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, Nilüfer Özkan, DDS, PhD2, Mehmet Emin Önger, MD, PhD3,
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Abstract

Study Design: A stereological and histopathological study in an animal model
Objective: This study explores the effects of the nerve growth factor and photobiomodulation therapy on the damaged
nerve tissue and fracture healing.
Methods:A total of 24 rabbits were divided into 4 groups: control group (n = 5), nerve growth factor (NGF) group (n = 7),
photobiomodulation (PBMT) group (n = 6), and nerve growth factor and photobiomodulation therapy (NGF+PBMT)
group (n = 6). The vertical fracture was performed between the mental foramen and the first premolar, and the mental
nerve was crushed for 30 seconds with a standard serrated clamp with a force of approximately 50 N in all groups. The
control group received an isotonic solution (.02 mL, .09% NaCl) to the operation site locally. The NGF group received 1 μg
human NGF-β/.9% .2 mL NaCl solution for 7 days locally. The PBMT group received PBMT treatment (GaAlAs laser,
810 nm, .3 W, 18 J/cm2) every 48 hours for 14 sessions following the surgery. The NGF+PBMT group received both NGF
and PBMT treatment as described above. After 28 days, the bone tissues and mental nerves from all groups were harvested
and histologically and stereologically analyzed.
Results: According to the stereological results, the volume of the new vessel and the volume of the new bone were
significantly higher in the PBMT group than in other groups (P < .001). According to the histopathological examinations,
higher myelinated axons were observed in experimental groups than in the control group.
Conclusions: As a result, PBMT has beneficial effects on bone regeneration. Based on the light microscopic evaluation,
more regenerated axon populations were observed in the NGF group than in the PBMT and PBMT + NGF groups in terms
of myelinated axon content.
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Introduction

The oral and maxillofacial region is the most unprotected
part of the body and is often exposed to trauma. As a result
of trauma, maxillofacial fractures can occur.1,2 Fracture
healing is a complex and well-organized physiological
process initiated in response to a bone injury.3

Inferior alveolar nerve (IAN) is frequently damaged by
trauma, dentoalveolar surgery, or orthognathic surgery.4,5 In
most of these patients, sensory disorders can occur, in-
cluding severe dysesthesia, permanent paresthesia, and
pain. Patients may benefit from surgical treatments such as
nerve grafting. These are difficult procedures and
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ineffective in crush-type nerve injuries,6 and patients with
nerve damage have a higher rate of fracture formation.
Furthermore, changes in fracture healing and weaker cal-
luses were observed in experimentally denervated rats.7 It
has been reported that alveolar bone remodeling is pre-
vented in IAN transected rats.8

Nerve growth factor (NGF), a neurotrophic factor, plays
a critical role in peripheral nerve regeneration following
injury. It increases the proliferation and differentiation of
neurons and regulates the repair of damaged nerves.9–15

Several studies have shown that the local administration of
NGF increases nerve healing.10,16,17 NGF promotes not
only on neuronal cells but also on several non-neuronal
cells. NGF was shown to have positive effects on angio-
genesis, and angiogenesis plays a vital role in fracture
healing and nerve regeneration.18

In recent decades, bone healing has been stimulated
using PBMT, low-intensity pulsed ultrasound,19 and ozone
therapy.20 The effects of PBM are based on absorption of
light by intracellular chromophores that activate the met-
abolic process.21–23 A systematic review concluded that
PBMT may induce osteogenesis and that it has the ability to
increase osteogenesis, fibroblast, and osteoblast prolifera-
tion.24 When a peripheral nerve injury occurs, pro-
inflammatory cytokine production increases, and they are
released to the injury site. For nerve regeneration, neuro-
trophic factors such as NGF, brain-derived neurotrophic
factor (BDNF), and growth factors such as vascular en-
dothelial growth factor (VEGF) are released.25,26 A review
of in vivo studies suggests that PBMT is an effective
treatment option for peripheral nerve injury.27 According to
our investigation, there is no study in which both fracture
and nerve healing are examined together.

In this study, we hypothesized that NGF and PBMT
would enhance the regeneration of both nerve and bone
tissue. This study aimed to reveal new information about
NGF and PBMT applications in the treatment of bone and
nerve injuries through stereological and histopathological
analyses.

Materials & Methods

All experiments were authorized by the OMU Faculty of
Medicine Experimental Animals Research Center (2012/51,
Samsun, Turkey) and approved by the local ethics com-
mittee on animal experiments.

Animals

In this study, 28 female New Zealand rabbits weighing
between 2.5 and 3 kg were used. Animals were obtained
from the Experimental Animal Application and Research
Center of Ondokuz Mayıs University. The experiments
were performed at this center. The rabbits were housed in

individual cages at 1 atm pressure, 25°C, and a 12-h light/
dark cycle. They were allowed free access to food and water.
All animals were fed with pellet chow and water throughout
the experiments.

Experimental Groups

The rabbits were randomly divided into 1 control group and
3 study groups, with 7 rabbits per group. Vertical osteotomy
was performed between the mental foramen and the first
premolar on the right mandible. The right mental nerve was
crushed for 30 seconds using a standard serrated clamp with
a force of approximately 50 N in all groups.

Control Group (n = 7). Control group animals were injected
postoperatively with .9% .2 mL NaCl solution percutane-
ously around the mental foramen. The laser probe was also
applied to the same area on the buccal skin of the rabbits, but
the device was turned off.

PBMT Group (n = 7). The PBMT group received PBMT
treatment every 48 hours for 14 sessions following the
surgery.28 This PBMT consisted of a GaAlAs laser
(CheeseTM, Wuhan Gigaa Optronics Technology Co, Ltd,
China) with a wavelength of 810 nm, a power of .3 W, and
an energy density of approximately 18 J/cm2. The probe
was placed on the buccal skin of the rabbit in contact with
the skin, including the site of injury, for 180 s. The crushed
nerve and the fractured bone were in the same area. This
area was then irradiated (Figure 1B).

NGF Group (n = 7). The animals received 1 μg human NGF-
β (hNGF)/.9% .2 mL NaCl solution for 7 days percuta-
neously to the site of the injury (Figure 1A) as described by
Wang L et al.17 and Bao et al.30 PBMT +NGF group (n = 7):
The animals received 1 μg human NGF-β/.9% .2 mL NaCl
solution for 7 days and PBMT treatment for 14 sessions. We
applied NGF solution to the injury site first and then applied
the PBMT (Figure 1).

NGF Preparation

A total of 100 μg of hNGF-β (Bio Vision, San Francisco,
USA) was dissolved in .9% NaCl solution according to the
manufacturer’s instructions. Subsequently, solutions con-
taining 1 μg/.2 mL NaCl were prepared for single-dose
administration and stored at �20° C. The solutions were
applied at room temperature to the rabbits.

Surgical Procedure and Study Design

All surgical procedures were performed under sterile con-
ditions. Animals were anesthetized by intramuscular in-
jection of 50 mg/kg ketamine hydrochloride (Ketalar;
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Pfizer, Istanbul, Turkey) and 10 mg/kg xylazine hydro-
chloride (Rompun; Bayer, Istanbul, Turkey). Under
general anesthesia, a skin incision was made at the in-
ferior border of the right mandible. The bone tissue was
exposed by dissecting the skin and subcutaneous tissues
(Figure 2A). A vertical osteotomy was performed be-
tween the first premolar and mental foramen (Figure 2B).
Osteotomies were completed with a fine chisel and
performed carefully to avoid direct injury to the IAN. The
lingual periosteum was not reflected. The mental nerve
was crushed for 30 s using a serrated standard clamp with
a force of approximately 50 N (Figure 2C). The fracture
line was fixed with a four-hole miniplate and screws (7 ×
1.6 mm) with a thickness of 1 mm (Figure 2D). The
subcutaneous tissues and skin were closed with 3-0
Vicryl and 3-0 silk sutures. Tramadol (1 mg/kg; Con-
tramal, Abdi İbrahim, İstanbul, Türkiye) and cefazolin
sodium (500 mg/kg; Sefazol, M Nevzat, İstanbul, Tür-
kiye) were administered twice for 4 days for postoper-
ative pain and infection. All the rabbits were fed a soft
diet for at least 7 days. Rabbits were frequently monitored
for food intake and activity.

Stereological and Histopathological Analyses

After 4 weeks, the animals were euthanized with an in-
travenous injection of 1% pentobarbital. The tissue samples
were evaluated blindly by the histologist. Soft tissues on the
mandible were removed, and the obtained samples included
the entire fracture line and were decalcified in 5% formic
acid for 21 days. After decalcification, 10% formaldehyde
postfixation samples were gradually dehydrated with al-
cohol, cleaned with xylol, and prepared for histological

examination under a light microscope. For this purpose,
serial sections of paraffin-embedded samples with micro-
tome were taken (Leica RM 2135; Leica Instruments,
Nussloch, Germany) according to the systematic random
sampling approach, which forms the basis of 7 μm thick
stereological methods and examination methods. According
to the pilot study, the appropriate systematic random
sampling rate was 1/100. The selected sections were stained
with hematoxylin-eosin (H&E) and photographed using a
camera attachment (Olympus DP25) light microscope
(Olympus BX 50). New bone tissue, new connective tissue,
and new vessel volume were calculated stereologically
using the Cavalier method.30 According to the pilot study,
the content and point density of the dotted area measure-
ment scale selected for the method were determined to cover
the entire fracture line in the cross-sections (Figure 3). In the
calculations, the validity of the sampling in each subject was
determined according to the appropriate error coefficient,
and the validity of the sampling in each group was deter-
mined according to the coefficient of variation of Gundersen
and Jensen.30 The following formula was used to calculate
the volume:

Volume ¼ t x
a

p
x

Microscopic Evaluation

The mental nerves of the subjects were harvested. The
samples were kept in 5% glutaraldehyde solution for
1 h. They were then washed with Millonig buffer for

Figure 1. Images of application site: A. NGF application. B. PBMT application 1218x553 mm (96 x 96 DPI).
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4x15 min. After being washed with the buffer, they were
kept in a dark environment for 1.5 hours in 1% osmium
tetraoxide. Samples were washed again with Millonig
buffer for 4x15 minutes and dehydrated in a series of
graded alcohols. The tissues that were blocked in the
silicon mold were placed in the oven at 45°C, and the

temperature was increased by 5°C every 62 min to 62°C.
The polymers were allowed to polymerize at 62°C for
48 h. Semi-thin sections were cut by microtome and
stained with 1% toluidine blue. Histopathological
evaluation of semi-thin-stained sections was performed
using light microscopy.

Figure 2. Surgery: A. The exposure of the surgery area. B. The corticotomy of the mandibular bone. The yellow arrow tip shows the
mental nerve. C. Mental nerve crush injury. D. The fractured bone is treated with screws and a titanium plaque. 162x121 mm (100 x
100 DPI).

Figurr 3. Representation of the point count method: A. Section view. B. Grid view, blue “+” shows blood vessels, red “+” shows
connective tissue, and black “+” shows newly formed bone tissue. 207x93 mm (150 x 141 DPI).
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Statistical Analysis

The data were analyzed using a statistical package program
(IBM SPSS Statistics 21.0, Mac). Levene’s test was used to
evaluate data homogeneity. After normality evaluation
(Shapiro–Wilk, P ≤ .05), one-way ANOVA followed by
Tukey’s test was performed to compare the groups, and .05
significance level (p) was used.

Results

Two animals in the control group died due to excessive
weight loss in the first week following surgery. One animal
from the PBMT group and 1 animal from the PBMT + NGF
group died of infection. A total of 24 rabbits were included
in this study (Figure 4).

Stereological analysis revealed the formation of new
bone, connective tissue, and blood vessels in all the groups.

New Bone Volume

The total new bone volumes of the groups are shown in
Figure 5A. The highest bone volume value was observed in
the PBMT group (108 ± 19.4 mm3).

In the control group, the new bone volume value (34.7 ±
6.7 mm3) was significantly lower than in the PBMT (108 ±
19.4 mm3) (P<.001) and PBMT + NGF groups (70.2 ±
18 mm3) (P = .02).

The new bone volume in the NGF group (47 ± 5.2 mm3)
was lower than in the PBMT (108 ± 19.4 mm3) (P<.001) and
PBMT + NGF groups (70.2 ± 18 mm3) (P = .03), and this
difference was statistically significant.

The new bone volume values of the PBMT + NGF
group (70.2 ± 18 mm3) were higher than the control
(34.7 ± 6.7 mm3) (P = .02) and NGF group (47 ±
5.2 mm3) (P = .03), and the difference was statistically
significant.

Figure 4. Flow chart of the experimental design 209x160 mm (144 x 144 DPI).
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Connective Tissue Volume

The highest connective tissue volumes were observed in the
PBMT + NGF group (120.3 ± 22 mm3), the PBMT group
(105.2 ± 22 mm3), the control group (68 ± 17 mm3), and the
NGF group (54.4 ± 9 mm3), respectively (Figure 5(B)).

There was a statistically significant difference between
the PBMT and PBMT + NGF groups when compared with
the NGF group (P <.001). When the PBMT + NGF group
was compared with the other groups, a significant difference
was found between the control group and the NGF group (P
<.001).

New Vessel Volume

The highest vessel volume was found in the PBMT group
(4.5 ± 1 mm3), and this difference was statistically sig-
nificant (P <.001) (Figure 5(C)).

There was a significant difference between the control
group (.5 ± .3 mm3) (P<.001) and the PBMT (4.5 ± 1 mm3)
(P = .02) when compared with the NGF group (2 ± .4 mm3).
When the PBMT + NGF group (2.2 ± 1.2 mm3) was
compared with the other groups, a statistically significant
difference was found in the PBMT group (4.5 ± 1 mm3)
(P<.001).

Histopathological Findings of Bone Tissue

On the light microscopic examination of bone tissue
samples, there was no significant difference in the new bone
area between the control and the NGF samples. In the
PBMT group, prominent new bone areas were observed as
open-stained areas compared with the other groups. New
bone areas were observed in the NGF + PBMT group than
in the control and NGF groups. Particularly in the islets that
were considered new ossification within the infiltration
areas of connective tissue, clusters of osteocytes trapped in

the lacuna attracted attention. In this group, these mature
osteocyte formations in the bone islets indicate that bone
maturation was more advanced than in the PBMT group.
These osteocyte formations also showed new bone
formation.

Connective tissue infiltration was observed in both the
PBMT and NGF + PBMT groups. Regenerative connective
tissue formation was more intense in these groups than that
in the control and NGF groups. However, more vascular-
ization was observed in the connective tissue areas of the
PBMT group than in those of the other groups. Histo-
pathological images of bone tissue are shown in Figure 6
and 7 according to the groups.

Histopathological Examination of Nerve Tissue

Based on light microscopic evaluation, more regenerated
axon populations were observed in the NGF group than in
the PBMTand PBMT + NGF groups in terms of myelinated
axon content. There was no difference between the PBMT
and NGF + PBMT groups in terms of the number of my-
elinated axons. Although myelin sheath thickness was
degenerated from time to time in myelin sheaths, in general,
there was no difference between the NGF, PBMT, and NGF
+ PBMT groups, and the myelin structures were similar in
appearance.

Discussion

This in vivo study tested the effects of NGF and PBMT on
bone and nerve regeneration using a rabbit model. We
observed that PBMT promoted fracture healing. PBMT can
stimulate new bone formation by enhancing osteoblast-,
fibroblast-, and osteogenesis-related factors.23 In a sys-
tematic review, Hosseinpour et al 29 found that photo bi-
omodulation administration demonstrated incentive results
for bone regeneration. Son et al 31 used a diode laser

Figure 5. A. Statistical analysis of the data obtained from each group according to the results of the representation of newly formed
bone volumes. B. Statistical analysis of the data obtained from each group according to the results of the representation of connective
tissue volume. C. Statistical analysis of the data obtained from each group according to the results of the representation of new vessel
volumes 1109x262 mm (96 x 96 DPI).
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(808 nm, 1 W, 15.38 J/cm2) on the rat tibial fracture model
and found statistically significant differences in new bone
formation between the control group and the laser-treated
group at different time intervals. In accordance with the
abovementioned literature, the results of stereological ex-
amination revealed that new bone volume and new vessel
volume were highest in the laser-treated group. Contrary to
our study, the authors observed no statistically significant
differences in the radiological and histological parameters
of the groups after 4 weeks.31 This difference in our study
may be attributed to our specific PBMT parameters, such as
power and energy density.

NGF is expressed during early period of fracture healing
and remains high during the healing process. NGF may
promote fracture healing through both direct and indirect
pathways. NGF may stimulate osteogenic cells directly and
the healing of the sensory nerves carrying osteogenic fac-
tors.32 Sang et al 33 analyzed the mechanism of the nerve
growth factors in callus formation with tibial fracture and
they concluded that NGF promoted cartilage differentiation,
increased osteoclast formation, and tibial fracture healing.
Grills et al 34 investigated the effect of the topical appli-
cation of NGF on unsplinted fractured rat ribs and reported
that NGF improved ossification and fracture healing. They
reported that the callus healed quickly and the fracture site

was strong. Liu et al 35 concluded that bone morphogenetic
protein expression in fractures increased because of the
intraperitoneal NGF application in rabbits with radial
fractures; thus, NGF could be directly and indirectly ben-
eficial in fracture healing. In a rabbit distraction osteo-
genesis model, locally applied NGF accelerated callus
maturation.10 In the current study, the new bone volume in
the NGF group was lower than that in the other groups,
which may be due to the indirect effect of NGF on en-
hancing bone maturation mentioned above or the rapid
removal of NGF from the injection site.

PBMT also has positive effects on connective tissue. In
an in vivo study; parallel and well organized connective
tissue was observed in extensive areas with PBMT.36 Yan
et al 37 observed a higher Ca/P ratio and a large amount of
newly formed alveolar bone in the rhβ-NGF-treated group
compared to the 2 control groups. Large diameter collagen
bundles were observed in the SEM images of the rhβ-NGF
group. According to these results, rhβ-NGF may improve
the quality of regenerated bone and stimulate bone for-
mation.37 Buchignani et al 38 evaluated the effect of PBMT
in critical defects in rats created by treating with zoledronic
acid. They observed newly formed trabecular bone with
osteoblasts and organized connective tissue surrounded the
bone with blood vessels in the PBMT group. Connective

Figure 6. Histopathological view of experimental groups. A. Control group. B. PBMT group. C. NGF group. D. PBMT+NGF group. “∗”
shows new bone areas, “ → ” shows connective tissue areas, and “ , “ shows newly formed vessels. Scale bar 500 μm (stained with
hematoxylin-eosin) 846x635 mm (72 x 72 DPI).
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tissue volume was highest in the PBMT and NGF + PBMT
groups. Although there was an increase in connective tissue
volume in the NGF + PBMT group compared with that in
the PBMT group, no statistically significant difference was
found between these 2 groups. These results support the
idea that laser application has a positive effect on bone
regeneration by increasing connective tissue migration
during the possible regeneration process.

Laser therapy induces fibro vascularization through the
strong expression of VEGF. Park et al 39 applied a 980 nm
GaAlAs diode laser to the rat extraction sockets and found
that PBMT promoted VEGF expression. Briteño-Vázquez
et al 40 applied PBMT for 10 days in a continuous fashion
to the rat tibial fracture model. The fibroblast growth and
proliferation, bone matrix, and newly formed vessels in-
creased in the PBMT group. Góralczyk et al 41 observed
that low-level laser therapy at 635 nm significantly in-
creased the number of human umbilical vein endothelial
cells. In our study, the PBMT group showed higher new
vessel volume in accordance with the literature. In contrast
to our results, it was reported that NGF could enhance
endothelial cell proliferation, gene expression on different
titanium surfaces, and neovascularization in chicken
embryo chorioallantoic membrane.18 The absence of a
significant difference in the volume of new vessels in the
PBMT + NGF group suggests that the laser may delay the

maturation effect of the NGF and suppress its long-term
effect.

PBMT is frequently used to accelerate nerve regenera-
tion in clinical practice. In a systematic review, IAN sensory
healing after sagittal split osteotomy was improved by
PBMT.42 Diker et al 43 reported that PBMTwith the 808 nm
wavelength stimulated IAN regeneration after nerve crush
injury. Andreo et al 27 investigated the effects of PBMT on
the treatment of peripheral nerve injury in experimental
models and reported that PBMT using red or infrared light
showed positive results for the treatment of peripheral nerve
injury and is a viable phototherapeutic modality for the
treatment. According to the histopathological results in this
study, PBMT has positive effects on nerve regeneration in
accordance with the literature. Contrary to our results, in the
rat facial injury model, the results for the PBMT group were
not statistically significant compared to those for the control
group. The authors attributed this result to the distant po-
sition of the probe from the injury site.44

NGF is an important growth factor in the survival,
growth, and maintenance of certain types of neurons in the
central and peripheral nervous systems.9 Du et al 45 per-
formed intramuscular NGF for 20 postoperative days after
bilateral distraction osteogenesis in a rabbit study. They
observed less myelin debris and more regenerated axons in
the inferior alveolar nerve at the end of the second and

Figure 7. Histopathological view of experimental groups. Scale bar of the control and PBMT groups 4μm. Scale bar of the NGF and
NGF+PBMT groups 40 μm 561x424 mm (96 x 96 DPI).
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fourth weeks than in the control group at the end of the
distraction and at the first, second, and fourth weeks after
consolidation. The myelinated axon density was found to be
significantly higher than that in the control group, and NGF
accelerated and IAN healing in distraction osteogenesis.
Wang et al 46 showed that the local application of human
NGF-modified mesenchymal stem cells accelerated nerve
morphological recovery after mandibular distraction os-
teogenesis. The authors also reported no risk of injection-
induced nerve injury. In this study, we used repeated in-
jections of NGF locally, and most of the myelinated nerve
fibers regenerated in the NGF-treated group and showed a
normal appearance with significantly reduced axon diam-
eter and myelin sheath thickness compared to the control
group. Histopathological analysis of the mental nerve
samples showed that there was no difference between the
NGF, PBMT, and NGF + PBMT groups, and the myelin
structures were observed to have a similar appearance. This
could be attributed to the local delivery of NGF to the
fracture site. Carriers can be used to maintain the NGF
concentration. Because of the repeated punctures, the effect
of NGF may not be observed due to infection.

This study has some limitations that should be high-
lighted. The most important limitation of this study is the
lack of stereological analysis of nerve tissue during histo-
pathological follow-up procedures, due to problems with
nerve tissue fixation. However, the histopathological results
obtained in this study were consistent with those of previous
studies.

PBMT is thought to be a more useful method, especially
in cases where bone and nerve injuries occur simulta-
neously. NGF may be recommended for healing nerve
tissues after crush injury. Further studies using different
laser parameters and treatment protocols are needed to
establish the mechanism of action of the methods used in
vivo. Additionally, different doses of NGF and appropriate
injection sites or application methods can be used in further
studies to understand the effect of NGF on bone healing.
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