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development of the cancer stem cell (CSC) theory 
enables life scientists to think about cancer in a new way, 
helps them to uncover the nature of cancer, and makes a 
cure for cancer possible [1, 2]. In recent years, the CSC 
theory has attracted increasing attention, and CSCs 
have been successfully isolated from various malignant 
tumours, such as breast cancer, brain tumours, prostate 
cancer, lung cancer, liver cancer, colorectal cancer, and 
skin cancer [3, 4]. CSCs are subsets of cells with strong 
proliferative capacity and high self-renewal and differen-
tiation potential in malignant tumour tissues and are also 
the root of cancer recurrence and metastasis [5]. In addi-
tion, studies have confirmed that CSCs play a decisive 
role in cancer development, chemoradiotherapy resis-
tance, recurrence and metastasis [6, 7]. Therefore, CSCs 
are a pivotal target for the eradication of cancers.

Just as cancer cells are regulated by their specific 
microenvironments, CSCs are also understood to exist in 
a specific microenvironment, namely, the “CSC niche” or 

Introduction
Malignant tumours are diseases that seriously threaten 
human life. For most patients with malignant tumours, 
chemotherapy, radiation therapy and biological immu-
notherapy can be used to kill most of the tumour cells, 
but they cannot fundamentally cure the tumour. The 
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Abstract
High recurrence and metastasis rates and poor prognoses are the major challenges of current cancer therapy. 
Mounting evidence suggests that cancer stem cells (CSCs) play an important role in cancer development, 
chemoradiotherapy resistance, recurrence, and metastasis. Therefore, targeted CSC therapy has become a new 
strategy for solving the problems of cancer metastasis and recurrence. Since the properties of CSCs are regulated 
by the specific tumour microenvironment, the so-called CSC niche, which targets crosstalk between CSCs and their 
niches, is vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. In this review, 
we aim to highlight the factors within the CSC niche that have important roles in regulating CSC properties, 
including the extracellular matrix (ECM), stromal cells (e.g., associated macrophages (TAMs), cancer-associated 
fibroblasts (CAFs), and mesenchymal stem cells (MSCs)), and physiological changes (e.g., inflammation, hypoxia, 
and angiogenesis). We also discuss recent progress regarding therapies targeting CSCs and their niche to elucidate 
developments of more effective therapeutic strategies to eliminate cancer.
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“CSC microenvironment” [8]. The status of CSCs in the 
primary tumour and the malignant phenotype of their 
progeny are controlled by various factors generated by 
the associated CSC niche during tumour progression 
to a malignant state [9, 10]. The expression of stem cell 
markers in cancer (stem) cells and their tolerance to anti-
cancer drugs are determined by specific combinations of 
microenvironmental components [11, 12]. Multiple stud-
ies have supported the idea that the reciprocal interac-
tion between CSCs and their putative niches is a crucial 
component of tumour growth and progression [13–15]. 
Understanding the mechanism of interaction between 
CSCs and the CSC niche will likely facilitate the develop-
ment of effective cancer treatments.

The CSC niche is a specific tumour microenviron-
ment that supports CSC self-renewal, proliferation, and 
function. It consists mainly of stromal cells, extracellular 
matrix (ECM), a variety of cytokines and growth factors 

[8, 16]. In the CSC niche, reactions such as inflammation, 
epithelial-mesenchymal transformation (EMT), hypoxia, 
acidic pH, and angiogenesis constantly occur to keep the 
internal environment stable. Studies have shown that 
establishing CSC niches in distant locations is critical for 
CSC survival and self-renewal [17]. In addition, interac-
tions with adjacent cells in the CSC niche as well as the 
stroma have been shown to be important for the survival 
and maintenance of CSCs [18]. The components of the 
CSC niche and biological processes within it determine 
the fate of CSCs (Fig. 1). Evidence suggests that the CSC 
microenvironment plays a crucial role in regulating the 
properties of CSC, thereby promoting tumorigenesis, 
progression, treatment resistance, and metastasis [19]. In 
fact, CSCs also regulate their microenvironment to main-
tain their properties [20, 21]. The crosstalk between CSC 
and their microenvironment plays a key role in tumour 
progression. In this review, we focus on some key factors 

Fig. 1  General overview of the components of the CSC niche. Cellular components such as CAFs, TAMs and MSCs and reactions such as inflammation, 
hypoxia, angiogenesis, and the ECM of the CSC niche promote and support the properties of CSCs. CSC: cancer stem cell, CAF: cancer-associated fibro-
blast, ECM: extracellular matrix, MSC: mesenchymal stem cells, TAM: tumour-associated macrophages
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in CSC niche that play important roles in regulating CSC 
properties and tumour progression.

Properties of cancer stem cells
CSCs, also known as tumour-initiating cells (TICs), are 
elucidated as a distinct population that persist within 
tumours. These cells are responsible for cancer recur-
rence, metastasis, and resistance to current therapies, 
[22–24] based on several of their properties. Firstly, CSCs 
have the ability to self-renew. In the self-renewal process, 
CSCs may undergo symmetric or asymmetric division to 
both maintain a defined CSC population and expand the 
bulk of tumour [23, 25, 26]. Previous literature has shown 
that csc self-renew depends on the activation of specific 
stem cell pathways and inactivation of pathways that 
inhibit stem cell self-renewal [24, 27]. Secondly, CSCs 
have differentiation ability. CSCs exhibit multi-differen-
tiation potential to differentiate into cancer cells and a 
variety of stromal cells, maintaining the CSC microenvi-
ronment to promote CSC properties and tumour devel-
opment. CSCs can differentiate into cancer cells, which 
has been validated in other types of cancers, including 
pancreatic, prostate, lung and liver cancer [28]. Tang 
and colleagues showed that ovarian CSCs differentiate 
into endothelial cells (ECs) and promote tumour angio-
genesis through autocrine C-C Motif Chemokine Ligand 
5 (CCL5) signalling [29]. Previous studies have dem-
onstrated that CSCs can differentiate into pericytes via 
regulating by cell-intrinsic or microenvironmental cues 
[30, 31]. In addition, it has also been demonstrated that 
GSCs can differentiate into tumour-associated macro-
phages (TAMs), cancer-associated fibroblasts (CAFs) or 
myeloid-derived suppressor cells (MDSCs) under certain 
conditions [32]. Thirdly, CSCs have the ability to resis-
tant treatment. CSCs display highly treatment resistance 
and are responsible for tumour maintenance and tumour 
recurrence [33]. As reported, CD133-positive glioma 
stem cells (GCSs) exhibit markedly increased chemother-
apy and radiotherapy resistance compared with CD133-
negative tumour cells [34]. And high CD44 expressing 
cancer cells were mostly resistant to drugs [35]. The key 
mechanism of CSC resistance is that cellular plasticity, 
especially the ability of CSCs to adopt quiescence, is the 
key driver [36, 37]. CSCs require input from their specific 
microenvironment to maintain their properties includ-
ing but not limited to the above. The roles of these key 
factors in the CSC microenvironment on CSC properties 
and tumour development will be detailed in the following 
sections.

Extracellular matrix
ECM is the main structural component of TEM, which 
comprised of a network of distinct ECM molecules, 
including collagens, laminins and fibronectin and 

proteoglycans [38]. It was found that the expression of 
ECM components such as type I collagen and laminin 
increased gradually in the radial region from the centre 
of cancer tissue to the periphery, while the expression of 
ECM components was almost not detected in the cen-
tral region of cancer tissue [39]. The addition of type I 
collagen and laminin leads to an increase in extrinsic 
matrix stiffness. In fact, the matrix stiffness of cancer tis-
sue increases significantly from the inside out [40, 41]. 
For cancer tissue, the Young’s modulus in the core area 
was significantly lower than that in the adjacent normal 
tissue, but the Young’s modulus in the edge area of the 
cancer tissue was significantly higher than that in the 
normal tissue [42]. Some studies have found that the dis-
tribution of CSCs is related to this mechanical property 
of cancer tissue. As reported, aldehyde dehydrogenase 
1A1 (ALDH1A1) can serve as a marker for glioma stem 
cells; moreover, ALDH1A1+ cells were increased in the 
invasive frontier area compared with the non-invasive 
frontier area [43]. In addition, one study found that the 
expression of CD133 occurred mainly in the areas close 
to the tumour rim of HCT116 xenografts, which showed 
that CD133-positive HCT116 CSCs were distributed 
mainly in the areas close to the tumour rim [44]. In a 
study of hepatocellular carcinoma, it was found that the 
cancer stem cell marker molecules CD133 and CD44 
were distributed mainly at the edge of hepatocellular car-
cinoma stem cell colonies [45]. Moreover, a recent study 
showed that the highest number of liver CSCs was found 
at the invasive front part of the tumour [40]. Therefore, as 
shown in Fig. 2, CSCs with high clonal formation ability 
and high invasion and metastasis ability gathered mainly 
in the stiffer invasion frontier area of the cancer tissue.

The accumulation of CSCs in the invasion frontier may 
come from the transformation of normal/cancer cells or 
the migration of cancer cells from other regions, which 
indicates that this region is more conducive to the sur-
vival and maintenance of CSC characteristics. Therefore, 
matrix stiffness in the invasion frontier is an important 
factor regulating the biological properties of CSCs, such 
as the maintenance of stemness, invasion, and metas-
tasis. In fact, current studies have demonstrated that 
the mechanical properties of the cancer microenviron-
ment regulate the expression of CSC markers and asso-
ciated traits [46, 47]. Mechanical factors, such as matrix 
stiffness, can influence CSC plasticity, trigger stemness 
in non-stem cancer cells, [48, 49] and participate in 
the regulation of biological behaviours [50]. Therefore, 
mechanical factors, as important factors in cellular and 
physiological maintenance, play an important role in the 
regulation of CSC properties and the occurrence and 
development of cancer.

In addition to matrix stiffness, the prominent compo-
nents of the ECM, such as type I collagen, fibronectin, 
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and hyaluronan, have also been demonstrated to support 
the properties of CSCs. Fibronectin and type 1 collagen 
could increase CSC proliferation and inhibit chemother-
apy-imposed apoptosis [51, 52]. Hyaluronan has been 
proven to support the CSC multipotent state, [53, 54] 
and depletion of the hyaluronan matrix in vivo decreased 
CSC marker expression levels in hepatocarcinogenesis 
[55]. Therefore, CSC fate decisions are dynamically regu-
lated by ECM composition.

Cellular components of the CSC niche
Stromal cells in CSC niche including TAMs, CAFs, 
MSCs, MDSCs, ECs, T cells, pericytes etc., play essential 
roles in the maintenance of CSC function and the occur-
rence and development of tumors [56].  A large number 
of studies have proven that CAFs not only secrete a vari-
ety of cytokines, growth factors and ECM proteins but 
are also involved in vascular and lymphatic angiogenesis, 
ECM remodelling, immunosuppression, and EMT of 
tumour cells, thus providing a favourable microenviron-
ment for tumour cells, promoting the proliferation, drug 
resistance, invasion and metastasis of tumour cells, and 
affecting the prognosis of patients with these tumours 
[57].

CAFs
CAFs are a major component of the tumour microenvi-
ronment (TME). Numerous evidence demonstrated that 
CAFs can shape the TME to promote cancer stemness 
[58]. CAFs can alter the TME, interact with other cell 
types and support cancer progression through the secre-
tion of soluble factors [59]. Study has shown that CAF-
derived cardiotrophin-like cytokine factor 1 (CLCF1) 
can promote tumour cells to secrete more C-X-C motif 
chemokine ligand 6 (CXCL6) and transforming growth 
factor-β (TGF-β), thus promoting the stemness of 
tumour cells, and in clinical samples, upregulation of 
the CLCF1-CXCL6/TGF-β axis was significantly asso-
ciated with an increase in CSCs [60]. CAFs also express 
vascular endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), interleukin (IL)-8, epider-
mal growth factor (EGF), and fibroblast growth factor 2 
(FGF-2), ultimately forming a tumour growth supporting 
microenvironment [58, 61]. In addition, CAFs have been 
shown to promote EMT-driven tumour stemness acqui-
sition and regulate plasticity of lung cancer stemness 
through paracrine signalling [62, 63]. Therefore, CAFs 
play important roles in maintaining a favourable tumour 
microenvironment for tumour development.

Immune cells
Immune cells, the major cellular components of CSC 
niche, include TAMs, MDSCs, T cells and so on, which 
have been proven to play a significant role in tumour 
development, progression, and therapeutic resistance. 
TAMs were found to participate in the establishment 
of the CSC niche through secretory signalling pathway, 
thus regulating the activity of CSCs [64]. TAMs secrete 
TNFα and activate NF-κB signalling in CSCs to induce 
the expression of Slug, Snail, and Twist and consequently 
drive EMT and CSC self-renewal [65]. In addition, TAMs 
was reported to regulate murine breast cancer stem 
cells through a novel paracrine EGFR/Stat3/Sox-2 sig-
nalling pathway and promote prostate cancer stem cells 
self-renewal and prostate cancer metastasis via activat-
ing β-catenin/STAT3 signalling [66, 67]. MDSC has also 
been demonstrated to increase CSC stemness. A study 
reported the role of MDSCs in the enhancement of breast 
cancer CSC properties [68]. And a recent study showed 
that MDSCs increase the stemness and PD-L1 expres-
sion of ALDHHigh ovarian cancer stem cells via the acti-
vation of the PI3K/AKT/mTOR signalling pathway [69]. 
Various populations of T cells exist in tumour at differ-
ent stages of tumour development, including cytotoxic T 
cells, regulatory T cells (Tregs), etc. A study showed that 
ovarian CSCs cooperate with Tregs to promote tumour 
immune tolerance and enhance tumour progression 
[70]. Cytotoxic T cells can recognize CSCs in an antigen-
specific manner as cancer stem cells express multiple 

Fig. 2  CSC distribution in ECM. Two extending lines from the tumour are 
drawn to distinguish the invasive frontier area and non-invasive frontier 
area (internal). CSCs are distributed mainly in the invasive frontier area
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tumour-associated antigens (TAAs), which limits the 
ability of the adaptive immune system to mount antigen-
specific responses to cancer stem cells [71]. In addition to 
the role of particular immune cell types in driving CSC 
expansion, the distinct ability of CSCs to evade surveil-
lance and destruction by immune cells also has been 
demonstrated [72].

MSCs
MSCs can be recruited to the specific microenviron-
ment by several chemokines, cytokines, growth factors 
and others produced by tumour cells [73]. MSCs main-
tain the properties of CSCs mainly by secreting various 
cytokines, such as CXCL12, IL-6 and IL-8, which can 
promote the self-renewal of CSCs, [56] and bone mor-
phogenetic protein (BMP) antagonists can maintain the 
undifferentiated state of CSCs [74]. In addition, MSCs 
homed at CSC niche play roles by surviving and existing 
as MSCs or differentiating into another cell type, such as 
CAFs, macrophages, pericytes or endothelial cells [75, 
76]. Evidences indicate that the MSCs can induce EMT 
and a CSC phenotype in pancreatic cancers and hepato-
cellular carcinomas, and MSCs increased the stemness of 
cancer cells in prostate cancer, gastric cancer and ovarian 
cancer [77].

ECs
The rapid proliferation of tumour cells increases the size 
of the tumour and causes the formation of a hypoxic 
region that activates the tumour to form new blood ves-
sels to provide much-needed nutrients and oxygen. ECs 
from pre-existing vessels form new blood vessel, that 
is angiogenesis, plays a key role in cancer growth. EC 
express VEGF receptor (VEGFR) which bind to VEGF-
A, followed by remodelling of the surrounding ECM and 
formation of new blood vessels [37]. ECs secrete many 
paracrine factors that directly foster tumour cell prolif-
eration and maintain cancer stem cells [78]. It has been 
reported that ECs can create a stem cell niche in glio-
blastoma by providing Notch ligands that nurture self-
renewal of CD133-positive cancer stem-like cells [79].

Pericytes
Pericytes are also important cellular components of the 
TME. Pericytes have multiple roles in the TEM, includ-
ing covering ECs along the endothelial surface and par-
ticipating in basement membrane remodelling and 
neovascularization during tumorigenesis [80]. Vascular 
pericytes can be generated by GSCs in vivo, allowing 
functional blood vessels to promote tumour growth, that 
suggest the importance of pericytes in remodelling CSC 
niche [30]. However, the mechanisms are poorly under-
stood and further research is needed.

Inflammation, hypoxia, and angiogenesis
In the CSC niche, reactions such as inflammation, 
hypoxia, and angiogenesis constantly occur to keep the 
specific microenvironment stable, and these biological 
processes determine the fate of CSCs [81].

Inflammation
Chronic inflammation is involved in the occurrence, 
development, invasion, metastasis and other pathological 
processes of malignant tumours, and it has been found to 
activate CSCs and cause drug resistance and metastasis 
[82]. For example, the inflammatory cytokine IL-6 can 
not only induce the transformation of non-stem cells into 
CSCs in liver cancer, breast cancer and prostate cancer 
cell lines but also activate STAT3 signalling to regulate 
the self-renewal of CSCs [83, 84]. In addition, one study 
found that the inflammatory factor IKKβ maintains the 
stemness of cancer cells and promotes metastasis by reg-
ulating the LIN28B/TCF7L2 positive feedback loop [85]. 
Thus, inflammation plays an important role in regulating 
the biological behaviours of CSCs.

Hypoxia
Aggressive tumours are known to have hypoxic areas in 
which cancer cells die from a lack of oxygen [86]. How-
ever, for cancer stem cells, the fate is different. Hypoxic 
regions within tumours probably favour the preservation 
of the stemness of CSCs [87]. Studies have shown that 
hypoxic conditions actually promote the properties of 
CSCs by increasing the expression of hypoxia-inducible 
factor (HIF) [88, 89]. HIF signalling plays a significant 
role in the modulation of various signalling pathways 
(i.e., the Notch, Hedgehog, Hippo, Wnt/β-catenin, 
and nuclear factor-κB (NF-κB) pathways), which are 
exploited by CSCs to regulate stemness during hypoxic 
and therapeutic stress [90, 91]. Meanwhile, HIF signalling 
enhances the maintenance of a CSC phenotype through 
the regulation of related genes, including pluripotency-
related transcription factors, EMT programmers, gly-
colysis-associated molecules, drug resistance-associated 
molecules, miRNAs and VEGF (reviewed in [91]). There-
fore, the hypoxic microenvironment plays an important 
role in maintaining the stemness and function of CSCs. 
Hypoxia is an important mediator of chemo/radio resis-
tance to cancer therapy through multiple mechanisms. 
Hypoxia limits radiation therapy efficacy by inhibiting 
oxygen-mediated free radical damage [92]. In terms of 
chemotherapy, hypoxia can up-regulate the expression of 
multidrug resistance-related genes [34].

Angiogenesis
It is generally believed that tumour angiogenesis plays 
an important role in tumour recurrence and metastasis. 
Studies have concluded that there is a strong relationship 



Page 6 of 12Liu et al. Cancer Cell International          (2023) 23:305 

between CSCs and cancer angiogenesis. On the one 
hand, CSCs can promote angiogenesis and participate in 
angiogenesis by secreting a variety of angiogenic factors 
or directly differentiating into tumour vascular progeni-
tor cells and endothelial cells [93, 94]. Studies have found 
that CSCs consistently secrete markedly elevated levels of 
VEGF, and this CSC-mediated VEGF production leads to 
amplified endothelial cell migration and tube formation 
in vitro [95]. Another study found that overexpression of 
VEGF in glioblastoma CSCs induces longer, more vas-
cular and highly destructive tumours [96]. On the other 
hand, vascular endothelial cells in the tumour microenvi-
ronment induce stem cell-like phenotypes in cancer cells 
and promote the enrichment and migration of CSCs [97, 
98]. These results suggest that CSCs promote angiogene-
sis to form a vascular-rich tumour environment, which in 
turn is conducive to the maintenance of CSC properties.

Secretory factors
Cells present in the CSC microenvironment produce 
several secretory factors that promote CSC properties. 
Such as cytokines and growth factors, provided by CAFs, 

MSCs, endothelial cells and specific immune cells, lead-
ing to the induction of plasticity, stemness, EMT, and 
metastasis. The role of TAMs in enhancing and maintain-
ing the stemness of CSC is mainly attributed to their abil-
ity to secrete cytokines, chemokines, growth factors and 
exosomes to enrich the CSC niche [99]. The importance 
of CAFs in regulating CSC properties discussed above is 
mainly attributed to the multiple factors they secreted, 
including pro-angiogenic factors, cytokines (IL-6, TGFβ), 
chemokines (IL-8, CXC12), prostaglandins (PGE), and 
growth factors (hepatocyte growth factor (HGF), VEGF) 
[100]. And, ECs secrete several cytokines such as IL-3, 
granulocyte colony-stimulating factor (G-CSF), IL-1, 
IL-6, granulocyte macrophage-CSF, VEGF-A, and basic 
fibroblast growth factor (bFGF) [101]. In addition to the 
above, some other cell types in the CSC niche may also 
secrete factors involved in the maintenance of CSC prop-
erties and tumour progression.

Table 1  Targeted CSC therapy approaches
Approaches CSC types Mechanisms Effect References
Inducing CSC 
differentiation

Hepatocellular 
carcinoma

Smad inhibitor treatment induces CSC 
differentiation

Tumour growth was suppressed, and 57% of 
the tumours in a cyclin D1 sphere-derived 
xenograft model were eliminated

[102]

Gastric cancer Targeting phosphoglycerate kinase 1 
induces stem cell differentiation in gastric 
cancer

The invasive potential of gastric cancer cells was 
impressively reduced in vitro

[103]

Glioblastoma 
multiforme

Ciliogenesis induces glioma stem cell 
differentiation

The infiltration of GSCs into the brain was 
prevented

[104]

Breast cancer ATRA treatment leads to breast cancer 
stem cell differentiation

Invasion and migration were reduced, and sen-
sitivity to anticancer treatment was increased

[105]

Glioma Bone morphogenetic protein 7 induced 
differentiation of glioma CSCs

Tumour growth, angiogenesis, and invasion 
were decreased

[106]

Inhibiting CSC 
maintenance 
properties

Triple-negative 
breast cancer

MYC and MCL1 cooperate in the main-
tenance of chemotherapy-resistant CSCs 
in TNBC

Tumour initiation was significantly reduced in 
vivo

[107]

Prostate and glio-
blastoma tumours

Suppressing the Wnt signalling pathway Significant CSC-suppression was induced, 
and the expression of CSC-related genes was 
repressed

[108]

Colon cancer Honokiol targets notch signalling CSCs and colon cancer growth were inhibited [109]
Non-Small Cell Lung 
Cancer

NF-κB and MYC signalling are targeted Inhibition of the cell survival [110]

Oesophageal squa-
mous cell carcinoma

Downregulation of ATPase-family AAA-
domain-containing protein 2 (ATAD2) 
inhibits the Hedgehog signalling pathway

The malignant phenotypes of oesophageal 
squamous cell carcinoma cells were restrained

[11]

Targeting the CSC 
niche

Breast and Lung 
cancer

An anti-GPR77 antibody targets 
CD10+GPR77+ CAFs, which provide a 
survival niche for CSCs

Tumour formation was abolished, and tumour 
chemosensitivity was restored

[111]

metastatic renal cell 
carcinoma, hepato-
cellular carcinoma, 
gastrointestinal 
stromal tumours

Antiangiogenic drugs target the VEGF 
pathway

Successful therapy [112]
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Therapeutic strategies for targeting CSCs and their 
niche
Studies in recent years have provided important insights 
into the biological characteristics and maintenance of 
CSCs. These efforts are also beginning to elucidate poten-
tial CSC targeting strategies that could be combined with 
current treatment strategies to treat cancer more effec-
tively. Cancer stemness is widely accepted as the driv-
ing force behind tumour aggressiveness. Researchers 
have realized that targeting CSCs is of great significance 
in tumour-targeted diagnosis and treatment. Currently, 
targeted CSC therapy is carried out mainly with three 
approaches: induction of CSC differentiation, inhibition 
of CSC maintenance properties, and targeting of the CSC 
niche (Table 1).

Targeted induction of CSC differentiation is a thera-
peutic approach that restricts tumour progression by 
causing loss of the CSC self-renewal capacity and CSC 
depletion [113]. As reported, the induced differentiation 
of glioma stem cells (GSCs) by ciliogenesis can prevent 
the infiltration of GSCs into the brain [104]. In addi-
tion, the induction of CSC differentiation reduced drug 
resistance and invasion ability [114]. The maintenance of 
CSC properties is usually inhibited by targeting signal-
ling pathways that maintain CSC functions. As reviewed, 
the “hyaluronan-CD44 axis has a substantial impact on 
the stemness properties of CSCs and drug resistance, 
and potential therapeutic approaches targeting CSCs 
based on the hyaluronan-CD44 axis are also presented” 
[107]. The Wnt/β-catenin pathway has been reported 
to facilitate cancer stem cell function maintenance, and 

compounds inhibit self-renewal and drug resistance of 
CSCs by targeting the Wnt/β-catenin signalling path-
way [115]. The Notch pathway also plays an important 
role in the maintenance of CSCs by targeting notch sig-
nalling, and honokiol inhibits CSCs and colon cancer 
growth [109]. The Hippo pathway is known to play an 
important role in tumour progression by regulating vari-
ous processes, such as cancer cell proliferation, apop-
tosis, invasion, and metastasis. Abundant evidence has 
demonstrated the effect of the Hippo pathway on cancer 
progression based not only on the regulation of cancer 
cells but also on the regulation of CSCs. Studies have 
shown the critical role of the Hippo pathway in CSC biol-
ogy, including in EMT, drug resistance, and self-renewal 
[116]. In addition, as transcription factors, YAP and 
TAZ are transcriptional drivers of genes that are essen-
tial to the CSC state [12, 48]. Meanwhile, targeting other 
important signalling pathways (e.g., NF-κB, Hedgehog, 
and JAK-STAT) in CSCs that maintain their function may 
also provide strategies for cancer treatment [117, 118].

Inhibiting the maintenance of CSC properties are 
approaches that have been studied more but have rarely 
been available in the clinic. As mentioned above, in the 
CSC niche, a variety of cellular and noncellular compo-
nents and signalling molecules actively participate in the 
maintenance of CSC properties. It was observed that 
dysregulation of pathways that regulate CSC properties 
often leads to aberrant self-renewal and differentiation of 
CSCs, which results in carcinogenesis [119, 120]. Signal-
ling pathways, such as Wnt/beta-catenin, Notch, NF-κB 
and MYC that play key roles in the regulation of CSC 

Fig. 3  Components of the CSC niche led to cancer recurrence and metastasis by promoting CSC properties. The properties of CSCs in tumours are 
regulated by components of the CSC niche, including hypoxic regions, inflammatory and immunosuppressive effects, the perivascular compartment, 
and the ECM. Factors of the CSC niche regulate CSC properties by modifying signalling pathways and ultimately lead to cancer recurrence and metastasis
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properties. For example, by targeting the MYC signal-
ling pathways, tumour initiation of breast cancer reduced 
significantly in vivo, and cell survival of Non-Small Cell 
Lung Cancer inhibited [107, 110]. In prostate and glio-
blastoma tumours, suppressing the Wnt signalling path-
way induced significant CSC-suppression and repressed 
the expression of CSC-related genes [108].

The perfect interaction of CSCs with their niche makes 
them dynamic and malleable, making them “difficult to 
target”; therefore, targeting key factors in the CSC niche 
may be an effective strategy for cancer therapy. In fact, 
there are a few relevant research results. For example, 
by targeting CD10+GPR77+ CAFs, which provide a sur-
vival niche for CSCs, an anti-GPR77 antibody abolishes 
tumour formation and restores tumour chemosensi-
tivity [111]. In addition, recent studies have found that 
mechanistic stem cell therapy based on the mechani-
cal properties of cancer tissue can precisely target and 
selectively kill cancer tissue and effectively prevent the 
toxic side effects caused by cancer radiation and chemo-
therapy [121]. Inhibitor treatments to block inflamma-
tory cytokines and/or their receptors in CSCs also are 
effective strategies, as cytokines and their receptors play 
important roles in the regulation of CSC biological char-
acteristics by changing the cell niche [120]. For example, 
anti-CD44 antibodies, has been demonstrated to inhibit 
breast cancer growth, and induce apoptosis, decrease 
human melanoma metastasis and increase animal sur-
vival in SCID mice [28, 122]. Since angiogenesis supports 
the stemness of CSCs, the regulation of blood vessels is 
a promising approach to target CSCS for cancer ther-
apy. Indeed, several VEGF-targeting agents have been 
developed, including bevacizumab, sunitinib, sorafenib, 
pazopanib, etc [112]. Thus, it is advisable to investigate 
combined approaches targeting CSCs with factors within 
the CSC niche that support CSC properties. However, 
targeting the CSC niche for cancer treatment is only in its 
infancy and has a long way to go.

Conclusions and future perspectives
Multiple factors in the tumour microenvironment play 
key roles in the management of CSC status (Fig. 3). Here, 
we have reviewed what is known about the regulation of 
CSCs by several important CSC niche signals, as well as 
targeted therapy strategies. Studies have shown that the 
biological behaviours and functions of CSCs are regu-
lated by a variety of signalling pathways, some of which 
are triggered by unique properties of the CSC niche. Fac-
tors of the CSC niche regulate CSC properties by modi-
fying signalling pathways and ultimately lead to cancer 
recurrence and metastasis. These factors can affect the 
conformation and interaction of related molecules in 
the signalling pathway, triggering biologically important 
reactions in CSCs that lead to covalent modification of 

enzymes, protein‒protein interactions, cytoskeletal rear-
rangement, altered gene expression, and changes in CSC 
properties. These signalling pathways include the Wnt, 
NF-κB, Notch, Hedgehog, Hippo, JAK/STAT, PPAR, 
PI3K/Akt/mTOR, and TGF-β/Smad pathways [117, 
123, 124]. In fact, little is known about the regulatory 
mechanism of multiple factors within the CSC niche on 
CSC behaviours and characteristics. In the future, mul-
tiple innovative strategies should be considered regard-
ing signalling pathways of CSC cross-talk with its niche, 
which will elucidate potential new approaches for cancer 
therapy.
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