Skip to main content
. 2023 Dec 2;6:226. doi: 10.1038/s41746-023-00952-2

Table 2.

The diagnosis accuracy (AUC) of COVID-19 image-only, text-only and image-text disease classification experiments.

Methods Year Ratio of training data Retrospective studies Prospective studies
Image-only Text-only Image-text Image-only Text-only Image-text
CLIP54 2021 1% 87.5 75.6 88.6 58.7 65.3 69.9
ConVIRT34 2022 1% 88.1 86.4 88.8 59.6 66.4 71.5
BioViL30 2022 1% 90.4 89.7 91.0 60.9 68.8 73.0
Med-MLLM Ours 1% 95.3(0.3) 93.8(0.5) 95.9(0.4) 64.8(1.1) 72.9(0.8) 78.2(0.7)
CLIP54 2021 100% 95.7 83.3 89.0 63.5 68.8 75.2
ConVIRT34 2022 100% 97.6 94.5 97.7 70.4 77.6 82.1
BioViL30 2022 100% 97.4 94.5 98.2 66.7 80.5 84.4
Med-MLLM Ours 100% 98.4(0.2) 96.3(0.4) 98.7(0.2) 81.0(0.4) 84.1(0.5) 90.3(0.3)

All values are reported in percentage (%). The best results are in bold.