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Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of
embryonic development, promoting their development and progression. Can-
cer cells share features with embryonic development, characterized by robust
proliferation and differentiation regulated by signaling pathways such as Wnt,
Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic
embryonic diapause and fertilized egg implantation to evade treatments or
immune elimination and promote metastasis. Additionally, the upregulation of
ATP-binding cassette (ABC) transporters, including multidrug resistance pro-
tein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast
cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to
their role in placental development, may facilitate chemotherapy efflux, fur-
ther resulting in treatment resistance. In this review, we concentrate on the
underlying mechanisms that contribute to tumor development and progression
from the perspective of embryonic development, encompassing the dysregula-
tion of developmental signaling pathways, the emergence of dormant cancer
cells, immune microenvironment remodeling, and the hyperactivation of ABC
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transporters. Furthermore, we synthesize and emphasize the connections
between cancer hallmarks and embryonic development, offering novel insights
for the development of innovative cancer treatment strategies.
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1 BACKGROUND

Embryogenesis is a sophisticated process accompanied
by rapid cell proliferation, differentiation, and material
exchange in early or later development.1 During this
period, embryonic development-related pathways, such as
Wnt, Notch, hedgehog, Hippo, and transforming growth
factor (TGF)-β signaling, are continuously activated and
coordinated with each other to meet the needs of embry-
onic development.2,3 Specifically, theWnt family regulates
embryo polarity and patterning and the morphogene-
sis of several organs.4 Endothelial-to-hematopoietic and
epithelial-to-mesenchymal transitions (EMTs) can both
be regulated by Notch signaling. Hedgehog signaling
provides positional information and fate instruction to
cells.5 The Hippo signaling is critical for angiogenesis
and vascular development.6 In addition, transforming
Growth Factor-β (TGF-β) signaling cascade contributes to
organogenesis.7
To cope with harsh conditions for embryonic devel-

opment, hundreds of mammalian species utilize dia-
pause, a period of suspended development, to avoid the
adverse effects of the environment.8,9 Moreover, fetuses
can help to reprogram immune microenvironment to

prevent immunological rejection during implantation.10
In addition, to supply a large amount of energy and
nutrients required during embryonic development, the
exchange of substances between mammalian embryos
and mothers must operate rapidly, simultaneously lead-
ing to the accumulation of environmental toxins.11,12
But in fact, ABC transporters, a class of transmem-
brane proteins in placental barrier functions and signif-
icant reproductive processes, are overexpressed in the
placenta and control the efflux of toxic substances.13
Although the underlying mechanisms controlling embry-
onic features need further investigation, these charac-
teristics provide an essential foundation for embryonic
development.
A growing body of evidence suggests that cancer cells

can mimic embryonic traits in development and progres-
sion called oncofetal reprogramming14–16 (Figure 1). First,
the dysregulation of embryonic development signaling
cascades was frequently detected in cancer cells, which
contributes to tumor development and progression.17–20
Targeted therapies focused on developmental pathways
have been developed, and many of them have become
clinical treatment drugs for various types of cancers.21
Meanwhile, the overexpression of ABC transporters plays

mailto:whe761211@hotmail.com
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F IGURE 1 The similar characteristics between embryonic development and cancer development and progression. Various regulatory
mechanisms are involved in the development of a fertilized egg into an embryo to ensure that it proceeds normally. Meanwhile, cancer cells
also exhibit several embryo-like characteristics that enhance multidrug resistance. (A) The level of corpus-secreted progesterone can be
mediated by the inner or outer environment and lead to embryonic diapause. (a) Cancer cells are able to transition to a dormant state after
treatment. (B) Wnt, Notch, Hedgehog, and Hippo signaling pathways contribute to development by driving the proliferation and
differentiation of embryonic cells. (b) Cancer stem cells are considered drug-resistant cells associated with some embryonic developmental
signaling pathways. (C) Preimplantation embryo was reported to drive the formation of immunosuppressive microenvironment to evade
attack from maternal immune system. (c) The immune microenvironment components of cancer cells can confer resistance to immune
checkpoint blockades (ICBs) such as programmed death-ligand 1 (PD-L1)/programmed cell death-1 (PD-1). (D) To export environmental
toxins and provide a favorable condition for development, ABC transporters are usually overexpressed in the blood–embryo barrier. (d)
ATP-binding cassette (ABC) transporters overexpression in cancer cells results in the development of multidrug resistance.

a role in regulating the tumor immune microenviron-
ment through the transport of various cytokines, thereby
influencing antitumor immunity and the sensitivity to
anticancer drugs.22 The administration of ABC transporter
inhibitors in combination with standard chemothera-
peutics or immunotherapy could attenuate, at least in
part, cancer resistance.23,24 Moreover, clinical studies have
demonstrated that a small fraction of tumor cells can
survive after systemic treatment, exhibiting several char-
acteristics akin to circulating tumor cells, although the
underlyingmechanism remains amystery.25 Several excel-
lent studies have revealed that these residual tumor cells
could transition into an embryonic diapause-like state,
referred to as drug-tolerant persister cells, cancer stem cells
(CSCs), or dormant cancer cells, which contribute to can-
cer relapse after a period of dormancy.26–28 While there are
no well-established methods for eliminating these resid-
ual cancer cells, understanding how cells enter a quiescent
state may provide new therapeutic approaches to can-
cer recurrence. In addition, the reprogramming of the

immune microenvironment endows cancer cells with the
ability to escape immune surveillance.29
To date, there has been far less emphasis on the sys-

tematic revisit of the specific traits that govern tumor
development and progression. In this review, we exam-
ine in detail how cancer cellsmimic developmental-related
features, including the dysregulation of development path-
ways, embryonic diapause-like transition, reprogramming
of the immune microenvironment, and overexpression of
the ABC transporter. Furthermore, we also discuss poten-
tial strategies to reverse the tumor embryo-like state in
cancer therapy.

2 DYSREGULATION OF EMBRYONIC
DEVELOPMENT SIGNALING PATHWAYS
IN CANCER

Wnt, Notch, Hedgehog, Hippo, TGF-β, and Fibrob-
last growth factor/fibroblast growth factor receptor
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(FGF/FGFR) signaling are essential for embryonic devel-
opment. However, abnormal regulation of these pathways
usually correlates with the development and progression
of numerous cancers.30-33 Here, we review how cancer
cells hijack these development-related pathways.

2.1 Reactivation of Wnt signaling
pathway

The first Wnt gene, Wnt1, which accounts for mammary
tumorigenesis in mice, was discovered approximately 40
years ago.34 At the turn of the century, most of the cru-
cial elements in the Wnt pathway had been discovered. In
the canonical Wnt cascade, the ligand-bound Wnt recep-
tor complexes can block the phosphorylation of β-catenin.
Therefore, the component of specific E3 ubiquitin ligase
β-TrCP can no longer recognize and deregulate β-catenin.
Stabilized β-catenin binds to T-cell factor (TCF) in the
nucleus, promoting the transcription of Wnt downstream
genes.Wnt signaling is crucial for embryonic development
and tissue homeostasis in nature. It regulates stem cell self-
renewal and determines the cell fate in various organs,
including the intestine and skin, which tumor suppres-
sors tightly control via negative feedback loops or direct
regulation.35–37 However, persistent hyperactivation of the
Wnt pathway is observed in various kinds of cancer cells38
(Figure 2).
The role of the Wnt pathway in cancer has been

extensively elucidated, and its functions primarily include
promoting tumor proliferation, metastasis, stem cell main-
tenance, and drug resistance.39 In gastric cancer, long
non-coding RNA (lncRNA) small nucleolar host gene 11
(SNHG11), upregulated in multiple cancer, induced glyco-
gen synthase kinase 3β (GSK-3β) ubiquitination activate
the Wnt/β-catenin pathway and contribute to cell pro-
liferation, stemness, migration, invasion, and EMT.40 In
addition to the canonical Wnt/β-catenin cascade men-
tioned above, currently, there are two different pathways
believed to be activated when Wnt receptors are activated:
the planar cell polarity (PCP) pathway and the Wnt/Ca2+
pathway. Moreover, the noncanonical Wnt pathways play
crucial roles in embryonic development and can also be
hijacked and activate the transcription of downstream
target genes by tumor cells.39 For example, frizzled fam-
ily receptor 7 (FZD7), a receptor for Wnt signaling, is
associated with aggressiveness in Stem-A ovarian can-
cer by casein kinase 1ɛ-mediated non-canonical Wnt/PCP
pathway.41
With the continuous development of antitumor drugs,

the role of the Wnt pathway in tumor treatment resis-
tance is increasingly emerging. A body of research has
shown that the activity of the Wnt/β-catenin pathway

can be upregulated in various cancers,42-44 confer tumor
cells the ability to survive in the insult from radio-
therapy or chemotherapeutics, such as 5-fluorouracil (5-
FU), oxaliplatin, temozolomide, and other agents.45-47
For instance, chronic hypoxia increased the expression
of hypoxia-inducible factor 2α (HIF-2α) and induced the
resistance of breast cancer cells to paclitaxel (PTX).48
More precisely, HIF-2α overexpression increases the acti-
vation of Wnt signaling. Dickkopf-1, a Wnt inhibitor,
strikingly reverses the resistance to PTX.46 In addition
to chemotherapy, hyperactivation of the Wnt pathway
is also associated with decreased sensitivity to radiation
therapy. The miR-301a in hypoxic glioma cell-derived exo-
somes can directly target TCEAL7, which upregulates
the activity of the Wnt pathway by boosting β-catenin
translocation from the cytoplasm into the nucleus and
enhances radiation sensitivity. This resistance to radiother-
apy can be reversed by inhibiting the activation of the
Wnt/β-catenin pathway.49 Moreover, reactivation of Wnt
signaling is also involved in resistance to immunotherapy
by disrupting various components of tumor immunity.50-52
In autochthonous mouse melanoma models, active β-
catenin signaling negatively regulates the antitumor T-cell
responses.53 This study found that melanoma without
T-cell infiltration was highly linked to tumor-intrinsic
Wnt pathway activation. Meanwhile, activeWnt/β-catenin
cascade contributes to T-cell exclusion and therefore
results in resistance to antiprogrammed death-ligand
1 (anti-PD-L1)/anticytotoxic T lymphocyte antigen 4
immunotherapy.54 Tumor-associated macrophage (TAM)-
derived exosomal miR-29a-3p enhances PD-L1 expres-
sion in ovarian cancer, promoting tumor proliferation
and immunosuppression. Examination of the underlying
mechanism shows that miR-29a directly targets FOXO3,
which results in the inhibition of an antagonist of the
Wnt pathway, termed GSK3β, to facilitate Wnt pathway
activation and PD-L1 expression.55,56 Similarly, hypoxic
conditions also enhance the expression of miR-29a in
glioblastoma (GBM), which can promote the proliferation
of myeloid-derived suppressor cells (MDSCs) and eventu-
ally lead to an immunosuppressive environment.57,58

2.2 Hyperactivation of notch signaling
pathway

Notch signaling has been known for over a century, and its
roles in embryonic and organ development have been well
studied.59–61 When the classical Notch signaling cascade is
activated, three cleavages occur.62 In brief, after synthesis
in the endoplasmic reticulum, the Notch extracellular
domain (NEC) of the receptor can be transferred into
the Golgi compartment and then processed by furin-like
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F IGURE 2 The mechanism of canonical Wnt signaling and related pharmacological inhibitors. The binding of Wnt proteins to Frizzled
(Fzd) family receptors can inhibit the phosphorylation of β-catenin mediated by the destruction complex (mainly including glycogen synthase
kinase 3β (GSK3β), Axin, and Dishevelled protein (DVL)) and thereby avoiding degradation. Stable β-catenin will be translocated into the
nucleus and trigger target gene transcription by interacting with TCF-1 and other factors. Wnt target gene expression, such asMYCN, endows
resistance to cancer drugs on tumor cells. However, GSK3β could be inhibited by forkhead box O3 (FOXO3), which is activated by
tumor-associated macrophage (TAM)-secreted exosomal miR-29a-3p. Hypoxic conditions also enhance the proliferation and function of
myeloid-derived suppressor cells (MDSCs) and lead to an immunosuppressive environment. Agents targeting diverse proteins were validated
to impede the activation of Wnt pathway, including anti-Wnt mAbs and small molecular inhibitors of Wnt ligands, low-density lipoprotein
(LDL)-related protein (LRP) inhibitors, small molecular inhibitors targeting β-catenin, and tankyrase inhibitors that promote β-catenin
degradation.

convertase (S1 cleavage). At the cell surface, NEC and
Notch transmembrane fragment are linked by disulfide
bonds to form the heterodimeric Notch receptor, which
interacts with its ligand on the juxtaposed cell. With ligand
interaction exposed to disintegrin and metalloproteases
(ADAM) metalloproteases (S2 cleavage), the C-terminal

cleavage domain of the receptor is further cleaved by the
γ-secretase complex (S3 cleavage). Finally, the liberated
Notch intracellular domain (NICD) is translocated to the
nucleus and forms a trimeric complex with CSL (also
known as CBF1) and mastermind-like protein (MAML),
changing CSL function to initiate its related transcription
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of downstream targets. The Notch pathway participates in
the developmental programs of most organs and tissues
and often plays an iterative role during the progression of
a particular cell lineage.62 Although there are many condi-
tions where the Notch pathway blocks differentiation and
secures a pool of stem or progenitor cells (PCs), in some
contexts, the Notch pathway can promote differentiated
cell fate, for example, in the skin.63 Notch pathway is
also essential for the formation of lateral inhibition in
some differentiation programs, such as in the inner ear
development.64
Notch signaling’s dual function in cell fate decisions

(blocking or promoting differentiation) under different
conditions may endow cancer cells with the ability to
promote the development of tumors as well as drug
resistance65–67 (Figure 3). For instance, FGF4 secreted by
B-cell lymphoma cell promotes the expression of Jag1
within endothelial cells, activating Notch2 in adjacent
cancer cells. The juxtacrine pathway promotes Notch sig-
naling activation in endothelial cells thereby inducing
invasiveness and chemoresistance.68 The above results
are consistent with previous evidence about the onco-
genic role of Jag1 in breast, colon, and liver cancers.69–71
The upregulation of Notch receptors could also acti-
vate the Notch pathway.72,73 Stromal-derived exosomes
containing noncoding transcripts and transposable ele-
ments can be delivered into breast cancer cells and acti-
vate the STAT1-dependent antiviral pathway.74 In turn,
active antiviral signaling promotes Notch3 expression and
Notch signaling-dependent therapeutic resistance.74 Other
important stromal cells involved in upregulating theNotch
pathway are cancer-associated fibroblasts (CAFs).75 Pri-
mary CAFs enhance the expression of chemokine (C-C
motif) ligand 2 (CCL2), which contributes to the stem-
ness maintenance of breast cancer cells. Increased CCL2
expression is correlatedwith high expression ofNotch1 and
therefore confers Notch signaling-induced CSC features in
vitro and in vivo.76 Another research revealed that down-
regulating CCL2 expression could significantly reduce
carcinogenesis andNotch1 expression in a xenograftmodel
containing both fibroblasts and breast cancer cells.77
Taken together, the data demonstrate that cancer cells can
directly or indirectly hijack Notch signaling to promote
cancer progression.

2.3 High-level activation of hedgehog
signaling

Hedgehog signaling is a vital pathway that determines cell
location and fate in early embryonic development.78–80
Following the development, theHedgehog pathway partic-
ipates in tissue homeostasis and wound healing.81–83 The

canonical mammalian Hedgehog signaling cascade can
be activated by the interaction between Hedgehog ligands
(Desert Hedgehog, Indian Hedgehog, and Sonic Hedge-
hog (SHH)) and Hedgehog receptors (Patched-1 (PTCH1)
and Patched-2 (PTCH2)).84 Their interplay results in the
phosphorylation of Smoothened (SMO), the main effector
of Hedgehog signaling, and the inhibition of multipro-
tein complexes containingGSK3β, protein kinaseA (PKA),
and suppressor of fused homolog (SUFU). The proteolysis
of transcription factor glioma-associated oncogene family
zinc finger (Gli) is then blocked. Finally, Gli transcription
factors translocate to the nucleus and activate transcription
at start sites. During embryonic development and tissue
homeostasis, Hedgehog signaling is typically modulated
spatially and temporally. Given the important roles of Hh
pathway in in the maintenance of stem PCs in many adult
tissues, dysregulation of Hedgehog signaling can drive the
development of several cancers, such as basal cell and
colorectal carcinomas85–87 (Figure 4).
As the most common skin cancer in the western world,

basal cell carcinoma (BCC)was first linked to BCC through
the identification of germline mutations in Ptch1, which
are responsible for Gorlin syndrome (also known as nevoid
BCC syndrome or NBCCS).88 Lineage tracing experiments
showed that activating Smo oncogenes in interfollicular
epidermal stem cells (IFE-SCs), but not in hair follicle
bulge stem cells, led to BCC development. This pinpointed
IFE-SCs as the source of BCC in mice.89 Subsequent inves-
tigations showed that Smo activation in IFE-SCs resulted
in more aggressive tumor growth compared to Smo acti-
vation in PCs. This heightened growth was attributed to
the greater capacity of SCs for symmetric self-renewing
divisions and their increased P53-dependent resistance to
cell death compared with PCs.90 As expected, given the
crucial role of the Hh signaling pathway in maintaining
stemness, its role in tumor treatment resistance is con-
tinuously being unveiled. A multidimensional genomics
analysis revealed that the active transcription factor serum
response factor (SRF) could cause Gli1 transcriptional
activity amplification in drug-resistant BCCs.87 The over-
expression of Gli1 confers the activation of the Hedgehog
pathway as well as drug resistance.91,92 A recent study
indicates that CAFs and hypoxia are involved in chemore-
sistance by upregulating the expression of Gli2 (a ligand
of Hedgehog signaling).86 In this study, researchers found
that low-oxygen conditions could induce CAFs to secrete
TGF-β2. High-level TGF-β2 augments the transcription of
Gli2, promoting the occurrence of drug resistance. More-
over, a retinoic acid-low (RA-low)microenvironment plays
a crucial role in bortezomib (BTZ) resistance.93 Multi-
ple myeloma cells secrete paracrine Hedgehog, which
increases the expression of stromal CYP26, a cytochrome
P450 monooxygenase, favoring the establishment of an
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F IGURE 3 The canonical Notch signaling pathway and related pharmacological inhibitors that reverse Notch pathway-induced cancer
progression. The activation of Notch receptors needs to undergo three times cleavages. The first-time cleavage, known as S1 cleavage, occurs
in the Golgi apparatus and is mediated by a furin-like convertase. Following S1 cleavage, the interaction between signal-sending cell Notch
ligands (Delta-like ligands (DLL1, DLL3, and DLL4) and Jagged ligands (JAG1 and JAG2)) and signaling receiving cell Notch receptors
(Notch1, Notch2, Notch3, and Notch4) on the cell surface can result in the cleavage of Notch receptors mediated by ADAM10 or ADAM17,
termed (S2 cleavage). In the end, γ-secretase-mediated S3 cleavage leads to the release of NICD and the formation of Notch transcription
complex. The expression of Notch pathway target genes promotes the development of cancer drug resistance. The Notch signaling receptor
Notch1 was upregulated by overexpression of chemokine (C-C motif) ligand 2 (CCL2) in CAFs, and FGF4 in adjacent tumor cells stimulated
the expression of Jag1. Both regulatory axis contributed to the activation of the Notch pathway. Moreover, several agents were used to inhibit
the activation of Notch signaling compressing Notch ligands mAbs, anti-DLL3 antibody–drug conjugates, Notch receptors mAbs, γ-secretase
inhibitors, and Notch transcription complex inhibitors.
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F IGURE 4 The canonical Hedgehog signaling pathway involved in cancer and associated therapeutic targets. The secretion of HHN
regulated by Dispatched homolog can bind to PTCH receptor and hence releases SMO. Then, accumulated SMO, sequestrated kinesin family
member 7 (KIF7), suppressor of fused homolog (SUFU) proteins, and Gli transcription factors form a multiprotein complex in cilia, which
prevents Gli from inhibitory phosphorylation by PKA. Stable Gli is further released from SUFU complex and mediates the transcription of
Hedgehog signaling pathway. CAF-derived hypoxia stimulates the expression of TGF-β2, which increases the level of Gli2 and activates
Hedgehog signaling. Meanwhile, SMO antagonists, HH inhibitors, and small molecular inhibitors were proven to inhibit hedgehog pathway
activation.

RA-low microenvironment. Inhibition of retinoid signal-
ing blocks the differentiation of malignant hematopoietic
cells and reduces BTZ sensitivity.93 In addition, endothe-
lial cells can promote the stem-like phenotype of cancer
cells by activating the Hedgehog pathway.94 In glioma
cells, the expression of stemness-related genes, including
Sox2,Olig2, Bmi1, andCD133, was upregulatedwhen cocul-
tured with endothelial cells. However, knockdown of Smo

in endothelial cells abolished the stem-like phenotype in
glioma cells. To further unveil the mechanism of the acti-
vation of the Hedgehog signaling cascade in perivascular
glioma cells, tissue specimens from glioma patients were
examined, which indicated that some canonical develop-
ment pathways, such as the Wnt pathway, could be the
“intermediary” to promote Hedgehog signaling-mediated
drug resistance. In a study combining a 3D culture model
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and whole-transcriptome analysis, Wnt andHedgehog sig-
naling components were found to be overexpressed in
CRC.95 Of note, Wnt signaling is negatively regulated
by the canonical Gli-dependent Hedgehog pathway in
CRC. To further investigate the underlying mechanism,
the expression of specific Hedgehog pathway genes was
detected. The results showed that the activation is mainly
driven by Gli-independent and noncanonical Hedgehog
signaling components, which are the positive regulators of
theWnt pathway. Noncanonical Hedgehog signaling coop-
erates withWnt pathway tomaintain the stemness of CSCs
and develop resistance to antitumor drugs.96

2.4 Aberrant regulation of hippo
signaling cascade

Hippo signaling plays an important role in mediating
organ development, tissue homeostasis, immune modu-
lation, and wound healing.97–100 At the turn of the 21st
century, Hippo pathwaywas found to restrict the growth of
Drosophila tissues.101 In the mammalian canonical Hippo
kinase cascade, the MST1/2–Salvador homolog 1 (SAV1)
complex phosphorylates and activates LATS1/2–MOB
domain kinase activator 1A/1B (MOB1A/1B) complexes.
The activated LATS1/2–MOB1A/B complex then phospho-
rylates and inactivates YAP/TAZ, thereby inhibiting the
transcription of downstream target genes102 (Figure 5).
Analyses of various tumors and cancer cell lines, as well

as data from The Cancer Genome Atlas with over 9000
tumors, emphasize the prominent role of YAP/TAZ in can-
cer, with the Hippo pathway being one of the frequently
altered signaling pathways in human cancer.103 Remark-
ably, the YAP1 and WWTR1 genes, which code for YAP
and TAZ respectively, undergo amplification in approxi-
mately 14% of head and neck squamous cell carcinomas
(HNSCCs), around 16% of lung squamous carcinomas,
approximately 17% of cervical squamous cell carcinomas,
and about 15% of esophageal squamous cell carcinomas.103
As mentioned above, the Hippo pathway can promote
the occurrence and development of tumors by regulat-
ing processes such as tumor cell migration and immune
modulation. Initial investigations demonstrated that the
ectopic expression of YAP, particularly nuclear-localized
mutants of YAP, exhibits robust prometastatic activity. This
activity is contingent on TEAD binding, implying that
interfering with this interaction might hold therapeutic
promise in aggressive cancers. YAP further facilitates a
metabolic shift in cancers with lymph node metastasis by
stimulating the expression of genes that bolster fatty acid
oxidation.104 In addition, both YAP and TAZ have the abil-
ity to induce the expression of programmed cell death 1
ligand (PD-L1), a ligand for the programmed cell death-1

(PD-1) receptor, which in turn creates an immunosuppres-
sive microenvironment.105 TAZ, for instance, stimulates
the expression of PD-L1 in lung and breast cancer cells,
while YAP promotes PD-L1 expression in melanomas
and HNSCC cells.106 Consequently, targeting YAP/TAZ
presents an appealing strategy to reduce PD-L1 levels
and, as a result, enhance the efficacy of immunotherapy
employing neutralizing antibodies against PD-L1 and/or
PD-1. Meanwhile, YAP/TAZ have been found to partici-
pate in various Hippo pathway-dependent drug resistance
and show a central role in mediating resistance to can-
cer therapeutics.107–109 For instance, extracellular vesicles
(EVs) from CAFs contribute to the activation of focal
adhesion kinase (FAK)-YAP signaling and enhance drug
resistance.110 In this work, a comprehensive proteomic
analysis of CAF-EVs was performed, which identified a
key effector, Annexin A6, involved in drug resistance.
Annexin A6 secreted by CAFs activated FAK-YAP by sta-
bilizing β1 integrin at the cell surface of gastric cancer
cells and in turn resulted in resistance to cisplatin. More
recently another study also discovered that CAFs within
gastric cancers expand resistance to 5-FU by activating
YAP/TAZ.111 In addition to chemotherapy, the inactivation
of Hippo signaling confers resistance to targeted therapies.
For example, the links between the activation of YAP/TAZ
and tyrosine kinase inhibitors (TKIs) resistance have been
revealed.112,113 Although the precise mechanism of how
YAP/TAZ signaling develops resistance to TKIs is poorly
understood, AXL, one of the YAP/TAZ transcriptional tar-
gets, seems to be a candidate to drive resistance.114,115 AXL
is a receptor tyrosine kinase that belongs to the Tyro3,
Axl, and Mer (TAM) receptors and is activated by growth
arrest-specific protein 6 (GAS6).116,117 At present, hyper-
activation of GAS6/AXL signaling is considered as one
of the hallmarks in many types of multidrug-resistant
cancer cells.118–122 Interestingly, a study revealed that stro-
mal cells in the tumor microenvironment (TME) could
continuously express GAS6 to activate the AXL recep-
tor of adjacent tumor cells, thus promoting cancer drug
resistance.123 The administration of AXL inhibitors, such
as R428, abolishes GAS6/AXL signaling-induced resis-
tance to quizartinib.119 Taken together, the above studies
present concrete proof for the key roles of Hippo signaling
in the development of cancer and drug resistance.

2.5 Abnormal activation of other
signaling pathways

In addition to the above-mentioned embryonic
development-related pathways, the TGF-β superfam-
ily and FGF/FGFR signaling cascades also contribute to
cancer development and progression.
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F IGURE 5 The mechanism by which cancer cells utilize the Hippo signaling pathway and associated therapeutic targets. The core
proteins of Hippo pathway include MST1/2, LATS1/2, SAV1, MOB1A/1B, and YAP1/TAZ. Once activated by upstream signals, MST1/2 can
phosphorylates SAV1, which subsequently activates LATS complex comprising LATS1/2 and MOB1A/1B. Then, the activated LATS complex
phosphorylates YAP1/TAZ, thereby leading to the degradation of transcriptional factors of Hippo pathway. Otherwise, YAP1/TAZ can
translocate to the nucleus and bind with TEA domain (TEAD) family members to promote the expression of Hippo signaling target genes.
Stromal cells-secreted GAS6, and CAF-derived EVs (encompassing Annexin A6) mediate YAP/TAZ shuttling to the nucleus, which favors the
expression of drug resistance-related genes. MST1/2 activators and NEDD8 activating enzyme inhibitors were developed to prevent the
transcription of Hippo pathway target genes, thereby increasing the degradation of YAP1/TAZ.

TGF-β superfamily signaling, which contains over 30
ligands, including TGF-βs, growth and differentiation fac-
tors, bone morphogenetic proteins, Nodal, and Activins, is
required for the development and homeostasis of complex
multicellular animals.124 These members and their down-
stream pathway components are highly conserved during
evolution and contribute to various cellular functions,
such as migration, differentiation, growth, apoptosis,

and adhesion.124 To perform these complex biological
functions, ligand dimers need to bind to and activate
heterogeneous complexes of type I and type II receptors
that phosphorylate intracellular mediators (Smads). Then,
phosphorylated mediators form complexes with each
other and other components to mediate the transcription
of target genes in the nucleus.125 Finally, the expression
of effectors leads to related cellular responses during
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F IGURE 6 The roles of canonical TGF-β signaling pathway in cancer and inhibitors that target TGF-β pathway. The ligands, TGF-βs,
bind TGF-β type II (RII) induce the phosphorylation of TGF-β type I (RI) receptors on cell surface. Activated kinase activity of RI further
phosphorylates Smad2 and Smad3, which form trimeric complexes with Smad4. These Smad complexes will translocate into nucleus and
promote the transcription of TGF-β pathway downstream genes. Sustained activation of TGF-β signaling can lead to cancer drug resistance
via inducing stable epithelial-to-mesenchymal transition (EMT) and regulating the expression of miR-198 or miR423-5p. Hence, agents, such
as TGF-β ligand traps, TGF-βmAbs, and TGF-β kinase inhibitors, have been developed to impair the activation of TGF-β signaling pathway.

different embryonic developmental stages. For instance,
TGF-β family members can induce EMT, an essential
process in the temporally distinct phases of heart develop-
ment, by upregulating the expression of related markers,
including Snail1/2, ZEB1/2, Twist, and ids.125 TGF-β
signaling dysregulation, on the other hand, may drive
cancer cell proliferation, metastasis, and drug resistance
(Figure 6). For example, mutations in the SMAD gene
are detected in 60% of pancreatic cancer patients. The
coexistence of KRAS mutations and Smad mutations
in pancreatic ductal adenocarcinoma (PDAC) patients
plays a crucial role in driving early tumor formation
and metastasis.126 Through Smad signaling, TGF-β1
suppresses the expression of miR-198, a cellular methyl-

guanine DNAmethyltransferase regulator, in GBM to alter
temozolomide sensitivity.127 Meanwhile, CAF-secreted
exosomal miR-423-5p promotes chemotherapy resistance
by regulating the TGF-β pathway.128 The TGF-β pathway
in prostate cancer cells is activated by miR-423-5p, which
leads to the inhibition of GREM2, a differential screening-
selected gene aberrant in the neuroblastoma (DAN) family
member, and enhances drug sensitivity. Of note, current
studies reported the vital function of TGF-β in attenuating
TME response to PD-L1 blockade. The role of the TGF-β
pathway in restraining antitumor immunity by restricting
T-cell infiltration was revealed by examining tumors
from a large cohort of patients with metastatic urothelial
cancer treated with atezolizumab, a PD-L1 inhibitor, and
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using a mouse model to recapitulate the above findings.129
Therapeutic cotreatment with TGF-β blockage and anti-
PD-L1 antibodies reverses TGF-β signaling-induced T-cell
exclusion in the center of tumors, which triggers robust
antitumor immunity and tumor regression. Moreover,
YM101, an anti-TGF-β/PD-L1 bispecific antibody, was
also found to reshape the immunosuppressive microen-
vironment induced by the TGF-β/Smad pathway and
promote the formation of “hot tumors”.130 In addition,
TGF-β signaling fosters drug resistance and regulates
stemness in various cancers. For example, compared
to the reversible state induced by a shorter exposure,
chronic TGF-β exposure could drive stable EMT, tumor
stemness, and chemoresistance in breast cancer cells.131
Similarly, informative research showed that HIF-1α and
CAF-secreted TGF-β2 converge to enhance the expression
of Gli2 in CSCs, promoting stemness and resistance to
chemotherapy.86
FGF/FGFR pathway is essential for early development

of embryonic tissue or organ (such as the skeleton, lung,
urinary system, and heart).132 As one of the most diverse
growth factor groups in vertebrates, the FGF family regu-
lates lots of functions, comprising survival, proliferation,
differentiation, and migration.132 At present, 22 FGF lig-
ands have been discovered in mice and humans that exert
their pleiotropic effects through binding high-affinity tyro-
sine kinase receptors, including FGFR1, FGFR2, FGFR3,
FGFR4, and FGFRL1.133 The binding of FGFs to FGFRs
triggers conformational changes and the phosphorylation
of tyrosine residues within the cytosolic tail of FGFRs,
leading to dimerization and activation of cytosolic tyrosine
kinases.134 Then, the phosphorylated tyrosine residues
provide docking sites for downstream signaling molecules
and subsequently regulate their related pathways, includ-
ing MAPK, PI3K/AKT, and STAT signaling.134 In addition
to embryonic development, accumulating evidence has
revealed the significant functions of the FGF/FGFR
pathway in the development of cancer. The overexpression
of FGFs and FGFRs in cancer cells has been related to a
poorer prognosis in a growing number of studies.134 More-
over, FGF/FGFR axis-dependent downstream signaling
cascades play indispensable functions in this process. A
recent research reveals the presence of key FGFR compo-
nents in cervical cancer cell lines and their potential role
in promoting invasive disease characteristics, highlighting
the potential for therapeutic interventions targeting FGFR
in cervical cancer treatment.135 In HNSCC cells, FGFR3
overexpression activatedMAPK signaling and upregulated
the level of ERK, which in turn boosted FGF2 production
and resistance to bevacizumab.136 Similarly, the PI3K/AKT
pathway was also identified as an important mediator in
FGF/FGFR-dependent cancer drug resistance. Overex-
pression of FGFR1 could increase AKT activation, leading

to EMT and resistance to the first-line EGFR inhibitor
gefitinib in non-small cell lung cancer (NSCLC).137
Another downstream signaling pathway of the FGF/FGFR
pathway involved in cancer is STAT signaling. In breast
cancer cells, FGFR1 was shown to promote the synthesis
of hyaluronan by activating STAT3 signaling. Blocking
either hyaluronan synthesis or STAT3 activation reverses
proliferation and doxorubicin resistance of breast cancer
cells.138

3 DORMANT CANCER CELL
RESEMBLING EMBRYONIC DIAPAUSE

Insects utilize diapause in response to harsh environments
(such as cold and nutrient deficiency).139–141 Similarly, a
large number of mammalian species, including mice, kan-
garoos, and deer, can also delay blastocyst implantation
until they meet suitable conditions.142–145 Before preg-
nancy, the blastocysts severely decrease their metabolic
rate and block cell division for up to one year to pre-
pare for future implantation.146,147 Accordingly, dormant
cancer cells also were found to enter an embryonic
diapause-like state following treatment with antitumor
medications.148–150

3.1 The definition of dormant cancer
cell

Ever since Willis initially coined the term, “dormancy”
has taken on varying interpretations among researchers,
leading to potentialmisunderstandings, especially for indi-
viduals not directly engaged in this field. In clinical
practice, the term “dormancy” is employed to describe
the extended interval between primary tumor treatment
and the recurrence of metastases in secondary locations.151
Although dormant tumor cells and tumor stem cells share
many similarities, such as drug resistance and their critical
roles in recurrence, there are also significant differences
between the two concepts. To begin with, there is no
direct experimental evidence indicating that CSCs have
experienced cell cycle arrest. Furthermore, not all dor-
mant tumor cells can be detected with the same stemness
markers as CSCs, such as SRY-box 2 (SOX2) and Nanog
Homeobox (NANOG).152
Dormant cancer cells are a specific population that

displays reversible cell cycle arrest and acquires the abil-
ities to gain additional mutations, adapt to new environ-
ments and drive cancer drug resistance.153–155 Conversely,
extrinsic environmental signals (e.g., cell–matrix inter-
face or chronic inflammation) and cellular regulatory
mechanisms (e.g., the upregulation of Myc) are able to
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awaken quiescent tumor cells to re-enter the proliferative
cycle.156–160 Presently, dormant cells have been found in
several malignancies, including breast, colorectal, pancre-
atic, and ovarian cancers, acute myeloid leukemia, and
GBM, and this rare subpopulation is thought to be respon-
sible for lesions relapse.152,161–166 However, key mecha-
nisms, such as how dormant cells utilize their specific
state to adapt to new ecological niches, resist initial drug
assaults, and transit between dormancy and activation
states, have been poorly identified.151

3.2 Dormant cancer cells and cancer
progression

Most theories agree that dormant cancer cells are caused
by genetic variants rather than nongenetic variants.167–169
Moreover, whole-exome and whole-genome sequencing
studies showed little difference in the mutational land-
scape between primary andmetastatic cancer cells (arising
from dormant cells).170–174 Is it possible that niches can
be reprogrammed to induce alterations within dormant
cells? In support of this, a recent study indicated that
stromal changes in aged lungs result in the occurrence
of melanoma dormancy.175 The role of lung aged fibrob-
lasts in inducing the transition from dormant phenotype
to outgrowth was revealed by intradermally injecting
melanoma cells into young or old C57BL6 mice, implying
the niche dependence of dormant cells. Meanwhile, dor-
mant cancer cells within BRAFV600E-mutated mice and
human melanoma are tightly linked with the activation
of CAFs. BRAF inhibition-induced activation of CAFs
stimulates the remodeling of the fibronectin-rich matrix,
consequently contributing tomelanoma cell persistence by
the reactivation of ERK.176 Moreover, CAFs are internal-
ized anddegraded by breast cancer cell cannibalism.177 The
modulation of cell cannibalism is determined by Jun N-
terminal kinase, EMT, and stem cell-like markers, which
lead to the activation of deceleration programs and drug
resistance in vitro.178–180 In addition, CAF-derived secre-
tory proteins, such as hepatocyte growth factor (HGF),
the ligand of MET, trigger the activation of the PI3K–
AKT signaling pathway.181–183 This pathway endows resis-
tance to BRAF inhibition in melanoma, colorectal, and
glial tumor cells.184–187 In basal-like HER2+ breast can-
cer, CAF-secreted HGF also promotes resistance to HER2
inhibitor.188 A recent study proposed that the TME could
drive cell state transition and drug response in pancreatic
cancer.189,190 Combining systematic profiling of metastatic
pancreatic cancer biopsies and matched organoid mod-
els, the functions of TME in modulating the cell state
to impact drug response were illustrated. Transcriptional
state representation of pancreatic cancer shows strong

culture-specific biases under stimulation with different
conditions, highlighting the crucial functions of the niche
in regulating cell state (Figure 7).
The above evidence supports the opinion that dormant

cancer cells need complex dynamic interactions with
different cell types in the niche.178,191,192 Therefore, we
wondered whether environmental factors could also
cause the cell cycle arrest of dormant cells. Physical
factors in the niche, such as hypoxia, may inhibit cell
proliferation and thus maintain a state of dormancy.193–195
Indeed, breast cancer cells cultured in chronic inter-
mittent conditions in vitro have been shown to become
dormant, characterized by G0-G1 cell cycle arrest, and
hypoxia also results in dormancy in vivo.196,197 Moreover,
in prostate and breast cancers, crosstalk between cells
and their secreted molecules leads to the inhibition
of proliferation. For instance, endothelial cell-secreted
thrombospondin 1 has been proven to induce breast
cancer cells to exit the cell cycle.198,199 In addition to the
endothelial niche, the endosteal niche has been shown
to regulate the proliferation of multiple myeloma cells
and acute lymphoblastic leukemia (ALL).200 Cocultur-
ing with MC3T3 osteoblast precursor cells and primary
osteoblasts conditioned medium can suppress the pro-
liferation of 5TGM1 multiple myeloma cells in vitro.201
In this regard, extracellular osteopontin in the endosteal
niche can also promote ALL cell cycle arrest and dormant
transit.202
It is clear that the transition from cancer cells to

dormant cancer cells is a major challenge in clinical
practice.203,204 This transition results in functional alter-
ation of tumor cells to escape damage from chemother-
apy drugs as well as immunosurveillance.205–207 Most
antitumor drugs are designed to target cancer cells
with high proliferation features and neglect slow-cycling
cells that cause lesion relapse.208,209 Several core driver
genes and pathways have been reported in this pro-
cess, including Myc, mTOR, GPX4, Mex3a, oxidative
phosphorylation and LINE-1 repression in 2D or 3D
cell models.210–213 Once antitumor drugs are removed,
these cells exit dormancy by controlling notable vital
factors, such as reactivation of Myc, and grow into a
population.214–216 Finally, these clones provide an oppor-
tunity to gain resistance mutations and induce drug
resistance.217 It is well explained why ALL patients benefit
from long-term oral low-dose chemotherapy from the end
of intensive chemotherapy, even in chemosensitive ALL
subtypes.218
Regarding how dormant cells evade the surveillance of

the immune system, a body of data indicates that this pro-
cess could be achieved by repressing endogenous antigen
presentation, such as major histocompatibility complex
class I (MHC I).219,220 Indeed, the expression of tumor
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F IGURE 7 The important roles of the niche in dormant cancer cells. Tumor recurrence is closely related to dormant cancer cells, and
the maintenance of dormant cells is significantly associated with the TME (such as the hypoxic microenvironment, CAFs, and TAMs). CAFs
favor dormant cancer cells by secreting HGF or stimulating the remodeling of the fibronectin-rich matrix. By altering the TME, the dormancy
of tumor cells can be activated, and the recurrence of lesions could be inhibited. Vitamin B3 analogs, nicotinamide, and bevacizumab could
augment radiotherapy by changing the oxygen content in the TME. Meanwhile, by applying maraviroc, CSF-1R, and pexidartinib, the
recruitment of TAMs could be abolished, enhancing therapeutic outcomes in various cancers.

antigens and MHC I is frequently deficient in individual
metastatic cancer cells.221–223 Moreover, another mecha-
nism by which dormant cancer cells avoid T-cell recog-
nition and elimination was unveiled in PDAC, whereby
tumor cells in the liver that lacked expression of tumor
antigen cytokeratin 19 and MHC I selectively responded
to endoplasmic reticulum stress.224 In contrast to MHC
I, MHC II expression may contribute to immunosuppres-
sion in patients with melanoma and lung cancer.225–227
Dormant cancer cells exposed to interferon in the niche
could drive the expression of MHC II and other cell
surface molecules linked to myeloid-lineage cells. As a
result, myeloma cells are mistaken for niche-specific local
immune cells and shield themselves from immune clear-
ance. Dormant myeloma cells are recognized as myeloid
cells, such as osteal macrophages and CD169+ bone mar-
row macrophages, and evade immune surveillance by this
mechanism.228–230
These findings show that the entire life cycle of dor-

mant cancer cells, from quiescence to reactivation, results
from interaction with the local niches. Furthermore, the
life cycle of dormant cancer cells, accompanied by cell-
intrinsic and cell-extrinsic control, can be divided into five
stages: niche occupancy, niche interaction and engage-
ment, cellular reprogramming for adaption to the niche,

long-term dormancy, and relapse. In this regard, further
advances are needed to comprehensively understand the
recognition of cell-extrinsic control of dormant state via
the niche.

4 ONCOFETAL REPROGRAMMING OF
TME

The ability of tumor cells to avoid immunotherapy by alter-
ing the microenvironment is similar to embryo implan-
tation, which can maintain an active state of mater-
nal immune tolerance through CD4+ regulatory T cells
(Tregs).231 For example, to extensively characterize the
cellular landscape of the human liver from develop-
ment to disease, single-cell RNA (scRNA) sequencing was
employed, which revealed remarkable fetal-like repro-
gramming of the TME.232 Specifically, the results showed
that the hepatocellular carcinoma (HCC) ecosystem dis-
played characteristics reminiscent of fetal development,
including re-emergence of fetal-associated endothelial
cells (PLVAP/VEGFR2) and fetal-like (FOLR2) TAMs. In
addition, the distinct roles of NK cells in the initiation
and resolution of inflammation in different phases of preg-
nancy also indicate the plasticity of the fetal immune
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microenvironment.233 More importantly, this fetal-like fea-
ture has been observed in cancer cells, emphasizing the
link between embryogenesis and cancer development and
progression. This section focuses primarily on TAMs and
MDSCs and their roles in regulating TME.

4.1 Tumor-associated macrophages

TAMs have long been recognized to exert crucial roles
in immunosuppression, and the increased abundance of
TAMs is associated with a worse prognosis for cancer
patients.234 In the primary tumor environment, TAMs
enhancing tumor cell invasion, intravasation, and the via-
bility of tumor stem cells.235 Numerous experiments have
provided detailed insights into the mechanisms through
which TAMs facilitate tumor cell migration and inva-
sion. For instance, in the RIP tag model of pancreatic
islet cancer, tumor cells capable of synthesizing IL-4 can
induce TAMs to produce cathepsin proteases B and S.
These proteases play a role in degrading and remodeling
the extracellular matrix, thereby facilitating the detach-
ment of tumor cells from the tumor.236 Meanwhile, in
mouse models of breast cancer, TAMs play a significant
role in sustaining the survival of CSCs through juxtacrine
signaling,237 and in HCC mouse models, they achieve this
through signaling mediated by TGF β-1.238 At metastatic
sites, macrophages associatedwithmetastasis support pro-
cesses such as extravasation, ensuring tumor cell survival
and sustained growth.235 Interestingly, in certain con-
texts, they can also be involved in maintaining tumor cell
dormancy.239 In both primary and metastatic locations,
TAMs exert suppressive effects on the activities of cytotoxic
T cells and natural killer cells, which possess the potential
to eliminate tumors.
TAMs also play essential roles in many types of ICB-

resistant cancer cells. In lung cancer, P2X7, a crucial sensor
of extracellular ATP, is highly expressed in immunosup-
pressive cells such as TAMs.240 TAMs that highly express
P2X7 promote “M2-like” polarization by downregulating
STAT6 and IRF4 phosphorylation in vivo and in vitro.
Meanwhile, the P2X7-expressing TAMs in lung cancer are
associated with anti-PD-1 antibody resistance, which can
be overcome by P2X7 inhibitors O-ATP, A-740003, and A-
438079 hydrochloride. TAMs were also reported to confer
anti-PD-1 resistance by expressing c-Maf.241 The inhibition
of c-Maf partly overcomes resistance to anti-PD-1 ther-
apy in a subcutaneous LLC tumor model. Furthermore,
in an experimental model of melanoma, CD163-expressing
TAMs specifically maintain immune suppression to resist
anti-PD-1 checkpoint therapy.242 These findings highlight
the heterogeneity of the TME and the numerous roles of
TAMs in regulating tumor progression.

4.2 Myeloid-derived suppressor cells

Based on their density, morphology, and phenotype,
MDSCs primarily fall into two subsets: polymorphonu-
clear (PMN)-MDSCs andmonocytic (M)-MDSCs. Initially,
PMN-MDSCswere referred to as granulocytic (G)-MDSCs,
but gradually, the term PMN-MDSCs became more widely
adopted due to distinguishing features in morphology
and phenotype compared with steady-state neutrophils.
These features include altered buoyancy, reduced gran-
ules, decreased expression of CD16 and CD62L, and
upregulated CD11b and CD66b.243 Furthermore, a unique
population of fibrocystic MDSCs (F-MDSCs) has been
identified and characterized in humans.244 MDSCs are
a heterogeneous population of immature myeloid cells
that can inhibit T-cell and NK-cell activity and gov-
ern tumor growth, premetastatic niche development, and
immunotherapy resistance.245 In mouse tumor models,
tumor-infiltrating M-MDSCs were shown to promote an
EMT/CSC phenotype, aiding the dissemination of tumor
cells from primary sites. Conversely, PMN-MDSCs infil-
trating the lungs supported metastatic tumor growth by
reversing the EMT/CSC phenotype and promoting tumor
cell proliferation.246 In several mouse tumor models, the
inhibition of S100A8/A9, the regulatory factors of MDSCs,
has been shown to restrict tumor growth by diminishing
the accumulation of MDSCs.247 A recent study revealed
that the number of MDSCs is related to the antitumor
immune response induced by a PD-1 antibody in mouse
models of gastric cancer.248 5-FU can increase the effects
of anti-PD-1 by reducing the number of MDSCs. In brief,
PD-L1 expressed by gastric epithelial cells increases the
accumulation of MDSCs, which promotes tumor growth
and worsens the immune response to PD-1. Furthermore,
MDSCs are involved in KRAS-interferon regulatory fac-
tor 2 (IRF2) axis-induced immunotherapy resistance in
CRC.249 Oncogenic KRASG12D can suppress the expres-
sion of IRF2, which leads to direct inhibition of CXCL3
expression. High expression of CXCL3 binds to CXCR2 on
MDSCs and promotes the development of immune therapy
resistance. Another component within cancer cells that
mediates reciprocal communication between tumor cells
and MDSCs is cell cycle-related kinase (CCRK).250 Simul-
taneous overexpression of CCRK and MDSC markers
(CD11b/CD33) in HCC significantly reduces the efficacy of
immunotherapy. Mechanistically, hepatic CCRK activates
the nuclear factor-κB (NF-κB)/IL-6 axis, resulting in the
accumulation of (PMN)-MDSCs resistant to PD-L1 block-
ade. Apart from the above conditions, MDSCs have been
proven to decrease the efficacy of PD-L1 blockade in many
kinds of cancers, including lung cancer, pancreatic can-
cer, and melanoma, highlighting the potential of targeting
MDSCs for reversing resistance to immunotherapy.251–253
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5 OVEREXPRESSION OF
EMBRYO/FETAL TRANSPORTERS
HAMPERS CANCER THERAPY

The human placenta is generally regarded as the func-
tional barrier between fetal blood circulation and the
mother, which protects the fetus from heterologous sub-
stances such as therapeutic agents, drugs of abuse, and
other xenobiotics circulating in the mother’s metabolic
system.254,255 However, this concept was reconsidered
after the thalidomide disaster.256 Subsequent research has
shown that most xenobiotics andmetabolites can cross the
placenta and even be transported by the placenta.257–259
Furthermore, genes involved in the delivery of drugs and
metabolites have been identified and termed ABC trans-
porter genes.260 In the placenta and the fetal blood–brain
barrier (BBB), these transporters can function as efflux
pumps of xenobiotics from the maternal circulation.261,262
To date, 48 human membrane transporters involved in
distinct biological processes have been identified and clas-
sified into seven subfamilies. These include the ABC
subfamilies A-G, which regulate the levels of hormones,
amino acids, xenobiotics, and other macromolecules by
transferring them across cell membranes.263–266 It should
be noted that only a small proportion of these trans-
porters have low substrate specificity, with the majority
having a much broader spectrum.267 This characteris-
tic therefore provides opportunities for cancer cells to
develop multidrug resistance. Ample reports suggest that
overexpression of ABC transporters enhances the capac-
ity to transport antitumor drugs and is closely associated
with drug resistance.268–270 Among the more than 15 drug
resistance-related ABC transporters identified, multidrug
resistance protein 1 (MDR1), also termed P-glycoprotein or
P-gp, encoded by ABCB1, multidrug resistance-associated
protein 1 (MRP1), encoded by ABCC1, and breast cancer-
resistant protein (BCRP), encoded by ABCG2 are thought
to be the dominant drug efflux transporters.271 Here, we
focus on recent studies about these three canonical drug
resistance proteins and highlight their dominant functions
in resistant cancer cells (Figure 8).

5.1 Multidrug resistance protein 1

MDR1 overexpression has been observed in most drug-
resistant cancer cells and is frequently associated with
hypoxia.272,273 HIF-1, a hypoxia marker, is significantly
associated with MDR1 expression in cancer and normal
tissue.274–276 For example, both physiological and chemical
hypoxia can increase the expression of HIF-1 and MDR1,
resulting in doxorubicin resistance in prostate multicellu-
lar tumor spheroids.277 Conversely, the inhibition of HIF-1

caused by antisense oligonucleotides (ASOs) significantly
decreases MDR1 expression and enhances sensitivity to
doxorubicin. The pro-oxidants H2O2 and buthionine sul-
foximine reduce HIF-1α and MDR1 expression, indicating
the importance of reactive oxygen species (ROS) in drug
resistance.278,279 In addition to ROS, a high calcium con-
centration also reduces MDR1 levels by downregulating
HIF-1α expression.280,281 Interestingly, in NSCLC hypoxia
can reverse doxorubicin resistance by reducing MDR1
expression.282 Hence,HIF-1may play distinct roles in regu-
latingMDR1 expression under different conditions besides
hypoxia.
Ample evidence suggests that MDR1 is also regulated

by noncoding RNAs in breast, prostate, lung, pancreatic,
and ovarian cancer.283–288 For instance, CRC patients with
high lncRNA CCAL expression have a worse response
to adjuvant chemotherapy and shorter overall survival.289
The overexpression of CCAL dramatically inhibits activa-
tor protein 2α, a suppressor of Wnt signaling, and in turn
upregulates MDR1 levels. Additionally, in breast cancer,
CCAL can enhance the expression of MDR1 via epi-
genetic regulation.290 Mechanistically, methyltransferase-
like 3 increases the expression of miR-221-3p by promoting
pri-miR-221-3p m6A mRNA methylation, which further
triggers the transcription of MDR1 and BCRP.

5.2 Multidrug resistance-associated
protein 1

MRP1, the second transporter identified in the ABC trans-
porter family, also plays a crucial role in cancer multidrug
resistance.291–293 MRP1 was found in a small cell lung
cancer cell line that showed multidrug resistance.294 In
1992, the regulatory gene involved in mediating resistance
was first reported in the same cell line.295 Since then, the
mechanisms by which MRP1 induces drug resistance have
beenwidely revealed.Most of the drug resistancemediated
by MRP1 is associated with its aberrant expression.296–298
Specifically, changes in the extracellular environment,
such as oxygen content, can lead to the upregulation of sev-
eral TFs, which enhances the expression of MRP1.299–302
Hypoxia, one of the most common features of cancer,
stimulates the expression of TFs and further augments
MRP1 levels in various cancer cells.303–305 For exam-
ple, the coexpression of HIF-1α and MRP1 was observed
using immunohistochemical techniques in most of the 50
chordoma specimens, which implied decreased sensitivity
to chemotherapy.306 However, the mechanism by which
HIF-1α regulates the expression of MRP1 is unclear. A sub-
sequent study of chemoresistant HepG2 cells revealed that
ERK/MAPK signaling mediates the activity of HIF-1α by
altering phosphorylation levels.307 Active HIF-1α induces
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F IGURE 8 ATP-binding cassette (ABC) transporter inhibitors and factors that regulate its expression. The transcription factor HIF-1 is
significantly upregulated in the hypoxic niche and subsequently promotes the transcription of ABCB1, ABCC1, and ABCG2. CAFs, one of the
most plentiful stromal components in the TME, induce ABC gene overexpression by secreting growth factors and interleukins. CAF-derived
growth factors, including ATF4, MK, and TGF-β, enhanced MRP1 expression. Meanwhile, IL-1β and IL-6 derived from CAFs transcriptionally
activate BCRP expression. Immune cells within the TME, such as NK cells and CD8+ T cells, also contribute to ABCB1 activation, but the
underlying mechanism is unknown. The activity of MDR1 could be blocked by many targeting agents, such as FK866, SCH66336, and
HM30181. Several inhibitors, such as botryllamide G, CYB-2, and entospletinib, have been developed to decrease MBRP function. YAN,
ibrutinib, Schisandrin B, and other drugs also inhibit MRP1 activation.

the expression of MDR-related genes, such as MRP1, and
drives chemoresistance. In addition to hypoxia, someCAF-
secreted growth factors can also promote the expression of
MRP1.308 A recent study indicated that CAF-derived acti-
vating transcription factor 4 (ATF4) positively correlated
with malignancy and gemcitabine resistance in PDAC.
Further investigation found that CAFs secreted TGF-β1
to activate the SMAD2/3 pathway, which enhanced the
expression of ATF4. Consequently, ATF4 directly bound to
the ABCC1 promoter region and upregulated the expres-
sion of MRP1.
Midkine (MK), a heparin-binding growth factor asso-

ciated with both carcinogenesis and chemoresistance, is
another CAF-derived growth factor that modulates MRP1
levels.309 CAFs enhance the expression of lncRNA ANRIL
by secreting MK and in turn augment MRP1 expres-
sion. Additionally, several metabolites also govern the
occurrence of multidrug resistance by upregulatingMRP1.

In NSCLC, increased glycolysis and lactate production
within theTMEharmonize theTGF-β1/Snail andTAZ/AP-
1 pathways to form the Snail/TAZ/AP-1 complex at the
ABCC1 promoter, thus enhancing MRP1 transcription.310
The addition of NaHCO3 reversed lactate-induced MRP1
overexpression and overcame etoposide (VP-16) resistance.

5.3 Breast cancer resistant protein

The third identified ABC transporter is BCRP. Similar to
the above two transporters, BCRP was detected in numer-
ous types of cancers and contributed to resistance to
various antitumor drugs, such as tamoxifen.311–313 As the
most prescribed hormonal agent for the treatment of estro-
gen receptor α (ERα)-positive breast cancer, tamoxifen
rarely prolongs the overall survival of patients due to drug
resistance.314 Microarray analysis revealed a higher level
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of Dicer, an RNase III-containing enzyme, in tamoxifen-
resistant metastatic breast cancers. Dicer overexpression
significantly elevated the level of BCRP and governed
resistance to tamoxifen in vivo and in vitro.311 More-
over, hypoxia was reported to enhance the stability of
HIF, which targeted the promoter of ABCG2 and thus
upregulated BCRP expression.315 The HIF/BCRP regula-
tory axis has been discovered in several types of tumors,
including breast, ovarian, renal cell, and anaplastic thy-
roid cancer.316–320 In the context of hypoxia and oxida-
tive stress, SP PC populations function to increase the
expression of HIF-2α, which transactivates ABCG2 and
promotes cytoprotection.321 Recent comprehensive reports
have shown crosstalk betweenN6-methyladenosine (m6A)
modification and drug resistance.322–324 Alteration of
the m6A modification contributes to the expression of
BCRP, which regulates drug efficacy. In addition, CAF-
derived cytokines comprising interleukin 1β (IL‑1β) and
interleukin 6 (IL‑6) were also found to promote BCRP
expression.325,326 These two CAF-secreted cytokines were
detected in breast cancer cells and associated with BCRP-
dependent drug resistance. Glucose can also enhance the
expression of BCRP by activating the AKT pathway and
subsequently conferring resistance to a small fraction of
cancer cells with stem-like properties, termed side pop-
ulation (SP) cells, within tumors.327 However, 3-BrOP,
an inhibitor of glycolysis, could significantly reverse the
tumorigenesis ability induced by SP cells, which may
provide a potential drug for drug-resistant SP cells.
It is well known that many types of ABC transporters

could be present in a solitary cancer type.328 An analy-
sis of the expression of ABC transporters in AML samples
showed that coexpression of transporter genes signifi-
cantly reduced overall survival in patients.329 Addition-
ally, quantities of factors enhance the expression of ABC
transporters, including gene mutation, epigenetic regu-
lation, and metabolic reprogramming.330–333 Therefore,
accurately determining the key ABC transporters involved
in drug resistance might provide an approach to benefit
clinical outcomes.

6 TARGETING ONCOFETAL
REPROGRAMMING IN CANCER
THERAPY

Understanding the underlying mechanisms of how cancer
cells enter the embryonic-like state is essential to enhance
the outcome of patients with drug resistance. In this sec-
tion, we introduce the inhibitors or potential strategies that
target the core factors of embryonic development-related
signaling pathways, transporter proteins, the drivers of

dormant cancer cells, and immune cell subpopulations
implicated in immunotherapeutic resistance.

6.1 Targeting developmental signaling
pathways

Dysregulated developmental pathways are commonly
detected in cancer cells and proven to mediate drug
resistance and recurrence. Given its critical functions,
many targeting agents have been developed to aid cancer
treatment.
Wnt signaling pathway inhibitors can be grouped into

four main categories: ligand or receptor inhibitory agents
involved in Wnt signaling; porcupine antagonists that tar-
get the processing or secretion of Wnt ligands; agents that
maintain the function of the destruction complex by acti-
vating caspases or inhibiting tankyrase, thereby enhancing
the deregulation of β-catenin; and blockades of β-catenin–
TCF axis-dependent transcription334–336 (Figure 2). To
date, each class of agents has achieved good results in pre-
clinical studies, and several drugs have entered clinical
testing (Table 1). In the canonical Wnt pathway, inhibi-
tion of FZD receptors is linked to β-catenin deregulation
and suppression ofWnt signaling, which indicates a poten-
tial strategy for oncotherapy.337,338 To achieve this goal,
several target agents, such as ipafricept,339 OMP-18R5
(vantictumab),340–342 OTSA-101,343 F2. A,344 and Fz7-21,345
have been utilized to competitively bind to the FZD family,
thereby inhibiting Wnt-dependent oncogenesis. In addi-
tion, DKN-01, a mAb to DKK1 that blocks Wnt signaling
by enhancing the internalization of low-density lipopro-
tein (LDL)-related protein 5/6 (LRP5/6) coreceptors, has
entered clinical trials.14,346,347 The development of por-
cupine antagonists is another approach to suppress the
Wnt pathway by affecting the key factor for the secre-
tion of Wnt ligands.348,349 For instance, WNT974 (LGK974)
has been proven to abolish Wnt secretion and exert effec-
tive antitumor activity in epithelial ovarian cancer.350,351
WNT974monotherapy for patientswith cervical squamous
cell carcinoma, pancreatic cancer, and triple-negative
breast cancer (TNBC) has entered a phase I clinical
trial (NCT01351103).352 In preclinical or clinical trials, β-
catenin is one of the most common targets of inhibitors
due to its pivotal role in Wnt signaling. CWP232291, a
first-in-class peptidomimetic drug, decreases β-catenin by
activating caspases and shows anticancer activity against
relapsed or refractory myeloma.353 Moreover, several com-
pounds, such as LF3 and KYA1797K/KY1220, also effec-
tively decrease the activation of Wnt pathway by targeting
the β-catenin/TCF complex.354–356 In preclinical studies,
both LF3 and KYA1797K/KY1220 effectively suppress the
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TABLE 1 Small molecules targeting Wnt signaling and their clinical trials.

Compound Tumor type

Phase
(Clinicaltrials.gov
identifier) Efficacy outcomes Status References

PRI-724 with
gemcitabine

Advanced metastatic
pancreatic cancer

Phase Ib (NCT01764477) 8 patients had SD
(40.0%)

Clinical studies
ongoing

359

DKN-01 Advanced-stage
DKK1-positive
esophageal cancer
or gastroesophageal
junction tumors

Phase Ib study
(NCT02013154)

Encouraging early
efficacy signals (no
further details
reported)

Clinical studies
ongoing

360

Ipafricept Advanced-stage solid
tumors

Phase I (NCT01608867) 3 patients had SD for
more than 6 months (1
with germ cell cancer
and 2 with desmoid
tumor)

Clinical studies
ongoing

361

Vantictumab Advanced solid
tumors

Phase I SD in 3 patients with
NET

Clinical studies
ongoing

362

Vantictumab Stage IV pancreatic
ductal
adenocarcinoma

Phase I (NCT02005315) 53% evaluable patients (8
out of 15) had a PR
and 27% had SD (4);
Median PFS: 7.2
months

Clinical studies
ongoing

363

Vantictumab Metastatic
HER2-negative
breast cancer

Phase Ib (NCT01973309) 33% evaluable patients (7
of 21) had a PR and
29% (6) had SD

Updated results
pending

364

Cirmtuzumab Chronic lymphocytic
leukemia

Phase I (NCT02222688) 17 of 22 evaluable
patients had SD

Clinical studies
ongoing

365

OTSA101 Synovial sarcoma Phase I (NCT01469975) 77% evaluable patients (3
of 8) had SD

Recruiting 343

CWP232291 alone
or with
lenalidomide and
dexamethasone

Myeloma (relapsed or
refractory)

Phase Ia/b (NCT02426723) 27% patients (3 of 11) had
SD

Clinical studies
ongoing

366

CWP232291
(CWP291)

Relapsed and/or
refractory AML or
myelodysplastic
syndrome

Phase I (NCT01398462) 1 CR in a patient with
AML

Clinical studies
ongoing

353

Abbreviations: AML, acute myeloid leukemia; CR, complete response; DKK1, Dickkopf-related protein 1; Fzd, Frizzled; n, number of patients; NET,
neuroendocrine tumor; PFS, progression-free survival; PR, partial response; SD, stable disease.

growth of colon cancer by disrupting the critical interac-
tion between β-catenin and TCF4.357,358
The development of Notch signaling inhibitors neces-

sitates a thorough understanding of its diverse and
complex role in various cancers367–369 (Figure 3). Given
the importance of Notch signaling pathways in cancer
progression, such as angiogenesis and stemness main-
tenance, several classes of agents have been developed
that target the Notch pathway in distinct ways370,371
(Table 2). The γ-secretase inhibitors (GSIs) are the
first and largest class of small molecule antagonists
that block the second proteolytic cleavage of Notch
receptors and thus inhibit the activation of Notch
downstream.372 GSIs exert strong antitumor activities in

many preclinical trials. For instance, the combination
of MRK-003 and trastuzumab fully eliminated HER2-
positive breast cancer cells in amousemodel.373 Moreover,
in an NSCLC model, another GSI, BMS-906024 also dis-
played synergistic therapy potential when combined with
cisplatin, crizotinib, PTX, and docetaxel.374,375 Notch
ligands are also targets for antitumor drug development.
A phase I first-in-human study of enoticumab, a human
anti-DLL4 IgG1 mAb, showed potential therapeutic effect
in patients with advanced solid tumors.376 In addition
to enoticumab, many other humanized antibodies that
target DLL-3, such as rovalpituzumab tesirine, have also
been tested in clinical trials and have shown signs of effi-
cacy in patients with recurrent small cell lung cancer.377
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TABLE 2 Small molecules targeting Notch signaling and their clinical trials.

Compound Tumor type

Phase (Clinical-
trials.gov
identifier) Efficacy outcomes Status References

MK-0752 T-ALL and AML Phase I
(NCT00100152)

1 patient with T-ALL
had a 45%
reduction in a
mediastinal mass

Discontinued 382

MK-0752 with
gemcitabine

Unresectable
PDAC

Phase I
(NCT01098344)

47% patients had SD
(9 of 19); PRs: 5%
patients (1 of 19)

Discontinued 383

MK-0752 followed by
docetaxel

Advanced-stage
breast cancer

Phase I/II
(NCT00645333)

Not reported Discontinued 384

MK-0752 with
ridaforolimus

Advanced-stage
solid tumors

Phase I
(NCT01295632)

11% patients (2 of 18)
with HNSCC had
responses; 1 patient
had SD lasting ≥6
months

Discontinued 385

PF-03084014 Advanced-stage
solid tumors

Phase I
(NCT00878189)

CR: 2% evaluable
patients (1 of 46;
thyroid cancer);
PRs: 11% patients (5
of 46; all desmoid
tumors); 30%
patients had SD (14
of 46)

Clinical studies
ongoing

386

PF-03084014 Advanced-stage
TNBC

Phase II
(NCT02299635)

Not reported Clinical studies
ongoing

387

PF-03084014 T-ALL or T-LBL Phase I
(NCT00878189)

CR: 12.5% patients (1
of 8)

Clinical studies
ongoing

388

PF-03084014 Desmoid tumors Phase II
(NCT01981551)

PR: 29% patients (5 of
16); 29% patients
had SD (5 of 16)

Clinical studies
ongoing

389

PF-03084014 with
gemcitabine and
nab-paclitaxel

Metastatic PDAC Phase Ib/II
(NCT02109445)

ORR: 0% Clinical studies
ongoing

RO4929097 Metastatic CRC Phase II
(NCT01116687)

18.2% evaluable
patients had SD (6
of 33); Median OS:
6.0 months; Median
PFS: 1.8 months

Discontinued 390

RO4929097 with
gemcitabine

Advanced-stage
solid tumors

Phase I PR: 5.6% patient with
nasopharyngeal
carcinoma; 3
patients had SD

Discontinued 391

RO4929097 with
temsirolimus

Advanced-stage
solid tumors

Phase Ib
(NCT01198184)

73% patients had SD Discontinued 392

BMS-906024 T-ALL Phase I (32%) patients (8) had
≥50% reduction in
bone marrow blasts

Clinical studies
ongoing

393

Brontictuzumab Hematological
malignancies

Phase I PR in 4.3% patient
with TMF (1); 8.7%
patients had SD in
(2)

No phase II or III
trials ongoing;
discontinued in
hematological
malignancies

394

(Continues)
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TABLE 2 (Continued)

Compound Tumor type

Phase (Clinical-
trials.gov
identifier) Efficacy outcomes Status References

Tarextumab or
placebo with
gemcitabine and
nab-paclitaxel

Metastatic PDAC Phase Ib/II
(NCT01647828)

Placebo vs.
tarextumab arms:
Median OS: 7.9
months vs. 6.4
months Median
PFS: 5.5 months vs.
3.7 months; ORR:
31.8 vs. 20.2%

Discontinued 395

Tarextumab or
placebo with
etoposide and
cisplatin

Extensive-stage
SCLC

Phase Ib/II
(NCT01859741)

ORR in 84% patients
of phase Ib part;
placebo vs.
tarextumab arms in
phase II part:
Median PFS: 10.3
months vs. 9.3
months; ORR:
70.8 vs. 68.5%;

Discontinued 396

Demcizumab or
placebo with
carboplatin and
pemetrexed

Metastatic
nonsquamous
NSCLC

Phase I
(NCT01189968)

3% patients had CR
patients (1 of 40);
48% patients had
PR (19 of 40); 38%
patients had SD (15
of 40)

Progressed to the
randomized phase
II study
(NCT02259582)

397

Demcizumab

with gemcitabine,
with or without
nab-paclitaxel

Advanced-stage
PDAC

Phase Ib
(NCT01189929)

50% evaluable
patients had PR (14
of 28); 39.3%
patients had SD (11
of 28); Median OS:
10.1 months;
Median PFS: 9.0
months

Progressed to the
randomized phase
II study
(NCT02289898)

398

Rovalpituzumab
tesirine

SCLC Phase I
(NCT01901653)

17% patients had PR
or CR (11 of 65
patients); 54%
patients had SD (35
of 65); Median OS:
4.6 months; Median
PFS: 3.1 months

Progressed to the
phase II study
(NCT02674568)

377

Abbreviations: AML, acute myeloid leukemia; CR, complete response; CRC, colorectal cancer; DoR, duration of response; HNSCC, head and neck squamous cell
carcinoma; n, number of patients; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PDAC, pancreatic adenocarcinoma;
PFS, progression-free survival; PR, partial response; SCLC, small-cell lung cancer; SD, stable disease; T-ALL, T-cell acute lymphocytic leukemia; T-LBL, T-cell
lymphoblastic lymphoma; TMF, transformed mycosis fungoides; TNBC, triple-negative breast cancer.

Monoclonal antibodies targeting Notch receptors (such as
brontictuzumab and tarextumab) have been well demon-
strated to show moderate antitumor activities in different
phases of studies.378–380 CB-103 is a novel small molecule
inhibitor that targets Notch signaling by disrupting the
interaction of the Notch transcription complex.381 Preclin-
ical studies showed that CB-103 significantly inhibited the
growth of tumors in a GSI-resistant TNBC model. More-
over, another inhibitor targeting the Notch coactivator

protein, IMR-1, inhibits the growth of Notch-dependent
cell lines and patient-derived tumor xenografts.380
Among the components involved in the Hedgehog

pathway, its ligands, Smo and Gli transcription factors, are
the most common targets in Hedgehog pathway-directed
oncotherapy399–401 (Figure 4). Agents that target Smo
and Gli are currently in clinical trials402 (Table 3). Vis-
modegib and sonidegib are two United States Food and
Drug Administration-approved antagonists of SMO for
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TABLE 3 Small molecules targeting Hedgehog signaling and their clinical trials.

Compound Tumor type

Phase (Clinical-
trials.gov
identifier) Efficacy outcomes Status References

Vismodegib vs.
placebo

Recurrent epithelial
ovarian, primary
peritoneal cancer
or fallopian tube in
second or third CR

Phase II
(NCT00739661)

Median PFS: 7.5 months
vs. 5.8 months with
placebo

Magnitude of
sought increase
in PFS not
achieved

416

Vismodegib or
placebo in
combination with
FOLFOX or
FOLFIRI plus
bevacizumab

mCRC Phase II PFS: HR 1.25, 90% CI
0.89−1.76, p = 0.28;
1-year OS: 81.4 vs.
80.1%; ORR: 51% in
vismodegib arm vs.
46% in placebo arm

Development for
CRC
terminated

417

Vismodegib with
gemcitabine

Advanced-stage
PDAC (25 with
elevated SHH on
pretreatment
biopsy)

Phase II
(NCT01195415)

Fibrosis decreased in
45.4% of 22 patients
and Ki67 levels
decreased in 52.9% of
17 patients; Gli1 and
PTCH1 expression
decreased in 95.6 and
82.6%, respectively, of
23 evaluable patients;
Median OS: 5.3
months; DCR: 65.2%;
Median PFS: 2.8
months; ORR: 21.7%

Development for
PDAC
terminated

418

Vismodegib or
placebo with
gemcitabine

Advanced-stage
PDAC

Phase I/II
(NCT01064622)

Median OS: 6.9 months
vs. 6.1 months (HR
1.04, 95% CI
0.69−1.58); PR rate:
8 vs. 11%; SD rate:
51 vs. 38%; Median
PFS: 4.0 months vs.
2.5 months (HR 0.81,
95% CI 0.54−1.21); CR
rate: 0% in
vismodegib arm vs.
2% in placebo arm

Development for
PDAC
terminated

419

Vismodegib
preoperatively
and/or
postoperatively

Recurrent resectable
glioblastoma

Phase II
(NCT00980343)

Median PFS and OS
were 1.8 months and
8.3 months,
respectively

Development for
glioblastoma
terminated

420

Vismodegib or
placebo with
FOLFOX

Advanced stage
gastric or
gastroesophageal
junction
adenocarcinoma

Phase II
(NCT00982592)

Median PFS: 7.3 months
vs. 8.0 months in the
placebo group; ORR:
35% in both arms;
Median OS: 11.5
months vs. 14.9
months with placebo

Development
terminated for
these diseases

421

Taladegib Advanced-stage
cancer

Phase I
(NCT01226485)

ORR: 26.2%; SD rate:
28.6%;

Clinical studies
ongoing

407

Saridegib Advanced-stage solid
tumors

Phase I 6 PRs observed in 22
patients with HH
inhibitor-naïve BCC
(27%)

Clinical studies
ongoing

422

(Continues)
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TABLE 3 (Continued)

Compound Tumor type

Phase (Clinical-
trials.gov
identifier) Efficacy outcomes Status References

Saridegib (with
cetuximab)

Recurrent metastatic
head and neck
squamous

cell carcinoma

Phase I
(NCT01255800)

Median PFS: 77 days;
12.5% evaluable
patients had PR (1 of
8) and 50% had SD (4
of 8)

Clinical studies
ongoing

423

Itraconazole Biochemically
relapsed prostate
cancer

Phase II
(NCT01787331)

47% evaluable patients
(9 of 19) had PSA
declines by week 12

Development for
prostate cancer
terminated

424

Itraconazole and
pemetrexed

Metastatic
nonsquamous
non-small cell lung
cancer

Phase II 15 patients received
pemetrexed and
itraconazole and 8
received pemetrexed
alone); OS: 32 months
vs. 8 months; Median
PFS: 5.5 months vs.
2.8 months

Discontinued 425

Itraconazole with
arsenic trioxide

Refractory metastatic
BCC

Phase I SD in 3 patients Study ongoing,
further results
pending

426

Abbreviations: ALT, alanine transaminase; AML, acute myeloid leukemia; AST, aspartate transaminase; BCC, basal cell carcinoma; CR, complete response; CRC,
colorectal cancer; DCR, disease control rate; DoR, duration of response; FOLFIRI, folinic acid, 5-fluorouracil and irinotecan; FOLFOX, folinic acid, 5-fluorouracil
and oxaliplatin; HH, Hedgehog; HR, hazard ratio; mCRC,metastatic colorectal cancer; ORR, objective response rate; OS, overall survival; PDAC, pancreatic ductal
adenocarcinoma; PFS, progression-free survival; PR, partial response; PSA, prostate-specific antigen; SD, stable disease; SHH, Sonic hedgehog.

treating patients with metastatic BCC and/or recurrent
locally advanced BCC.403 These two Hedgehog pathway
inhibitors yielded overall objective response rates (ORRs)
from 44 to 68% in different stages of clinical trials.403–407
Glasdegib, combined with low-dose cytarabine to treat
patients with newly diagnosed AML aged over 75 years
old and ineligible for intensive induction chemotherapy,
was an important advance in the development of SMO
inhibitors in 2018.408 Meanwhile, retarding transcriptional
activity of Hedgehog signaling is an attractive therapeutic
option, and agents targeting Gli-mediated transcription,
such as GANT58 and GANT61a, are utilized to overcome
cancer resistance to SMO inhibitors.409,410 GANT61
exhibited significant antitumor activity in several preclin-
ical models, including breast, ovarian, pancreatic, lung,
and liver cancer.411–414 In addition, GANT58 decreased
the growth of prostate cancer cells by suppressing the
expression of PTCH1 and Gli1 in vivo.415
LATS1/2 and MST1/2 activators are currently the

most used agents in Hippo-targeted therapeutics427,428
(Figure 5). Due to the distinctive characteristics of the
Hippo pathway, in which loss-of-function mutations of
LATS1/2 and MST1/2 are always linked to oncogenesis,
the development of targeted agents presents more chal-
lenges than other antagonists.429,430 Indeed, to date, only
a few agents specifically targeting Hippo signaling have

been brought into clinical testing. For example, pevonedi-
stat, a first-in-class NEDD8-activating enzyme inhibitor,
blocks CRL4DCAF1-mediated degradation of LATS1/2 and
thereby attenuates YAP/TAZ activity.431,432 Pevonedistat
has been tested in combination with azacitidine in a phase
I trial involving patientswithAMLorMDS,which resulted
in 83% attenuation of ORRs in patients who received more
than 6 cycles of treatment.156
A variety of receptor kinase inhibitors, monoclonal

antibodies, ligand traps, and ASOs have been developed
to block TGF-β signaling, and most agents have been or
are being tested in clinical trials to provide more effective
treatments (Figure 6). The small molecule inhibitors of
TGF‑β receptor kinase were mainly designed to bind to
the ATP-binding domain of TGF-β R kinase, therefore
inhibiting ATP kinase activity and abolishing the down-
stream signaling cascade.102 For example, vactosertib
(MedPacto), an oral inhibitor that targets TGF-βRI/ALK-5
(IC50 = 12.9 nM), acts pleiotropically on diverse cancer
types, including CRC, gastric cancer, and NSCLC, through
intrinsic and extrinsic mechanisms.433,434 Galunisertib is
another kinase inhibitor that has shown antitumor effects
in lung and breast cancer cell lines, and its safety was
proven in phase I studies.435,436 Moreover, many other
agents targeting TGF-βRI, such as LY3200882, LY573636,
and A83-01, have also been reported to display certain
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antitumor activity in various tumors by weakening the
activity of TGF-β signaling.437–439 Another potential
method for reversing the tumorigenic and immune sup-
pressive responses induced by the TGF-β pathway is the
administration of antibodies that can obstruct the binding
of TGF-β ligand to its receptor. Indeed, the highly selective
inhibitor of the TGF-β1 isoform SRK181-mIgG1 was shown
to overcome primary resistance to checkpoint inhibitor
therapy, such as anti-PD-(L) 1 Abs.440 Meanwhile, in a
phase I trial of 28 patients with malignant melanoma,
Fresolimumab, a type of human mAb that neutralizes
TGF-β1 and TGF-β2, showed a partial response in 25%
of patients.441 The development of TGF‑β ligand traps is
an approach to handle the exogenous-dependent hyper-
activation of TGF‑β signaling.442 In this context, cancer
patients might gain more precise treatment. Currently,
there is an increasing number of ways to inhibit the TGF‑β
pathway, such as ASOs and vaccine‑based approaches
to modulate TGF‑β signaling, which again demonstrates
their irreplaceable role in cancer.443,444
Most FGF/FGFR signaling inhibitors fall into three

groups: small-molecule FGFR TKIs, anti-FGFR antibod-
ies, and FGF ligand traps445 (Figure 7). The most widely
used therapeutic approach are FGFR TKIs, which include
pan-FGFR inhibitors (such as FIIN-2, JNJ-42756493,
LY2874455, and ponatinib) and FGFR-specific TKIs (such
as the selective FGFR4 inhibitor BLU9931).446 Further-
more, according to the interaction pattern between the
inhibitor and the kinase domain, FGFR TKIs can be
classified into irreversible or reversible inhibitors. Irre-
versible inhibitors (such as erdafitinib and pemigatinib)
are thought to have a better binding affinity and selectivity,
but the early phases of clinical trials showed limited effi-
cacy or demonstratedminimal clinical benefit.447,448 Other
molecules that have been developed as investigational
agents targeting FGF/FGFR signaling include the FGF
traps FP-1039 (HGS1036), msFGFR2c, sFGFR3 sm27, and
NSC12449–451; the anti-FGF2 mAbs 3F12E7452 and H3L3453;
the anti-FGFR2 mAb hFR2-14454; the anti-FGFR4 mAb
U3-1784455; and the anti-FGFR1 antibody–drug conjugate
(ADC) LY3076226.456 The benefits of FGFR inhibitors have
been proven in clinical trials in subsets of patients, includ-
ing those with lung, breast, and gastric cancer. However,
the low response rates among patients with FGFR alter-
ations and the existence of responders without detectable
FGFR alterations still hamper treatment outcomes.

6.2 Eliminating dormant cancer cells

Previous comprehensive reviews have summarized the
therapeutic strategies to change the TME and improve
therapy outcomes.457–461 Here, we focus on advances in the

field of dormant cancer cells-related treatment by altering
the TME. Forcing dormant cancer cells to enter distinct
oxygen conditions, such as the switch between chronic
hypoxia and acute hypoxia, has been proposed to improve
the efficacy of antitumor drugs.462,463 The combined treat-
ment showed that the vitamin B3 analog nicotinamide,
which prevents temporary fluctuations in tumor blood
flow, increases the oxygen level and shrinks the extent of
tumor metastasis.464 In addition, mild temperature hyper-
thermia, another approach to elevate tumor blood flow,
was reported to relieve acute hypoxia and enhance drug
susceptibility.465 Altering hypoxia at various degrees of
irradiation increased radiosensitivity, particularly to X-
rays.466 For example, nicotinamide or mild temperature
hyperthermia enhances the radiosensitivity of total and
dormant cancer cells when given X-rays in combination
with high-dose-rate irradiation.462,467,468 Therefore, irradi-
ation combined with nicotinamide or mild temperature
hyperthermia could significantly improve the patient’s
prognosis. Moreover, bevacizumab, a drug targeting vas-
cular endothelial growth factor (VEGF), impairs oxygen
supply and shows antitumoral effects in various drug-
tolerant persister cells.469–471 Given the roles of VEGF in
the formation of blood vessels, bevacizumab could dramat-
ically augment the hypoxic niche by influencing oxygen
transport and exerting greater antineoplastic activity when
combined with chemotherapy.472,473 However, in patients
with refractory breast cancer, the addition of bevacizumab
to PTX treatment seems to be ineffective under hypoxic
conditions and may induce hypoxia and increase cytokine
secretion related to cancer progression.474 These findings
suggest that targeting hypoxiamight be a promising way to
eradicate tumor cells and dormant cancer cells, although
many unknown mechanisms need further study.
A substantial body of evidence suggests the crucial

roles of TAMs in inducing chronic inflammation and
contributing to cancer development.475–477 The inflamma-
tory microenvironment is now recognized as one of the
hallmarks of cancer478 and tightly correlated with dor-
mant malignant cells due to its multifaceted functions
in retaining tumor dormancy and reawakening dormant
tumor cells.479–481 Hence,macrophage-targeting therapeu-
tic strategies might be a promising way to change the dor-
mant state of cancer cells and thus inhibit tumor relapse.
A number of potential strategies targeting macrophages
have been reported.482–484 In general, TAM-focused ther-
apeutic approaches are classified into either restraining
the interplay by inhibiting the localization of these cells
at tumor sites or reactivating their antineoplastic activi-
ties. As previously discussed, chemokines (such as CCL5)
are responsible for the recruitment of macrophages to
tumors.485 In research on residual breast cancer cells,
Her2 downregulation-driven CCL5 has been reported
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to promote breast cancer recurrence via macrophage
recruitment.486 CCL5, a product of cancer cells and
macrophages, is usually linked to a worse outcome in
diverse types of breast cancer.487,488 Blocking CCL5 with
maraviroc, the cognate receptor for CCL5, is associ-
ated with biological and clinical responses in advanced
stage CRC.489 Thus, drugs targeting the CCL5–CCR5
axis are worthy of further study, considering that the
functions of this signaling pathway are well established
in the pathogenesis of breast cancer, GBM, and gastric
cancer.490–492 CSF-1R, the key modulator of monocyte-
macrophage lineage growth and differentiation, is abun-
dantly expressed in numerous tumor types.493–495 Given
the direct interference with TAMs, CSFŋ1R has become a
promising therapeutic target, and several related inhibitors
(such as small molecules and antibody antagonists) have
been tested in different preclinical models.496–498 For
instance, in glioma macrophage populations after radio-
therapy, a CSF-1R inhibitor combined with radiotherapy
enhanced the outcome in preclinical models, accom-
panied by decreased recruitment of monocyte-derived
macrophages in GBM.499 Moreover, pexidartinib, a drug
used for recurrent GBM, can reduce the number of circu-
lating CD14dim/CD16+monocytes. Although the primary
6-month progression-free survival (8.6%) was not satisfac-
tory in the 37 patients after treatment, rational combina-
tion therapy approaches may significantly augment the
outcome.500 In general, macrophage-targeting therapeutic
strategies have the potential to complement and synergize
with both chemotherapy and immunotherapy.

6.3 Regulation of tumor immune
microenvironment

Reciprocal communication between cancer cells and dif-
ferent immune cell subpopulations enables tumor cells
to escape immune responses and develop resistance to
ICBs.501–503 Hence, the heterogeneity of the immune
microenvironment is tightly linked to the outcomes of
ICB in immunotherapy. Combined treatment was used to
address this issue, considerably enhancing the treatment
effect.
In a phase III GBM trial, regulatory Tregs were shown to

play crucial role in resistance to ICBs.504 Therefore, target-
ing glucocorticoid-induced TNFR-related receptor (GITR)
in Treg cells using an agonistic antibody (αGITR) signif-
icantly reversed the suppression of antitumor immune
response. The functionality of intratumoral macrophages
can reflect the response to ICBs in melanoma. Mechanis-
tically, the activation of ER promotes melanoma growth
in murine models by skewing macrophage polarization,
which leads to ICB resistance.505 Targeting ER by using

fulvestrant, a selective ER inhibitor greatly decreased
tumor growth and promoted the antitumor efficacy of
ICBs. Nanobased combinational treatment is also a potent
way to target immunotherapeutic resistant cancer cells by
reprogramming the immune environment. To overcome
tumor immunological tolerance against ICBs, a versatile
nanomodulator was designed that could point-to-point
counteract immune suppressors and promote the infiltra-
tion of tumor T cells.506 Small interfering RNAs targeting
indoleamine 2, 3-dioxygenase-1 and gemcitabine delivered
by biocompatible nanocages account for targeting Tregs
and MDSCs. Meanwhile, O2-producible mineralization
tattooed on the surface of the nanocarriers accounts for
suppressing the immune inhibition of M2 macrophages.
A multifunctional nanomodulator was used to reverse the
immunosuppressive state and overcome tumor immuno-
logical tolerance after decorating the therapeutic ICB
antibodies on the mineralized shell. In many situations,
targeting the tumor immune environment may be feasible
to decrease resistance to ICBs.

6.4 Inhibition of ABC transporters

Targeting ABC transporters has been considered a promis-
ing approach to suppressing or eliminating drug resistance
in oncotherapy since discovering the vital role of ABC
proteins in tumor drug resistance.507,508 As early as 1981,
Tsuruo’s group found that verapamil could weaken drug
resistance in leukemia cells.509 However, high dosages
of verapamil trigger cardiovascular toxicity, limiting its
further applications.510 The second generation of P-gp
inhibitors, such as dexverapamil,511 valspodar (PSC 833),512
and biricodar citrate (VX-710),513 failed to cause drug–drug
interactions with other antineoplastic agents, as did the
first generation.514–516 Continuing failures with antidrug
resistance agents have driven the development of third-
generation inhibitors. These novel drugs are not only
more than 200-fold more potent at reversing drug resis-
tance than before but also block the interaction with
other chemotherapeutic drugs.517,518 For example, tariq-
uidar (XY9576), a drug currently in clinical trials, binds
to P-gp with high affinity and inhibits its ATPase activ-
ity at very low concentrations.519 Clinical trials have
demonstrated tariquidar’s potential as a candidate, even
if additional studies indicated that it might work in vivo
either as a substrate or an inhibitor of P-gp depending on
the dosage.520
With the development of nanotechnology approaches,

novel strategies for targeting ABC transporters have been
established, paving the way for more effective treatment
of drug-resistant cancer.521–523 The diameter of nanopar-
ticles (NPs) varies from one to several hundred nm. NPs
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can load a range of antitumor molecules, such as antineo-
plastic agents, P-gp inhibitors, and RNAi fragments.524,525
Mesoporous silica material (MSNPS)-based drug delivery
is one example, as it has a high surface area, large pore
volume, biocompatibility, and tunable pore size. MSNPS
loaded with siRNA and anticancer drugs showed signifi-
cant antitumor activity by inhibiting P-gp expression and
increasing intracellular drug concentrations.526

7 CONCLUSIONS

During the development of mammals, fetal stem cells
can differentiate into diverse types of cells to ensure
normal body function.527,528 These observations imply
that cells can switch from one lineage to another, greatly
expanding our understanding of cell identity and fate
determination. Recently, this hallmark of cancer cells
has been comprehensively reviewed by Hanahan and
termed unlocking phenotypic plasticity.529 In his opinion,
cellular plasticity could be selectively regulated by three
mechanisms: dedifferentiation, blocked differentiation,
and transdifferentiation, which are tightly linked to car-
cinogenesis. Indeed, to encounter diverse pressures from
diverse niches, cancer cells can alter their state to gain
stronger adaptability.530,531 Embryonic development is a
special phase in the progression from a fertilized egg to a
mature individual.532 On the one hand, embryos need to
activate developmental signaling pathways to ensure their
rapid proliferation and accurate differentiation.84,533–535
On the other hand, deficiency in embryonic detoxification
systems requires more effective efflux of toxic substances,
which is mainly performed by ABC transporters.536,537
In some harsh circumstances, the embryo will even stop
developing until favorable conditions are restored.538,539
Meanwhile, fetuses can regulate the immune microen-
vironment to evade attacks from the maternal immune
system.540–544
Cancer therapy is still a major challenge because each

patient with cancer has their underlying mechanisms of
tumorigenesis, metastasis as well as resistance, and there
is a defining set of characteristics that dictate tumor deteri-
oration, which may eventually result in death.545–547 With
the continuous advancement in cancer research, many
new drugs and treatment approaches have emerged in
cancer therapy, including multiple drug delivery-based
nanocarriers, CAR-T or ICB immunotherapy, CRISPR-
based gene therapy, and so on. Though these approaches
have shown significant potential in clinical studies, not all
cancer patients can benefit from the advances. For exam-
ple, CAR-T therapy has demonstrated promising results in
the treatment of hematological malignancies such as ALL
and lymphoma, but its efficacy is significantly reduced

in solid tumors.548 Therefore, there is a growing aware-
ness of the critical role of tumor heterogeneity in cancer
therapy and the importance of precision medicine. Preci-
sion medicine in cancer care offers numerous advantages,
including personalized treatment tailored to an individ-
ual’s genetic and biological characteristics, minimizing
side effects, increasing treatment success rates, avoiding
trial-and-error approaches, early risk prediction and pre-
vention measures, real-time treatment monitoring, and
contributing to future cancer research through data col-
lection. However, the development of precision medicine
must be built upon the foundation of preclinical research
and clinical translation. Future studies need to focus on
the mechanistic links between cellular stress sensors and
embryo-like transitions in different molecular contexts
and tumor types, which enabling better understanding of
the complexity and heterogeneity of tumors and facili-
tates the development and application of novel treatment
approaches.
It is well understood that abnormal genetic or non-

genetic alterations in normal cells can drive cancer onset
and progression. However, the described changes can be
viewed as a process of empowering tumor cells, enabling
them to possess a range of malignant functions, including
resistance to immune clearance, sustenance of their own
growth, and the capability to metastasize within the body.
To date, researchers have made significant strides in
understanding that cancer cells exhibit the remarkable
capacity to mimic various specialized cell types. They
can, for example, emulate neutrophils by entering the
circulatory system and infiltrating different organs, engage
in asymmetric differentiation akin to stem cells, and even
establish communication with the nervous system.540–542
For these reasons, many scientists now believe that the
genesis of cancer cells is, in fact, a form of atavism.543
Meanwhile, the concept of oncofetal reprogramming has
been proposed due to the striking resemblance between
cancer cells and the high pluripotency potential exhibited
by cells during early embryonic development in various
higher animals.544 Here, we have discussed representative
embryonic development hallmarks contributing to tumor
development and progression via genetic, epigenetic, or
TME alterations. In addition, investigating the intricate
mechanisms by which tumor cells respond to embryonic
developmental genes and pathways can lead to new
therapeutic approaches for cancer treatment in patients,
increasing the possibility of a cure. Although methods
for solving this problem appear challenging, we system-
atically revisit cancer development from an embryonic
development perspective, which provides new insight
into this intricate issue. Despite the disadvantages, it does
seem feasible, at least conceptually, to draw a roadmap for
confronting the problem of cancer therapy.
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