22.2 (2) 30.6 (34) 42.9 (9)

Streptomycin 26.5 (22) 16.7 (2) 7.1 (2) 0 (0) 21.6 (24) 9.5 (2)

Erythromycin 8.4 (7) 50 (6) 21.4 (6) 11.1 (1) 11.7 (13) 33.3 (7)

Tetracycline 15.7 (13) 41.7 (5) 0 (0) 0 (0) 11.7 (13) 23.8 (5)

Kanamycin 12.0 (10) 8.3 (1) 0 (0) 0 (0) 9.0 (10) 4.7 (1)

https://tcktcktck.org/tanzania/tanga/korogwe
https://tcktcktck.org/ghana/ashanti
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susceptible to streptomycin. The observed resistance 
rates of A. butzleri (N = 121) to ciprofloxacin, strepto-
mycin, erythromycin, tetracycline, and kanamycin were 
33.9% (n = 41), 19.0% (n = 23), 15.7% (n = 19), 13.2% 
(n = 16), and 8.3% (n = 10), respectively.

Figure 3 shows antibiotic resistance of Arcobacter iso-
lates from commercial and smallholder farms in Tanza-
nia and Ghana. In general, higher antibiotic resistance 
was observed in Arcobacter from commercial farms 
compared to smallholder farms in both countries. Also, 
more resistant isolates were observed in Arcobacter from 
commercial farms in Tanzania than in Ghana. Multi-drug 
resistance (MDR) was observed in 57.1% (n/N = 12/21) 
and 45.0% (n/N = 50/111) of Arcobacter isolates from 
Tanzania and Ghana, respectively.

Multidrug resistance (MDR) was observed in 57.1% 
(n/N = 12/21) and 45.0% (n/N = 50/111) of the Arco-
bacter isolates from Tanzania and Ghana, respectively. 

Table 3 summarizes the factors associated with MDR in 
all Arcobacter isolates. The type of farm (commercial or 
smallholder) and source of the sample (poultry or live-
stock) were found to be associated with MDR (Table 3). 
In both countries combined, a higher prevalence of MDR 
Arcobacter was isolated from commercial farms (55.8%, 
n/N = 53/95) than from smallholder farms (24.3%, 
n/N = 9/37) (PR = 2.3, 95% CI 1.3–4.2). The adjusted PRs 
also indicate that poultry were 1.3 times (95% CI 1.1–2.6) 
more likely to have MDR Arcobacter strains than live-
stock. However, seasonal variation, the country from 
which samples were collected, and the particular Arco-
bacter species were not associated with MDR.

Discussion
The present study describes antibiotic-resistant Arco-
bacter species from commercial and smallholder farm 
animals in Ghana and Tanzania. The observed overall 

Fig. 3  Antibiotic resistance of Arcobacter isolates from commercial and smallholder farms in Tanzania and Ghana. TZ Tanzania, GH Ghana, MDR multi 
drug resistance

Table 3  Associations with the frequency of multi drug-resistant Arcobacter 

PR prevalence ratio, CI confidence interval

Variable Crude PR (95% CI) Adjusted PR (95% CI)

Commercial vs. smallholder farm 2.3 (1.3–4.2) 2.7 (1.6–4.9)

Rainy vs. dry season 1.3 (0.3–2.0) 1.3 (0.3–1.8)

Poultry vs. livestock 1.6 (0.9–1.5) 1.3 (1.1–2.6)

Arcobacter butzleri vs. Other species 1.8 (0.7–4.7) 2.1 (0.8–5.5)

Ghana vs. Tanzania 0.8 (0.5–1.2) 0.9 (0.6–1.3)
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Arcobacter proportion in Ghana (7.0%) and Tanzania 
(2.0%) was much lower than what was described in 
a previous study with a focus on local and imported 
poultry meat in Kumasi, Ghana (26.5%) [9] and a study 
conducted in ostriches in South Africa (68%) [18], and 
in poultry abattoir effluents in Nigeria (14.0%) [17]. 
The differences in the current Arcobacter proportion 
compared to the few earlier studies conducted in simi-
lar geographical areas could be due to several factors. 
For instance, the types of samples analyzed, variations 
in the timing of sample collection throughout the year 
and the specific microbiological methods utilized. 
Among the different farm animals sampled  in Ghana, 
pigs (45.1%), ducks (38.5%), and quails (35.7%) had the 
highest overall Arcobacter frequencies. While a few 
studies have reported similar findings [19, 20], other 
studies conducted in Asia and Africa have observed the 
highest Arcobacter frequencies in chicken [3, 11, 18]

In this study, Matrix-Assisted Laser Desorption Ioni-
zation Time-of-Flight Mass Spectrometry (MALDI-
TOF MS) species identification revealed the presence of 
three types of Arcobacter spp.: A. butzleri, A. cryaero-
philus, and A. lanthieri. The predominant species was 
A. butzleri, which is not uncommon in poultry and live-
stock [20–22] and is also most commonly implicated 
in human infections. Surprisingly, A. skirrowii was not 
found in this study, even though it is a known colonizer 
of poultry and livestock [11, 23]. The present study 
identified eight A. lanthieri from chicken in Ghana with 
the majority being isolated from smallholder farms. A. 
lanthieri was only recently described in 2015 [24] and 
since then, it has been isolated from pigs, dairy cattle 
manure, and humans [24–26]. The presence of A. lan-
thieri in farms in Ghana is concerning as it is known to 
encode many putative virulence genes [25].

In this study, the isolation rate for Arcobacter in 
Ghana was much higher in the rainy season than in 
the dry season, while in Tanzania, the detection rate 
was similar in both seasons. In temperate climates, 
there is no consensus on the differences in Arcobacter 
prevalence by season. A recent study observed varied 
frequencies according to season and poultry type [20]. 
Similarly, studies conducted in Japan and Italy recorded 
no significant difference in prevalence by season [3, 
27]. However, in tropical settings, higher frequencies of 
enteric bacterial pathogens have been observed in the 
rainy season than in the dry season [28, 29]. The sig-
nificantly higher contamination of farms in Africa by 
enteric bacterial pathogens during the rainy season has 
been attributed to open defecation practices, increased 
runoff, and more frequent overflowing of onsite sep-
tic tanks and sanitation systems [30]. In addition, the 
lower temperatures during the rainy seasons favour the 

survival of mesophilic foodborne pathogens such as 
Arcobacter.

Because no ECOFF values could be defined for peni-
cillin, ampicillin and chloramphenicol due to the lack of 
discrimination of distinct susceptible or resistant isolate 
populations, all Arcobacter isolates tested in this study 
were considered resistant to these three antibiotics. This 
is in line with studies conducted in Turkey and Iran, 
where most Arcobacter isolates were found to be resist-
ant to ampicillin and chloramphenicol, respectively. [10, 
11]. Also, 32.6% and 19.7% of the Arcobacter isolates 
tested against ciprofloxacin and streptomycin, respec-
tively, had inhibition zone diameters below the ECOFF 
values indicating resistance for both antimicrobials. A 
recent study on backyard chickens and retail poultry 
meat in Chile found lower rates of ciprofloxacin, tetra-
cycline, and erythromycin resistance [31]. The increased 
resistance rate observed in this study could be due to dif-
ferences in geographic location and misuse of antibiot-
ics in commercial and smallholder farms in the current 
study areas [8, 32]. Not surprisingly, the resistance pat-
terns of Campylobacter isolates from farms in the study 
area in Ghana showed similar results to those reported 
here [28, 33]. Nevertheless, it is reassuring that our study 
observed that all Arcobacter spp. from smallholder farms 
in the two countries were susceptible to both tetracycline 
and kanamycin. This could be due to the lower use of 
antibiotics in smallholder farms compared to commercial 
farms, as previously described in the same study area in 
Ghana [8].

A. butzleri was found to be generally more resistant to 
antibiotics than A. lanthieri. This correlates with findings 
from previous studies [34, 35]. Among all known Arco-
bacter spp., A. butzleri has been reported as the most 
significant clinical pathogen due to its high overall preva-
lence and pathogenicity [35]. We also identified multid-
rug-resistant Arcobacter spp. in this study. The inherent 
resistance of Campylobacteraceae to β-lactam antibiot-
ics may explain the high resistance rate observed [2]. We 
observed more multidrug-resistant Arcobacter isolates in 
poultry than in livestock. A report from Tanzania sug-
gests that antimicrobial misuse is widespread among 
farmers, with poultry farmers having higher rates of mis-
use than livestock farmers [36].

There were some limitations in our study. Sampling 
was limited to a single district in both countries, so the 
observed results may not reflect true nationwide preva-
lence in each country. The high number of presumptive 
isolates from Tanzania dying during freeze storage result-
ing in low Arcobacter frequencies, and the less variety of 
farm animals sampled from Tanzania, made it difficult 
to do a detailed comparison between the two countries 
but rather show trends only. In addition, the enrichment 
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and selective medium used in this study disproportion-
ately favour the isolation of A. butzleri, probably at the 
expense of other Arcobacter species. Despite the above 
limitations, this study is, to the best of our knowledge, 
the first to report on Arcobacter species in both commer-
cial and smallholder farms in Ghana and Tanzania.

Conclusion
Our findings suggest that commercial and smallholder 
farm animals in Ghana and Tanzania are carriers and 
potential transmission reservoirs for Arcobacter spe-
cies. All Arcobacter recovered from poultry and livestock 
were resistant to at least two or more antibiotic classes 
tested. The high levels of MDR Arcobacter detected call 
for immediate development and implementation of 

effective Arcobacter control strategies in commercial and 
smallholder farms to curb the proliferation of multidrug-
resistant strains and safeguard animal and human health. 
Furthermore, our findings may inspire further research 
in SSA to comprehensively understand the prevalence, 
virulence, and pathogenicity of Arcobacter spp. across a 
broader range of geographic areas.

Methods
Study site
A cross-sectional study was conducted in two coun-
tries in SSA, Ghana and Tanzania. In Ghana, this study 
was conducted in Agogo, the capital of the Asante Akim 
North Municipality, located in the eastern part of the 
Ashanti Region (Fig. 4). Asante Akim North Municipality 

Fig. 4  Location of commercial and smallholder farms in Agogo, Ashanti Region, Ghana and Korogwe TC, Tanga Region, Tanzania that were included 
in the study. This map was created using the QGIS version 3.24.0-Tisler software (https://​qgis.​org/​en/​site/)

https://qgis.org/en/site/
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is a rural community with a population of 85,788 [37]. 
Almost half (42%) of the households in the municipality 
rear farm animals, and poultry accounts for 56% of the 
animals, with the remaining ones being livestock [37]. 
Ghana has a tropical climate with two main seasons. The 
rainy season extends from April to October, and the dry 
season from November to March.

In Tanzania, this study was conducted in Korogwe 
Town Council (TC), located within the Tanga Region 
in northeastern Tanzania (Fig.  4). Based on preliminary 
results of the 2022 Tanzania population and housing cen-
sus [38], Korogwe TC population is estimated at 73,464. 
Tanzania has a tropical Savannah climate with two rainy 
seasons. March to May is characterized by long rains, 
and November to mid-January by short and lighter rains. 
Most of the population resides in rural settings, mainly 
engaging in informal trade or subsistence farming (here-
after called smallholder farming). 

Sample collection
Sampling took place between March 2019 and July 2020. 
A farm with an intensive housing system of caged poul-
try and/or livestock was considered commercial. Small-
holder farms were households with free-roaming poultry 
(mainly indigenous breeds) and/or livestock with shelter 
provided by basic or temporary roofing. Before sampling, 
a list of all commercial farms within each study site was 
obtained from each country’s respective district office of 
the Ministry of Agriculture. In a community within the 
study site, we initially identified one or two households 
engaged in rearing free-range farm animals. We then 
requested those households to introduce us to another 
household that kept farm animals for possible sampling. 
Before sample collection, the farm was visited to ascer-
tain the number of pen houses. Multiple pen house farms 
were visited more than once during sampling; nonethe-
less, each pen house was sampled only once throughout 
the study period. Faecal samples were collected from 
poultry and livestock in the commercial and smallholder 
farms. Poultry included chicken, duck, turkey, and quail, 
while livestock included sheep, goats, pigs, and cows. 
For each sample, approximately 2 g of freshly voided fae-
cal droppings were collected using a sterile spatula and 
placed in a sterile plastic container without preservatives. 
All samples were transported in a cool box (4–8 ℃) and 
processed within 2–4 h at the Kumasi Centre for Collab-
orative Research in Tropical Medicine (KCCR) in Ghana 
or the National Institute for Medical Research (NIMR) in 
Korogwe, Tanzania.

Identification of Arcobacter
Arcobacter spp. was isolated using selective enrich-
ment media as described by [10]. Suspected Arcobacter 

colonies were tested for the enzyme cytochrome oxidase 
and those that were positive were examined by Gram 
staining. Gram-negative spiral-rod-shaped colonies were 
stored, as presumptive Arcobacter isolates, at −80  ℃ 
using the Microbank™ system (Pro-Lab Diagnostics, 
Bromborough, UK). All isolates were shipped to Ger-
many on dry ice and species confirmation was performed 
by MALDI-TOF MS using the VITEK® MS system (bio-
Mérieux, Marcy-l’Étoile, France).

Antibiotic susceptibility testing
The Kirby Bauer disk diffusion method [39] was used 
to assess the antibiotic susceptibility of all confirmed 
Arcobacter isolates. Antibiotic disks (Oxoid, Hampshire, 
UK) were placed on Mueller–Hinton agar supplemented 
with 5% sheep blood and inoculated with Arcobacter for 
antibiotic susceptibility testing. Plates were incubated at 
30 ℃ under microaerophilic conditions for 24  h. After 
24 h, isolates with insufficient growth were further incu-
bated, and the inhibition zone was read after a total of 
40–48 h. Isolates were tested against ampicillin (10 µg), 
chloramphenicol (30  µg), ciprofloxacin (5  µg), strepto-
mycin (25 µg), erythromycin (15 µg), tetracycline (30 µg) 
and kanamycin (30 µg). So far, the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) clini-
cal breakpoints have not been determined for Arcobacter, 
therefore, ECOFFs were determined based on the fre-
quency distribution of measured inhibition zone diam-
eters (Additional file  1). Additional Arcobacter isolates 
obtained from children at the same study sites during the 
research period were included in the development of the 
ECOFFs. (Additional file 1). The procedure for develop-
ing ECOFFs has been described previously [40, 41]. The 
zone diameter measurements, indicating susceptibil-
ity (S) or resistance (R) for each antibiotic, are detailed 
in Table  4. Multidrug resistance (MDR) was defined as 

Table 4  Epidemiological Cut-Off Values (ECOFFs) used for 
Antimicrobial Resistance in Arcobacter spp

S susceptible, R resistant, NA not applicable—100% resistant

Antibiotic (disk concentration) Zone diameter (mm)

S ≥  R < 

Tetracycline (30 µg) 18 18

Ciprofloxacin (5 µg) 18 18

Streptomycin (25 µg) 15 15

Ampicillin (10 µg) NA NA

Chloramphenicol (30 µg) NA NA

Erythromycin (15 µg) 11 11

Kanamycin (30 µg) 14 14

Penicillin (10 µg) NA NA
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resistance to at least one agent in three or more antimi-
crobial categories.

Data analysis
Descriptive statistics of categorical variables were cal-
culated using absolute frequencies and corresponding 
percentages. Prevalence ratios (PRs) and their respective 
95% confidence intervals (CIs) were computed to show 
associations between two categorical variables. Because 
of the explanatory nature of this study, p-values were 
not calculated. Poisson regression with robust standard 
errors was used to fit multivariable models for multiple 
drug resistance in Arcobacter isolates. The dependent 
variable in the Poisson regression was whether an Arco-
bacter isolate was multiple drug-resistant or not. The 
independent variables were whether the isolate was col-
lected from a commercial or smallholder farm, during 
the rainy or dry season, from poultry or livestock sam-
ples, and coming from Ghana or Tanzania. R software 
(version 4.3.1) was used for all statistical analyses [42]. 
The epiR (2.0.19) package was used to calculate the PRs, 
and the sandwich package (version 3.0–0) was used to 
compute robust standard errors of the Poisson regres-
sion. A bar chart was created, using the R package ggplot2 
(version 3.3.5), to show Arcobacter spp. with inhibition 
zone diameters below (resistant) and above (susceptible) 
the ECOFFs. Also, the line graph and bar chart showing 
Arcobacter frequency by month were plotted using the 
ggplot2 package (version 3.3.5). The line graph for the 
Tanga Region was plotted using the monthly average pre-
cipitation data obtained from https://​tcktc​ktck.​org/​tanza​
nia/​tanga/​korog​we, whereas the data for the Ashanti 
Region was also acquired from https://​tcktc​ktck.​org/​
ghana/​ashan​ti/​agogo. QGIS software, version 3.24 [43], 
was used to draw a map showing the geographical loca-
tion of the farms sampled in Ghana and Tanzania.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13099-​023-​00588-3.

Additional file 1. Epidemiological cut-off values (ECOFFs)  determined 
based on the frequency distribution of measured inhibition zone diam‑
eters of all antibiotics tested against Arcobacter isolates
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