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Abstract

Normal ovarian development is necessary for the production of healthy oocytes.

However, the characteristics of oocytes development at different stages and the

regulatory relationship between oocytes and somatic cells remain to be fully

explained. Here, we combined scRNA-seq and spatial transcriptomic sequencing to

profile the transcriptomic atlas of developing ovarian of the rat. We identified four

components from developing granulosa cells including cumulus, primitive, mural,

and luteal cells, and constructed their differential transcriptional regulatory net-

works. Several novel growth signals from oocytes to cumulus cells were identified,

such as JAG1-NOTCH2 and FGF9-FGFR2. Moreover, we observed three cumulus

sequential phases during follicle development determined by the key transcriptional

factors in each cumulus phase (Bckaf1, Gata6, Cebpb, etc.), as well as the potential

pinpointed roles of macrophages in luteal regression. Altogether, the single-cell spa-

tial transcriptomic profile of the ovary provides not only a new research dimension

for temporal and spatial analysis of ovary development, but also valuable data

resources and a research basis for in-depth excavation of the mechanisms of mam-

malian ovary development.
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1 | INTRODUCTION

Ovary is a critical female reproductive organ, serving as the source of

oocytes and a major supplier of steroid sex hormones.1 It mainly

contains cortex, medulla, and follicles with numerous distinct cell

types, such as oocytes, granulosa, stromal, endothelial, and immune

cells.2 Follicles, as the basic functional units of the ovary, are com-

prised of innermost oocytes surrounded by granulosa cells (GCs)

and outer layers of thecal cells (TCs).3 Generally, it is distributed

throughout the ovarian cortex and subsequently moves into the

medulla. The process of follicle development includes: (1) oocyte

maturation; (2) GC proliferation and differentiation broadly for

supporting the oocyte growth (cumulus GCs) and allowing follicular

fluid accumulation in the antrum (mural GCs); (3) TCs are special-

ized from stromal cells and then surround the follicle, with high

vascularization.4

Follicle development is dominantly mediated by hormones

and key intracellular molecular pathways.5 Previous studies

have demonstrated that follicle-stimulating hormone (FSH) recep-

tors are expressed in follicles from primary to later stages, and

treatment with FSH and luteinizing hormone (LH) promotes prean-

tral follicle growth.6,7 In addition to FSH and LH, some key signal-

ling molecules or pathways are also essential for follicle

development. KITL is constitutively expressed by the GCs and

interacts with oocytes-derived KIT to active PI3K-Akt signalling

ensuring the oocytes' growth initiation.8–10 Meanwhile, GDF9 and

BMP15, originating from oocytes, stimulate the proliferation and

differentiation of GCs.11 CNP encoded by the NPPC has recently

been found to be a follicle-stimulating factor. CNP receptors occur

in granulosa and cumulus cells of antral and preovulatory

follicles.12 Treatment of cumulus-oocyte complexes with CNP

stimulates cyclic Guanosine MonoPhosphate (cGMP) production in

cumulus cells and inhibits the meiotic resumption of oocytes. All

these findings revealed that follicle development is a complicated

physiology process involving considerable signalling communica-

tions, which remains to be fully explained.

The GC serves as the component of the follicle and the major

regulator of oocyte development. A recent study has shown obvi-

ously different GC cell populations between aged and young mice by

spatial transcriptomic sequencing data,13 illustrating the indispens-

able role of GC cells in maintaining female fertility and follicle cyclic

homeostasis. Importantly, abnormal GC function is closely related to

reproductive system diseases. For example, FOXL2 mutation may

cause GC tumour formation.14 In female monkeys, inactivated anti-

oxidative pathways, increased reactive oxygen species, and apopto-

sis were observed in GC, suggesting the essential links between GC

dysfunction and ovarian aging.15 In patients with polycystic ovary

syndrome, restricted GC proliferative capacity leads to decreased

follicle maturation.16 Therefore, deciphering the molecular basis of

GC development is of great significance for the diagnosis and treat-

ment of ovarian diseases.

Benefiting from the development of high-throughput single-cell

sequencing technology, more ovarian cell subtypes have been

discovered and the heterogeneity of ovarian cells has been further

investigated. In the human ovary, researchers identified five types of

ovarian cells including granulosa, stromal, endothelial, immune, and

perivascular cells through single-cell sequencing analysis, and the

molecular features of each cell type were presented.17 Similarly,

another research group has identified four common cell types in

mouse ovaries, except for perivascular cells,18 and other three

extra cell types (germ, erythrocyte, and epithelial cells). Impor-

tantly, gene signatures of certain ovarian type between distinct

species are different, evidenced by the Amhr2 specifically exhibited

in mouse GCs and BEX1 extensively expressed in human GCs.18,19

Therefore, a comprehensive analysis of molecular characteristics

among ovarian cells is still needed. In addition, a previous study

has uncovered four subtypes of oocytes at sequential and stepwise

developmental stages including primordial, primary, secondary, and

antral follicles, and described their gene-expression changes during

the stage-to-stage transition of folliculogenesis.15 Despite these

findings depicting the classification of ovarian cells during the pro-

cess of follicle development, the detailed molecular mechanisms

underlying follicle and GC development, as well as the nature of

heterogeneity of ovarian cells are still incomplete. Further elucida-

tion of these critical issues would be highly helpful to our compre-

hensive understanding of mammalian ovarian development, which

is imperatively required in the era of fertility health.

In this study, we used a rat model to establish the first

comprehensive single-cell spatiotemporal transcriptomic land-

scape of the ovary. We identified six ovarian cell types with

distinct gene-expression signatures characterized by scRNA-seq

and spatial transcriptome (ST). Meanwhile, we distinguished

hierarchies of developing GC subtypes and revealed their tran-

scriptional programs underlying for GCs state transformation. We

also analysed the transition of cumulus cell functional features

before and after ovulation. And finally, the potential role of

immune cells in luteal regression was also explored. Together,

these results provided new insight into the spatiotemporal distri-

bution of GC cell types and their transcriptomic features during

ovarian development.

2 | MATERIALS AND METHODS

2.1 | Animals

Female Wistar rats were purchased from Charles River Laboratories

(Beijing, China). Animal handling was performed in accordance with

the Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health. The rats were housed in an

environmentally controlled room and had free access to food and

water. One 16-week-old rat in good condition in the estrus stage

was used to perform the experiment after continuous observation of

three regular cycles. For the same rat, one retrieved ovary was pro-

cessed for spatial transcriptomic analysis and the other ovary was

handled for scRNA-seq data analysis. Animal studies were approved
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by the Zhengzhou University Animal Research Ethics Board (licence

no. 2021-KY-0054-002).

2.2 | Tissue processing

After confirmation of regular cycling, the rat ovaries were retrieved.

For the same rat, one retrieved ovary was processed for spatial tran-

scriptomic analysis and the other ovary was handled for scRNA-seq

data analysis.

2.3 | Ovary sections preparation for spatial
transcriptomic analysis

Ovary was rinsed in cold phosphate-buffered saline (PBS), cryo-

preserved in TissueTek optimal cutting temperature compound (VWR

International), and stored at �80�C in an airtight container, as recom-

mended by the manufacturer protocol (10� Genomics, Visium Spatial,

CG000240 Rev C). To generate representative sections for the whole

ovary, four evenly distributed sections through the ovary were

selected for sequencing.

2.4 | Ovary single-cell preparation for scRNA-seq
analysis

The rat ovary was chopped using scalpels into pieces of �0.3 mm3

and digested in Dulbecco's Modified Eagle Media: Nutrient Mixture

F-12 (DMEM/F12, Thermo Fisher Scientific) containing 5% Fetal

Bovine Serum (FBS, HyClone, Cytiva), 1 mg/mL collagenase IA

(Sigma-Aldrich), 50 μg/mL Liberase and 1000 U DNase I (Roche,

Sigma-Aldrich) in a shaking 37�C incubator for 40 min 220 rpm.

Digestion was stopped with a medium containing 10% FBS and the

cell suspension was centrifuged for 7 min on 300 � g. Discard the

supernatant and cells were resuspended in Dulbecco's Phosphate

Buffered Saline (DPBS, pyg0021, Boster), 2% FBS. The cell precipi-

tate was passed through a 40 μm cell strainer (Millipore, USA). Red

cell lysis solution (Solarbio, China) was added to the cell suspension

for 5 min. Then the cell suspension was centrifuged for 5 min on

300 � g and resuspended in DPBS, 0.04% Bovine serum albumin

(BSA, 1300913761, MACS). The cells were counted and the cell via-

bility was calculated with Trypan Blue (Gibco™, Thermo Fisher).

2.5 | Single-cell RNA-seq library preparation and
sequencing

Firstly, dissociated cells were stained with Trypan blue to assess

cell number and viability (88.4%). Then, the single-cell suspension

was loaded onto a 10 � Chromium system (10� Genomics).

Following GEM generation, cDNA synthesis proceeded using the

Single Cell 30 Reagent Kit v3 (10� Genomics). The amplification of

cDNA libraries was amplified by PCR using KAPA Master Mix

(kk4600, KAPA Biosystems) with 14 cycles. The cDNA libraries

were then fragmented and sequenced on the Illumina NovaSeq

6000 platform using S4 Reagent Kit (Illumina). Demultiplexing of

the sample was performed by the ‘mkfastq’ command from Cell

Ranger software (10� Genomics, version 1.7.2).

2.6 | Immunofluorescence

Three female rats' ovarian tissue (8 weeks) were fixed overnight in 4%

paraformaldehyde at 4�C. Ovarian tissue was paraffin-embedded

according to standard procedures. The thickness of the paraffin sec-

tions was 5 μm. Then sections were deparaffinized using xylene

(2 � 15 min), followed by rehydration using gradient alcohol (100%,

95%, 80%, and 70%) and distilled water at 25�C. Antigen retrieval of

sections was carried out by high-temperature treatment at 95�C for

30 min, with sodium citrate buffer (0.01 M, pH 6.0). After cooling, tis-

sue sections were blocked for 1 h at 25�C in a blocking buffer (1%

BSA, 0.1% Triton-X in PBS). Then, sections were incubated overnight

at 4�C with primary antibodies. Next day, after rinsing three times

with PBS (3 � 15 min), sections were incubated for 1 h with second-

ary antibodies followed by washing three times with PBS

(3 � 10 min). Finally, sections were treated with DAPI (D1306, Ther-

moFisher) for nuclear visualization and sections were mounted using a

fluorescence microscope (Nikon). The primary antibodies including

rabbit anti-StAR (1:100, 8449 T, CST), rabbit anti-FDX1 (1:200,

ab109312, Abcam), and rabbit anti-ALDH1A1 (1:150, PA5-95937,

ThermoFisher). The secondary antibody was goat anti-immunoglobu-

lin G (1:500, A-11008, ThermoFisher).

2.7 | scRNA-seq and spatial transcriptomics raw
sequence data processing

mRatBN7.2 reference genome data were obtained from the University

of California Santa Cruz (UCSC).20 Genome Ensembl annotation files

were downloaded by the UCSC Table Browser Tool.21 CellRanger soft-

ware (https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest) and SpaceRanger software were used to

process, align and summarize unique molecular identifier (UMI) counts

against rat reference genome for scRNA-seq pool, and the Visium spa-

tial transcriptomics array, respectively.

2.8 | scRNA-seq data analysis

Raw UMI count matrices were imported into R for downstream anal-

ysis. To obtain high-quality data, cells with over 15% UMIs of mito-

chondrial RNA and below 200 total UMIs were removed. The

‘Scrublet’ software was used to detect the doublets with the param-

eters expected_doublet_rate = 0.04. All doublets were removed

before downstream analysis. For each individual pool, normalization
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F IGURE 1 Single-cell and spatio-temporal transcriptional atlas of the ovary. (A) UMAP plot of single-cell transcriptomes of six different cell
types from rat ovary. Six main cell types are labelled by distinct colours. (B) Baseline table showing the cell number and percentage of assigned
cell types in rat ovary. (C) Heatmap showing the scaled expression levels of cell type-specific marker genes used for cell annotation.
(D) Representative gene ontology terms of stage-specific gene sets. Circle size and colour represent the number and percentage of genes,
respectively. (E) UMAP plot of spot transcriptome clusters from each slide shown on left; clusters are visualized on tissue-covered slide areas
(left). Integration with scRNA-seq cell type annotations is shown on the right. The last three slides were from sequential sections.
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was performed using the ‘SCTransform’ function from Seurat (ver-

sion 4.0.1)22 R package for total UMI counts per cell. The top 2000

highly variable genes were selected based on the mean–variance

curve and principal component analysis (PCA) was used to reduce

data dimension. Through performing Scree plots, the top 30 PCs

(principal components) were calculated for clustering analyses. Cells

F IGURE 2 Legend on next page.
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were then clustered using the Louvain algorithm (resolution = 0.5)

for modularity optimization using the K Nearest Neighbors (KNN)

graph as input. Finally, the Uniform Manifold Approximation and

Projection (UMAP) algorithm was used to visualize these cell

clusters.

2.9 | Spatial transcriptomics data analysis

Raw spot and image data were imported into R for further analysis.

Spots not covering the tissue section were filtered out to keep effec-

tive spots. SCTransform algorithm23 was performed to normalize

raw UMI counts for better accounting for the variability in total spot

RNA content. Dimensionality reduction was performed using PCA

for each slide. Scree plots were used to determine the optimum

number of principal components for spot clustering. Clustering was

performed using the Louvain clustering algorithm and clusters

were visualized using the UMAP algorithm as before. Clusters were

visualized in spatial context over Hematoxylin and Eosin staining

(H&E) images. Cell population enrichment in each spot was pre-

dicted using factor analysis via the ‘FindTransferAnchors’ and

‘TransferData’ functions in Seurat. Spatial feature expression plots

were generated with the ‘SpatialFeaturePlot’ function in the Seu-

rat R package.

2.10 | Identification of differentially expressed
genes

We used the ‘Findallmarker’ function from the Seurat R package to

determine marker genes for each cell population. Briefly, we defined

the genes that expressed for over 10% cell proportion in each cell

cluster and log2 fold change >0.25 between cells in one cluster and

other clusters as marker genes. The markers of sub-populations were

also identified according to the same method. Spatial-specific

expressed genes were identified within the luteum or follicle micro-

environment by comparing each interested compartment on tissue

sections. DESeq224 was used to screen spatial-specific expressed

genes between interested spatial compartments on tissue sections.

Genes with log2 fold change >0.5 and adjust p-value < 0.05 were

regarded as statistically significant genes.

2.11 | Cell trajectory analysis

Monocle2 tool was used to construct cell-type development trajec-

tory among primitive GCs cumulus GCs, mural GCs, and luteum

cells.25 First, ‘estimateSizeFactors’ and ‘estimateDispersions’
functions were used to normalize the single-cell gene expression

profile. Genes of mean expression >0.1 were selected for down-

stream analysis. Then, these genes were used for dimensionality

reduction. Finally, all cells were ordered based on a pseudo-time

trajectory with DDRTree method.

2.12 | Gene ontology enrichment analysis

Gene ontology and pathway enrichment analyses were conducted by

the ‘clusterProfiler’ R package.26 Annotation Dbi R package ‘org.Rn.
eg.db’ was used to map gene identifiers. All expressed genes served

as background. The results were visualized using ggplot2 R packages.

2.13 | Ligand–receptor interaction analysis

Ligand–receptor interactions were predicted by CellphoneDB

software.27 Briefly, the average expression level of ligand and

receptor pairs across cell-type pairs was calculated. Only genes

that expressed in more than 10% of cells within each cell type were

used for further analysis. We then followed the standard proce-

dure for CellphoneDB to identify the cell communication ligand-

receptor pairs across all cell-type pairs (https://github.com/

ventolab/CellphoneDB). We selected ligand-receptor pairs with

p < 0.001 and average expression level >0.2 as significant items.

2.14 | Transcription factor module analysis

R package ‘SCENIC’28 was used to scan active transcription factor

modules in GC. Genes detected in fewer than three cells were first

filtered. Due to the lack of a rat reference genome in the RcisTarget

R package (1.16.0), the mm9 mouse reference genome containing

transcription factor motif scores for gene promoters and around

transcription start sites were downloaded for further analysis.

F IGURE 2 Cataloguing in granulosa cell development. (A) UMAP visualization of four granulosa subclusters labelled by distinct colours. (B) The
colour-coded violin plots showing the average expression scores of signature genes. Hsd17b1, Inhbb, and Ihh for cumulus cells. Cyp11a1, Fdx1, and
Star for luteum. Cited2, and Aldh1a1 for mural cells.Wnt4, andWt1 for primitive cells. (C) ST spot overlay of cell type predictions for different
granulosa subtypes. (D) UMAP plots showing the expression levels of known key genes (Fshr, Ccn1, Ccn2, Ccn3, and Foxo1) in different granulosa
subtypes. (E) Fuzzy c-means clustering identified six distinct patterns of gene expression. The x-axis represents three developmental stages, while

the y-axis represents log2-transformed, normalized intensity ratios at each stage. N represents the number of genes. Green regions represent the
range between minimum and maximum gene expression levels. Red lines represent the mean expression level of the total genes. (F) Volcano plot
showing the average RNA abundance change between primitive cells and cumulus cells. (G) Transcription factor (TF) networks of four granulosa
subtypes are displayed. The outer and inner nodes of the network represent TFs and their target genes, respectively. (H) Different regulatory
networks of shared TFs across four granulosa cell (GC) subtypes. Purple, red, green, and blue lines represent the interactions of primitive cells,
cumulus cells, mural cells, and lutetium, respectively. (I) Dot plots showing the number of target genes of shared TFs across four GC subtypes.
(J) Venny chart showing the different targets of TF Fosb among four GC subpopulations.
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Previous studies demonstrated that the biological functions and reg-

ulatory pathways of homologous genes are highly conserved

between species.29 Hence, the expression matrices were further

filtered to only include homologous genes available in the mm9

mouse reference genome of RcisTarget database. To build a co-

expression module, the expression matrices were used to compute

F IGURE 3 Legend on next page.
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the correlation between two genes by a random forest-based

GENIE3 algorithm. R package ‘SCENIC’ was used to perform tran-

scription factor network analysis to detect co-expression modules

enriched for target genes of each candidate TF from the RcisTarget

database. AUCell package (1.16.0) was used to compute the Area

Under Curve (AUC) score, which represented transcriptional activity

for each TF module in each cell.

3 | RESULTS

3.1 | Single-cell gene expression profiling of rat
ovary

To obtain a single-cell transcriptome atlas and define the different cell

types in the rat ovary, we first performed scRNA-seq on ovarian tissue

based on the 10� Genomics Chromium platform. After quality con-

trol, 14,956 cells remained with a median of 1455 expressed genes

and coverage of 3946 UMIs per cell (Figure S1A,B). According to the

expression features of the known cell-specific marker genes of

distinct cell types, we identified six main ovarian cell types from the

dataset, including oocytes (Ddx4, Gdf9, and Bmp15),18,19 granulosa

(Fst, Amh, Serpine2, Star, and Cyp11a1),17 immune (Cd69, Itgb2, Cxcr4,

Cd14, and Cd53),17 endothelial (Cldn5, Vwf, Cldn5, Cd34, and Fli1),15

perivascular (Mcam, Rgs5, and Rergl),18 and stromal cells (Dcn, Pdgfra,

and Lum; Figures 1A and S1C,D).18 As expected, the oocyte-specific

markers showed similar transcriptional signatures between rat and

human ovaries.17 Intriguingly, in addition to those classic GC markers,

we have identified a panel of novel potential markers for GCs, includ-

ing Ccn2 and Foxo1 (Figures 1C and S1D). A cluster corresponding to

endothelial cells was identified according to the expression patterns

of human endothelial markers such as CDH5 and VWF. But unlike in

human ovarian, we found that Cldn5 also served as a rat endothelial

cell marker. Moreover, around 11% of ovarian cells were annotated as

perivascular cells, which highly expressed Mcam, Rgs5, and Rergl, with

enriched gene signatures associated with both pericytes and smooth

muscle cells (Figures 1B,C and S1D).30 Additionally, the stromal cells

were identified by the expression of diverse mesodermal lineage

markers (Dcn and Pdgfra; Figures 1C and S1D). Consistently, gene

ontology analysis results illustrated that those differentially expressed

genes in distinct types of cells were highly correlated with their

corresponding cell-type-specific functions during ovary development

(Figure 1D), suggesting that the cell-type classification based on our

data was robust and reliable.

ST analysis was further carried out to explore the spatial distribu-

tion characteristics of ovarian cells. We identified 8–12 spot clusters

in each slide according to the transcriptional signatures of ST spots,

which mapped to the discrete locations (Figure 1E). scRNA-seq

atlas served as a reference to define the single-cell composition of

each spot, thereby spatially localizing all the scRNA-seq clusters

(Figure 1E). As expected, oocytes were enveloped by surrounding

GCs, and some of the oocytes at the earlier developmental stages

were localized in the vicinity of the ovary surface, confirming that

primitive oocytes generally occurred in the ovary cortex. Immune cells

predominantly resided in luteum tissue with some distributed in stro-

mal regions (Figure 1E). Moreover, our data from the rat confirmed

previous results showing that immune cells including dendritic cells,

neutrophils, and macrophages are thought to be involved in luteum

remodelling events and cholesterol metabolism.2 In contrast, perivas-

cular cells were preferentially exhibited in stromal regions. Since there

were few spots judged to be endothelial cells, we did not observe

endothelial cells' spatial distribution features obviously. Collectively,

we identified six different ovarian cell types, including oocyte and

ovarian somatic cells, and depicted both gene expression and spatial

distribution features for each cell type.

3.2 | Differentiation of GCs during follicular
development

Considering that the oocyte–GC interactions and their microenviron-

ment conditions considerably influence follicle and oocyte growth

and maturation,31 we then defined the dynamic molecular changes of

GCs that take place during follicle development. According to the

clustering results, the granulosa population was divided into four

compartments including cumulus, luteum, mural, and primitive GCs

(Figure 2A,B). The four granulosa populations were further mapped to

the tissue sections by Seurat (Figure 2C). Cumulus cells were deter-

mined based on the expression levels of marker genes,17 such as

Inhbb, Ihh, and Hsd17b1 (Figures 2B and S2A). Mural cells were identi-

fied by Cited2 which also presented a high expression level in human

mural GCs17 (Figures 2B and S2A). In addition to some reported mural

F IGURE 3 Interaction between granulosa cells and other somatic ovarian cells during follicular development. (A) The cellular communication
network of four granulosa subtypes with ovarian cells. (B) Heatmap showing the average expression of cellphoneDB predicted ligands expressed
by granulosa cells (GCs; left), ligand-matched receptors expressed by ovarian cells (bottom), and the significantly enriched ligand-receptor pairs
between granulosa sub-populations and ovarian cell type pair (middle) from scRNA-seq data. (C) Heatmap showing the expression of

cellphoneDB predicted ligands expressed by ovarian cells (left), ligand-matched receptors expressed by GCs (bottom), and the significantly
enriched ligand-receptor pairs between ovarian cell types and granulosa sub-population pair (middle) from scRNA-seq data. (D,E) Bar plots of
significantly enriched ligand–receptor (L–R) pairs (p < 0.001). Ligands were expressed in GCs subtypes and receptors were expressed across
immune cells, perivascular cells, and endothelial cells (D). Receptors were expressed in GCs subtypes and ligands were expressed across immune
cells, perivascular cells, and endothelial cells (E). (F–H) Heatmap showing the average expression of L–R pairs for which ligands derive from
cumulus and receptors are expressed in oocyte and mural GC (F), ligands derive from mural and receptors are expressed in cumulus GC (G), and
ligands derive from the oocyte and receptors are expressed in cumulus GC (H).
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markers, we found that Aldh1a1 exhibited high RNA abundance in

mural cells which could serve as novel rat mural markers (Figures 2B

and S2A). Indeed, both ST data and immunofluorescence results

verified that Aldh1a1 was located in the wall of follicles (Figure S2BC).

Earlier studies have demonstrated that FSH is involved in the regula-

tion of follicle development,32–34 whereas the detailed mechanism

F IGURE 4 Legend on next page.
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remained to be fully revealed. Our results showed that Fshr was

preferentially expressed at higher levels in cumulus and mural cells,

suggesting that FSH may stimulate follicle growth primarily by com-

municating with these two cell types (Figures 2D and S2F). CCN

growth factors, as the downstream genes of hippo signalling that

disrupt follicle growth,5,35 displayed distinct expression patterns

between mural and cumulus cells (Figures 2D and S2F). In contrast to

the high Ccn2 expression in cumulus cells, mural cells had a low Ccn2,

but a high Ccn3 expression. Both cumulus and mural presented weak

Ccn1 signals (Figure 2D). These findings suggested that hippo signal-

ling might function through distinct target gene axis among different

granulosa subtypes.

The cell cluster with highly expressed stem lineage-related genes

of Wt1 and Wnt4 and derived from mouse ovary thecal progenitors36

was defined as primitive GCs (Figures 2B and S2A). Further trajectory

analysis also showed that primitive cells were the common ancestor

of cumulus and mural cells, confirming the accuracy of cell identifica-

tion (Figure S2G). Importantly, we observed a cell cluster with low

expression of conserved known GC marker Foxo137 which was

located in the luteum region (Figure 2C,D). Moreover, this cluster was

deposited behind the mural sub-population according to the trajectory

analysis, suggesting that it may evolve from mural cells (Figure S2G).

So, we defined these cells as luteal populations based on the previous

findings that the luteal compartment was differentiated from mural

cells after ovulation.2 Genes specifically expressed in the corpus

luteum were then selected as marker genes, such as Cyp11a1, Fdx1,

and Star (Figures 2B and S2B). Previous studies also showed that

these three genes are related to lipid metabolism, which is in line with

luteum function.38,39 Notably, immunofluorescence further validated

that Fdx1 and Star were specifically expressed in the luteal region, cor-

responding to their spatial distribution pattern (Figure S2B,D,E). Next,

we identified subgroup-specific genes for all GC compartments and

found that those subgroup-specific genes were highly correlated with

corresponding cell function (log2 fold change >0.25, p < 0.05;

Figure S2H). Additionally, the gene expression patterns were also

determined during granulosa development (Figure 2E). These genes

were clustered into six patterns that meet their respective functional

characteristics in the primitive-mural-luteal axis, suggesting that gran-

ulosa may be subjected to different regulatory patterns during devel-

opment (Figures 2E and S2I). Moreover, we also compared the gene

expression changes in the primitive-cumulus axis. Difference gene

expression (DEG) analysis between primitive and cumulus cells

showed that cell growth-related genes were up-regulated and stem

cell-related genes were down-regulated in cumulus, suggesting that

cumulus cells proliferate massively to support the oocyte develop-

ment (Figures 2F and S2J). Altogether, we identified four types of

GCs and resolved their differentiation directions during rat follicular

development.

To further characterize the transcriptome features of different

GCs, a cell type-specific transcriptional regulatory network (TF net)

was constructed by SCENIC. As shown in Figure 2G, the TF net of

primitive cells had the fewest interaction nodes of TFs and targets

(N = 3) compared with other GC types (N = 7–13). Thus, we

inferred that primitive cells were relatively quiescent or transcrip-

tionally inactive. In order to understand the differences in the regu-

lation of shared transcription factors among distinct GC subsets,

we constructed a network of differential regulatory models based

on shared TF in GCs (Figure 2H). Importantly, we found that Fosb

was a shared TF across all GC subsets (Figure 2I). However, its

downstream target genes varied in distinct GC sub-populations,

denoting that Fosb was a key TF during all follicle development

stages and that the regulatory modes of Fosb shifted during GCs

differentiation (Figure 2I,J). In addition, primitive GC cells shared

the fewest number of TFs with other GCs, further indicating that it

was in a transcriptional quiescent state (Figure 2I; N = 2). Alto-

gether, these results delineate the GC developmental trajectories

and characterize the molecular changes in GC subtypes during folli-

cle development.

3.3 | Cellular crosstalk between granulosa and
other ovary cells

To investigate the interaction between granulosa and environmental

cells, scRNA-seq, and ST datasets were integrated to characterize the

crosstalk signals between GCs and other ovary cells. Based on the data-

base of ligand–receptor pairs from CellphoneDB software, all signifi-

cantly enriched L–R pairs were identified and the ligand–receptor

interaction network was established (Figure 3A�C). Interestingly, we

found that endothelial cells participate in extensive paracrine interactions

with all GC sub-populations with a larger number of L–R pairs, suggest-

ing that they may be responsible for signal conditioning during follicle

development (Figure 3D,E). Within a follicle, the cumulus is a ‘relay sta-

tion’ for mural and oocyte signalling communication.5 Thus, we focused

on the crosstalk between cumulus and mural or oocyte cells. As shown

in Figure 3F,G, we further identified several ligand–receptor signalling

pathways with spatial proximity among GC sub-populations, such as the

ligand–receptor pairs of IGF1-IGF1R and INHA-TGFBR3 in cumulus to

F IGURE 4 Cumulus state transition during follicle development. (A) UMAP visualization of cumulus subclusters labelled by distinct colours.
(B) Trajectory analyses of cumulus cells using the monocle algorithm are shown over UMAP embedding, coloured by cell clusters. Arrow
represents developmental direction. (C) Heatmap showing the scaled expression levels of differential expressed genes among different cumulus
subclusters. Representational GO terms also are shown on the right. (D and E) UMAP plot and spatial feature plots showing the expression levels
of known marker genes (Top2a, Amh, Nppc, Lox) among distinct cumulus compartments. The H&E images derive from Sections 1 to
4. (F) Clustered heatmap of TF regulons by SCENIC analysis (n = 256 regulons) across cumulus sub-populations. (G) Venn diagram illustrating the
overlap between subtype-specific TFs and differentially expressed genes among different cumulus subtypes.
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mural cells, TIMP1-FGFR2 and MDK-LRP1 in the mural to cumulus cells

(Figure 3F,G and S3A,B). Importantly, several novel signals of oocytes to

cumulus were identified, including JAG1-NOTCH2 and FGF9-FGFR2

(Figures 3H and S3A). Overall, we drew the potential crosstalk between

granulosa and other ovary cells, and identified novel intercellular signals

that may be involved in the regulation of follicle development.

F IGURE 5 Legend on next page.
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3.4 | Unique gene-expression pattern of three
subtypes of cumulus at sequential and stepwise
developmental stages

To explore the gene expression dynamics of cumulus during folliculo-

genesis, we performed unsupervised analysis and subsequently identi-

fied three subtypes of cumulus cells (Figure 4A). Trajectory analysis

results revealed that cluster 1 was distributed at the root of the

pseudo-time trajectory (Figure 4A,B). Then, functional enrichment

analysis for specifically expressed genes was performed in each

cumulus subtype. We found that genes in Cluster 1 at the end of

the pseudo-time trajectory were significantly enriched in cell

proliferation-related items (Figure 4B,C). So, we inferred that cluster

1 mainly consists of GCs from early antral follicles. As essential genes for

follicular development, Top2a, Amh, Nppc, and Lox were differentially

expressed in distinct cumulus subtypes (Figure 4D,E). Subtype cluster

1 showed specific expression of proliferation-related gene Top2a and

high expression of AMH which was reported to locate in early antral fol-

licles or small antral follicles,40 confirming that cell cluster 1 is associated

with the rapid growth of follicles prior to ovulation (Figure 4D,E). Nppc

arresting oocytes meiotic41 was preferentially expressed in subtype clus-

ter 2, pointing out that those cells were in the follicle before ovulation

(Figure 4D,E). Lox, which acts as ovulation-related genes,42 was specifi-

cally up-regulated in the cumulus subtype from Cluster 3, indicating that

the cells in this cluster were at the stage of ovulation (Figure 4D,E). Thus,

we have traced the sequential and stepwise developmental trajectory of

folliculogenesis for cumulus cells from Clusters 1 to 3.

Then, we identified active transcription factors in the three

sequential cumulus stages. The unsupervised analysis result showed

that all transcription factors could be divided into three compartments

corresponding to cumulus classification (Figure 4F). To identify the

potential master regulators involved in the stage-to-stage transition in

cumulus, we intersected these transcription factors with the corre-

sponding cumulus subtype-specific genes. Fifteen transcription fac-

tors were identified to be the potential critical regulons essential for

cumulus transition, such as Bclaf1 in Cluster 1, Gata6 in Cluster 2, and

Cebpb in Cluster 3 (Figures 4G and S4). Bclaf1 is required for smooth

muscle lineage differentiation during lung development.43 In the pan-

creas, GATA6 binds the promoter of the digestive enzyme genes Rbpjl

and Mist1 facilitating acinar differentiation.44 Similarly, Cebp3 is also

involved in cell development and differentiation, and a previous study

has shown that it can regulate osteoblasts differentiation through the

WNT/ β-Catenin pathway.45 Follicular development is a step-by-step

orchestrated process containing the programmed expression of

gonadal hormones and other environmental factors,5,31 which proba-

bly affected the activity of these TFs and thus regulates cumulus tran-

sition. In total, our findings revealed the stage-specific transcriptional

programs underlying cumulus transition in rat ovaries.

3.5 | Immune cells involving luteal regression

To interrogate the composition of immune cells in the ovary, we first

separated the immune cells into 6 compartments based on clustering

analysis (Figure 5A). Macrophage signatures were prevalently expressed

in Populations 2, 3, 5, and 6, and these cells accounting for the highest

proportion of immune cells were defined as macrophages (Figure 5B,C).

Cells in Population 1 presented a high expression level of both T cell

markers (Cd8a and Cd3e)46 and NK cell marker Ccl5,47 which were cate-

gorized into a T&NK-cell population (Figure 5B,C). Population 4 with

minority cells was defined as B cells according to the expression pattern

of Cyb561a348 (Figure 5B,D). As expected, the cell type-specific genes

were enriched in their corresponding functional terms (Figure 5C). Pre-

vious studies demonstrated that immune cells may participate in luteum

remodelling.2 To further study its critical role in follicular development,

immune cells were mapped to HE slides by integration of scRNA-seq

and ST data. Interestingly, immune cells were only selectively distrib-

uted in some luteal regions (Figure 5E).

We then analysed the DEGs between luteum regions with high or

low immune cell enrichment. We found that the up-regulated genes

were highly related to lipid metabolism in the luteum, which lacks

immune cells, but associated with immune response in immune cell-

enriched luteum (Figure S5A,B). A high expression level of Ptgfr was

predominantly detected in the luteum with high enrichment of

immune cells (Figure 5E�G), denoting the initiation of the luteolysis

process.49 Therefore, the distinct distribution pattern of immune cells

in luteum regions suggests a potential function of immune cells in the

luteolysis process. Next, intercellular communication signals were cal-

culated between immune and luteal cells (Figures 5H and S5C). Mac-

rophages exhibited maximum amounts of L–R pairs with luteal cells

and the highest abundance in luteum regions, thus representing the

key cell type likely involving luteolysis (Figure S5C). In addition, we

found obvious spatial heterogeneity of gene expression in the luteum

(Figure 5I). The expression of lipid metabolism-associated genes,

including Apoe, Dgat2, and Cyp7b1, gradually declined from the centre

to the outer of the luteum, while ExtraCellular Matrix (ECM) forma-

tion-associated genes of Myh11, Dpt, and Emilin1 showed an

increased expression tendency, indicating that the spatially restricted

F IGURE 5 Immune cells are involved in the process of luteal regression. (A and B) UMAP cluster map revealing six specific immune cell

subtypes (A) and three mainly immune cell subtypes (B). (C) Heatmap showing the scaled expression levels of differential expressed genes among
immune subtypes. Representational gene ontology terms also are shown on the right. (D) UMAP plots showing the expression signatures of
different immune subtypes. (E) ST spot overlay of cell type predictions for immune compartments in two consecutive sections. (F) Spatial feature
plots showing the expression levels of Ptgfr in section 1. (G) Violin plot showing the expression level of Ptgfr between luteum 1 or 2 and 3. (H) Dot
plot showing the average expression levels and significance of the ligand–receptor (L–R) pairs in B cells, Macrophages, and T&NK cells. (I) Heatmap
showing the two genes' expression pattern with gradient increased (Cluster 1) or declined (Cluster 2) expression levels from the centre to outer in
luteum regions. (J,K) The distribution of gene expression of representative spatial-restricted genes in Cluster 1 (J) and Cluster 2 (K).
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gene expression pattern in luteum was corresponding to its function

(Figures 5J,K, and S5D, E). Overall, these results highlight the impor-

tant roles of immune cells in luteal regression with spatial heteroge-

neous expression features in the luteum.

4 | DISCUSSION

Although various cell types have been identified in the mammalian

ovary by scRNA-seq data,15,17–19 spatiotemporal regulatory mecha-

nisms during folliculogenesis remain unclear. The integration of single-

cell and spatial information in this study enables us to interrogate the

heterogeneity of spatiotemporal transcriptional programs in distinct

ovarian compartments during ovary development. We identified six

types of gene-expression signatures in the rat ovary and further

defined the differentiation hierarchies of developing GC subtypes

with known and several previously unreported luteal markers. More-

over, we described three sequential cumulus states during follicle

development and determined the key transcriptional programs.

Finally, we highlighted the immune cells, especially macrophages that

were related to luteal regression and heterogeneous luteal gene

expression.

Regarding to the cellular composition of the rat ovary, we identi-

fied six ovarian cell types containing oocytes and five somatic com-

partments based on their unique scRNA-seq molecular signatures and

spatial information. The canonical markers of distinct ovary cell types

derived from humans or mice also showed specific expression in the

corresponding cell subsets of the rat, illustrating the conserved molec-

ular characteristics among different species and the reliability of our

analysis data. Although the majority of known cell-specific marker

genes showed conserved expression in both rats and humans,

species-specific gene expression should be taken into account in cell

clustering. Especially, the variable genes discovered in GCs from our

dataset could be potentially used as candidate cell-type-specific

markers. Additionally, in our data, 17 oocytes were identified based

on the expression of Ddx4, Gdf9, and Bmp1550–52 (Figures 1C and

S1C), which was similar to previously reported results that 18 oocytes

were obtained,19 hinting that more large scale and precise sequencing

techniques should be established to obtain enough oocytes and sur-

rounding cells for in-depth exploration of ovarian development. Due

to luteal cells being transformed from mural GCs during follicular

development,53 it is difficult to distinguish these two cell types only

by gene signatures. Through combining single-cell and ST data, we

successfully identified luteal cells based on several lipid metabolism-

related markers in our data such as Fdx1, Fdxr, and Cybpa11, which

correspond to the physiological functions of luteum (Figure 2A–D).

These luteal signatures will provide a reference for future luteal cell

identification.

Most previous studies described the diversities of GCs during fol-

licle development in humans and mice,54–56 but the regulatory net-

work and molecular mechanisms underlying GC development in

ovaries remain largely unknown. By using scRNA-seq, we delineated

comprehensive transcriptional program changes of GCs in rat ovaries

(Figure 2). It is worth noting that the crosstalk between oocytes and

GCs, an important compartment of the follicle, plays an important role

in follicle growth and development.2,5,11 For example, oocytes were

aroused by GCs through KIT-KITL signalling. Then, BMP15 and GDF9

produced by oocytes spread into GCs, leading to the activation of

growth signalling SMAD in GCs.57 In our data, we identified some

novel signal pathways such as JAG1-NOTCH2 and FGF9-FGFR2

between oocytes and GCs.58–61 The Notch pathway is a highly con-

served juxtracrine signalling participating in many cellular processes,

including differentiation and proliferation.62 Our data showed

that Notch mRNA was specifically expressed in the cumulus, suggest-

ing that oocytes may stimulate cumulus development through

JAG1-NOTCH2 signalling (Figure 3H). Both cumulus and mural cells

expressed Fgfr2, which is highly associated with proliferation.63

Therefore, we inferred that the Fgf9 ligand expressed in oocytes

might interact with the Fgfr2 receptor to activate growth signalling in

GCs, supporting the findings that growth signals of GCs are primarily

initiated by oocytes.31

Previous studies have expounded on how GCs converge to regu-

late follicle development.18 However, much less is known about the

dynamic of gene expression and state transition in granulosa during

follicle development. In this study, we first distinguished three consec-

utive stages of cumulus cells, associating with their corresponding

functional characteristics, evidenced by the certain TFs were specifi-

cally expressed in distinct stages of cumulus cells (Figure 4A–C).

Moreover, mural cells differentiate into luteal cells after ovulation,

which indirectly proves that the transition of GC states occurs during

follicle development.53

Recent work demonstrated that immune cells are abundant in the

developing corpus luteum64,65 and are thought to facilitate tissue

remodelling events as well as control steroidogenic function.66,67

However, other studies argued that immune cells directly participate

in the loss of steroidogenesis and the demise of luteal cells and tis-

sue.68,69 We found that immune cells are mainly located in the inside

luteum, supporting an association between immune and luteal cells.

Meanwhile, we observed that immune cells contain B, T&NK, and

macrophage cells in rat ovarian, and they are closely related to corpus

luteum regression (Figure 5), which is supported by the finding

that immune cells mainly reside in the resolving corpus luteum and

less in the developing corpus luteum. Further comprehensive studies

are needed to explore whether immune cells are involved in luteum

remodelling. Besides, we observed an inconsistent abundance of

B/macrophage cells between single-cell and ST sequencing data

(Figure 5B,E). This may cause by the distinct origins of cells that are

used for these two types of sequencing techniques, and the bias of

integrated analysis.70 Hence, developing new techniques to capture

single-cell and ST simultaneously will further enhance the precision of

omics analysis. Moreover, our study showed that macrophages com-

municate with luteal cells through several signal pathways such as

Tnfrsf1a/Grn, Ide/Ccl23/3, Cd74/Copa, and Cd74/App (Figure 5H).

We inferred that macrophages participate in luteum resolving through

these signal pathways. Due to the low number of other immune cells

being detected, few intercellular signalling was identified between
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luteal and other immune cells. Therefore, the crosstalk analysis among

other ovarian immune cell types remains to be resolved.

Activation of the LH receptor in follicular cells by the preovula-

tory LH surge causes ovulation and rapid initiation of a terminal differ-

entiation program, which makes the ovulated follicle into a corpus

luteum through a process termed luteinization.71 The corpus luteum

plays important roles in regulating the estrous cycle and maintaining

pregnancy.72 This function is carried out largely by progesterone,

which is the main steroid synthesized by this transient endocrine

gland.53 However, the molecular foundation of luteum development

remains largely unknown. Our data revealed transcriptome heteroge-

neity of luteal at the single-cell level through scRNA-seq and ST

(Figure 5). What's more, we found that genes related to hormone

metabolism are mainly occurred inside the corpus luteum, whereas

genes related to ECM are preferentially expressed outside the corpus

luteum (Figures 5I and S5D,E). These findings provide a new perspec-

tive for our understanding of luteal development.

In summary, by combining the scRNA-seq and spatial transcriptomic

sequencing, we established the first comprehensive spatiotemporal tran-

scriptomic atlas of rat ovarian, which broadens our understanding of cell

identities and follicle formation in the mammal ovary. Importantly, it pro-

vides in-depth knowledge about the molecular mechanisms underlying

ovary development in rats, which would be valuable not only as the

reference resources, but also for a better understanding of the molecular

basis of ovary disease.
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