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Stroma‑associated FSTL3 
is a factor of calcium 
channel‑derived tumor fibrosis
Jie‑pin Li 1,2,3,6, Yuan‑jie Liu 1,3,6, Yi Yin 1,3, Ruo‑nan Li 4, Wei Huang 1,3* & Xi Zou 1,3,5*

Hepatocellular carcinoma (HCC) is the most widespread histological form of primary liver cancer, and 
it faces great diagnostic and therapeutic difficulties owing to its tumor diversity. Herein, we aim to 
establish a unique prognostic molecular subtype (MST) and based on this to find potential therapeutic 
targets to develop new immunotherapeutic strategies. Using calcium channel molecules expression-
based consensus clustering, we screened 371 HCC patients from The Cancer Genome Atlas to screen 
for possible MSTs. We distinguished core differential gene modules between varying MSTs, and Tumor 
Immune Dysfunction and Exclusion scores were employed for the reliable assessment of HCC patient 
immunotherapeutic response rate. Immunohistochemistry and Immunofluorescence staining were 
used for validation of predicted immunotherapy outcomes and underlying biological mechanisms, 
respectively. We identified two MSTs with different clinical characteristics and prognoses. Based on 
the significant differences between the two MSTs, we further identified Follistatin-like 3 (FSTL3) as a 
potential indicator of immunotherapy resistance and validated this result in our own cohort. Finally, 
we found that FSTL3 is predominantly expressed in HCC stromal components and that it is a factor 
in enhancing fibroblast-M2 macrophage signaling crosstalk, the function of which is relevant to the 
pathogenesis of HCC. The presence of two MSTs associated with the calcium channel phenotype in 
HCC patients may provide promising directions for overcoming immunotherapy resistance in HCC, and 
the promotion of FSTL3 expressed in stromal components for HCC hyperfibrosis may be responsible 
for the poor response rate to immunotherapy in Cluster 2 (C2) patients.
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The 2020 World Health Organization’s International Agency for Research on Cancer report revealed that hepato-
cellular carcinoma (HCC) ranks 6th among malignant tumor incidence worldwide, and 3rd among cancer-related 
mortality1. In China, primary HCC is the 4th leading malignant tumor and the 2nd contributor to tumor-related 
mortality, imposing a heavy economic burden on the healthcare system2,3.

Cancer cells are known to have a potent immune editing capability and are central to the establishment of 
an immunosuppressive tumor microenvironment (TME)4,5. Monoclonal antibodies (mAb) that suppress PD-1/
PD-L1 interactions by interacting with PD-1 or PD-L1 were shown to repair the immune response in the tumor 
microenvironment6–8. With the approval of checkpoint inhibitors that target PD-1/PD-L1 and CTLA-4 for 
HCC, tumor immunotherapy has revolutionized the treatment of HCC, and immunosuppressive TME is not 
only a target for immunotherapy, but also the basis for tumor immune evasion and acquired drug resistance 
after immunotherapy9–11.

Ca(2 +) signaling regulation is an important process for tumor growth12, including cell proliferation and 
apoptosis13–15, and there is a large body of research specifically addressing the Ca(2 +) signaling pathway in 
HCC16,17. The work of Mateus T Guerra et al. confirmed that re-expression of calcium channel proteins is the last 
common event in HCC18. There have been several sporadic studies suggesting a bidirectional regulation of cal-
cium channel molecules in HCC TME19,20, however most of these works are limited to individual calcium channel 
proteins and do not allow a comprehensive understanding of their significance in the development of HCC21,22.

Herein, our analysis of The Cancer Genome Atlas (TCGA) whole transcriptome data recognized two prog-
nosis-related molecular subtypes (MSTs) with distinct physiological profiles and clinical prognoses, which have 
also been validated in another independent cohort. Furthermore, based on differential genes between the two 
subtypes, an interplay network consisting of gene modules was constructed and from which the hub gene FSTL3, 
a gene not previously studied in HCC, was identified to be associated with immunosuppressive TME in this 
disease. We further investigated this gene and confirmed the association of calcium channel MSTs with HCC 
hyperfibrosis and with primary M2 macrophages by enrichment analysis and immune assessment algorithms. 
The simultaneous analyses of single cell (SC)-, IF-, and IHC-based studies strongly supported that the immu-
nosuppressive function of FSTL3 leads to difficulties in benefiting from immunotherapy in HCC patients. Thus, 
characterization of the immunosuppressive function of FSTL3 based on the calcium channel phenotype may 
provide an effective immunotherapeutic strategy and help overcome the poor efficacy of immunotherapy in 
immune exclusion type patients.

Materials and methods
The study designs
Figure 1 illustrating our study design. In this study, we identified 2 distinct subtypes of HCC in TCGA cohort. 
Calcium channel subtypes were constructed by cluster analysis and Multiscale Embedded Gene co-expres-
sion Network Analysis (MEGENA) by using The TCGA and the Gene Expression Omnibus (GEO) database. 
Kaplan–Meier (K-M) curve described the prognosis in the different calcium channel molecules. The tumor 
immune dysfunction and exclusion algorithm was used to predict potential immune checkpoint inhibitors (ICI) 
therapy responses in different subtype. Single-cell RNA sequencing (scRNA-seq) and multiple bioinformatic/
experimental approaches to analyze the role of FSTL3 in HCC.

Antibodies, reagents, and cell lines
The details for the wet-lab experiments and all antibodies, reagents, and cell lines are summarized in Supple-
mentary Materials.
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Ethics and sample collection
This research received ethical approval from Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital 
of Nanjing University of Chinese Medicine, Ethics and Research Committee (approval number: 2019NL-166-02), 
and strictly followed the Declaration of Helsinki23.

Open access data source
We obtained information about 43 calcium channel-encoding genes from the HUGO Gene Nomenclature Com-
mittee (HGNC) portal24, as shown in Table S1. These genes were used for subsequent analysis.

In all, 371 HCC cases were recruited from TCGA​25 through the University of California, Santa Cruz (UCSC) 
browser, and the data included genetic profiles [Fragments Per Kilobase Million (FPKM) values], corresponding 
clinical and mutational information26. The genetic demographics (FPKM values) of the TCGA-Liver HCC (LIHC) 
dataset27 underwent processing in R software for transformation to transcripts per kilobase million (TPM), 
which resemble microarray data. Owing to the lack of normal tissue samples in TCGA, we collected samples 
from Genotype-Tissue Expression (GTEx) database28 to serve as controls. Additionally, the Gene expression 
omnibus (GEO) dataset, particularly, GSE1452029, GSE3637630, GSE10207931, GSE1018632 was used for addi-
tional validation33. We also included a liver fibrosis dataset (GSE84044)34 to illustrate the relationship between 
calcium channel phenotypes and HCC background disease. Genetic profile retrieval utilized R (version 4.1.1) 
and data matrix construction was performed for subsequent analyses.

Overview analysis of calcium channels encoding genes
The GENEMINIA database35 was used for annotation and clustering of calcium channel genes. The “corrplot” 
package was employed for association assessment between TCGA-LIHC-based calcium channel gene, and paired 
tumor-normal samples were used to compare differences in expression of calcium channel genes. Gene Set 
Cancer Analysis (GSCA) web tool36 analyzed the genetic profile, Copy-number variation (CNV), methylation, 
survival and function data of calcium channel genes in TCGA-LIHC. Finally, we visualized the mutation fre-
quency of calcium channel genes in TCGA-LIHC using the “maftool” package.

Consensus clustering for calcium channel molecules
We have provided a detailed list of the information on the 43 Calcium channel molecules from The Human Gene 
Nomenclature Committee (HGNC)37. Subsequently, the unsupervised clustering “Pam” method was employed 
using the “ConsensuClusterPlus” R package38, using the expression profile of the aforementioned 43 Calcium 
channel molecules, and the process was reiterated 1000 times to guarantee classification stability.

Calcium channel phenotype‑related DEGs
HCC patients were divided into different calcium channel clusters according to the expression profile of genes 
encoding calcium channel proteins to screen for calcium channel pattern-related genes. Differentially expressed 
genes (DEGs) between calcium channel subtypes were identified using criteria of P < 0.05 (after adjustment) and 
absolute fold change > 2 in the limma R package.

Figure 1.   A schematic diagram of the research design.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21317  | https://doi.org/10.1038/s41598-023-48574-8

www.nature.com/scientificreports/

Generation of co‑expression axes
The “Multiscale Embedded Gene co-expression Network Analysis (MEGENA)” package in R software was 
employed for the screening of co-expression axes39. MEGENA is an innovative co-expression network analyti-
cal tool that provides multiple benefits over classical co-expression analytical approaches in effectively generating 
extensive co-expression plane filtering axes while maintaining gene–gene associations39. Fast Planar Filtered 
Network (PFN) generation is the initial stage of MEGENA analysis, followed by the computational acquirement 
of relevant gene pairs in PFN, and subsequent PFNs construction accumulated to Multiscale Clustering Analysis 
(MCA) for additional analyses40.
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We retrieved the largest gene module from the co-expression axis, and transformed them to a readable format 
using cytoscape in order to perform our final analysis and visualization41. Lastly, we computed the degree values, 
which were necessary for the ranking of genes in the module to potentially uncover hub genes.

Collection and processing of somatic alteration data
Associated mutational data for the TCGA-LIHC expression profile companion were retrieved from TCGA. This 
part of data was also employed to calculate the Tumor Mutational Burden (TMB)42 and Microsatellite Instability 
(MSI)43 of HCC. We identified the HCC driver genes by “maftool” R package and the leading 20 driver genes 
carrying the largest change frequencies were assessed in detail.

Enrichment analysis
Gene Ontology (GO)44 and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses45,46 utilized 
the R “clusterProfiler” package. P < 0.05 was set as the significance threshold.

Immune‑related analysis
The various immune cell invasion status in HCC was quantified by using the “CIBERSORT” 47and “ssGSEA” R 
packages48, respectively, and the possible Immune Checkpoint Blockade (ICB) response of HCC patients was 
predicted by TIDE algorithm49. Immune and stromal scores were computed via the “ESTIMATE” package to 
estimate the content of invading immune and stromal cells in GSE36376 and GSE102079, and subsequently 
correlated immune and stromal fractions with FSTL3 levels by the spearman method.

SC evaluation
Single-Cell RNA Sequencing (scRNA-seq) information was retrieved from https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE12​5449, and entered into Seurat V3. Filtered cells were visualized in Uniform Manifold 
Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (t-SNE) following 
strict quality control raw Unique molecular identifier (UMI) > 200, mitochondrial gene percentage < 20%, log10 
Gene per nUMI > 0.8)50. Subsequently, fibroblasts were identified using manual annotation. All cell type marker 
genes were identified using the “FindAllMarkers” function (min.pct = 0.25, logfc.threshold = 1, tes.use = ”wilcox”). 
“Dotplot” and “Vlnplot” functions plotted dot and violin plots, respectively. To further clarify the relationship 
of fibroblasts pseudotime trajectories with FSTL3 and fibroblast activation markers, we conducted the Mono-
cle 3 based on scRNA in HCC. We conducted the DDRTree method to reduce dimensionality and used the 
‘plot_genes_in _pseudotime’ function to visualize the trend showing the dynamic profile of FSTL3 and fibroblast 
activation markers in the fibroblast pseudotime trajectories in HCC.

Spatial transcriptomics
For the spatial transcriptome (ST) data, we obtained the hepatocellular carcinoma ST data from the GEO data-
base (acquisition number: GSE203612)51. The “SpatialDimplot” function from the “Seurat” package was used to 
obtain the position information of each gene.

Ethical approval and informed consent
The study was approved by Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing Uni-
versity of Chinese Medicine, Ethics and Research Committee (approval number: 2019NL-166-02). The study 
was in accordance with the declaration of Helsinki.

Figure 2.   Expression variation of calcium channel molecules. (A) calcium channels with neighboring 
genes depicting physical associations, co-expression, co-localization, estimated common networks, genetic 
associations, and common protein domains. (B) The “clusterProfiler” R package was employed for the 
GO and KEGG enrichment analyses. Different colors represented different background genesets. (C) 
Interrelationship between the 43 calcium channel molecules. The bigger the size is and the lighter the color is, 
the higher the correlation is. (Spearman method, TCGA-LIHC, n = 370). (D) Heatmap depicting association 
between the 43 calcium channel molecule expressions in essential cancer-related networks. The global cancers 
percentage whereby a gene modulates the pathway in HCC, is shown as the percentage. “Pathway activate” 
(red) denotes cancers percentage whereby a signaling network may be potentially activated by specified genes, 
suppression depicted similarly as “pathway inhibit” (blue). (E) The CNV and mRNA expression correlation, 
as evidenced by the bubble chart. Red denotes positive association and blue negative association. A stronger 
color represents a larger association index. The bubble size represents the false discovery rate (FDR). (F) The 43 
calcium channel molecule methylations and mRNA expression correlation, as evidenced by the bubble chart. 
Red denotes positive association whereas blue denotes negative association. A stronger color represents a larger 
association index. Bubble size represents the FDR. (G) The 43 calcium channel molecule mRNA expressions 
and HCC patients’ prognosis, as evidenced by the bubble chart. Red and blue denotes hazard ratio > 1 and < 1, 
respectively. A stronger darker color represents a larger association index. Bubble size represents −Log (Cox 
P). (H) Differential expression of 43 calcium channel molecules between HCC and matched normal tissues 
(Wilcoxon test, n = 50). (I) Mutation frequency of 43 calcium channel molecules in 363 HCC patients from the 
TCGA-LIHC dataset (n = 363).
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Results
An overview of the genetic characteristics, transcriptional variants and biological functions of 
43 calcium channel molecules
We pooled data from extant studies for 43 calcium channel molecules, which are CACNG1, CACNG2, CACNG3, 
CACNG4, CACNG5, CACNG6, CACNG7, CACNG8, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, 
CACNA1F, CACNA1G, CACNA1H, CACNA1I, CACNA1S, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, 
CACNB1, CACNB2, CACNB3, CACNB4, CATSPERB, CATSPERD, CATSPERE, CATSPERG, CATSPERZ, CAT-
SPER1, CATSPER2, CATSPER3, CATSPER4, ITPR1, ITPR2, ITPR3, RYR1, RYR2, RYR3, TPCN1, TPCN2. Fig-
ure 2A demonstrated the network of calcium channel protein members and their interactive genes. Enrichment 
analysis revealed that calcium channel proteins are closely associated with myocardial composition and oxytocin 
signaling pathways, in addition to their involvement in conventional ion transport (Fig. 2B). Furthermore, we 
observed a strong co-expression association among 43 calcium channel molecules at the transcriptional level 
(Fig. 2C). We then examined the characteristics of the relevant networks. Most networks in HCC, particularly 
ITPR3, CATSPER1, and CACNB1, showed high levels of activation in the apoptotic and Epithelial-mesenchymal 
transition (EMT) signaling pathways, but consistent inhibition in the hormones Androgen receptor (AR), RAS/ 
Mitogen-activated protein kinases (MAPK), and Receptor tyrosine kinases (RTK) (Fig. 2D). We verified that 
genetic diversity critically modulated calcium channel molecule expressions. The CNV content and mRNA were 
directly associated in terms of a majority of calcium channel molecules, particularly in CATSPERE (Fig. 2E), while 
for methylation, gene methylation statuses were inversely associated with mRNA contents (Fig. 2F). Notably, 
the relationship between the levels of different calcium channel molecules and HCC patient prognoses was vari-
able, with only elevated CACNG2 and CACNA1B expressions being potential poor prognostic factors (Fig. 2G). 
Relative to the transcript contents of 43 calcium channel molecules in paired tissue samples, few genes were 
elevated in HCC tissues (Fig. 2H): RYR2, RYR3, TPCN1, TPCN2, CACNB4, CATSPERB, CATSPERD, CATSPERE, 
CATSPERG, CATSPERZ, CATSPER1, CATSPER2, CATSPER3, ITPR1, CACNG1, CACNG2, CACNG4, CACNG8, 
CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1G, CACNA1I, CACNA1S, CACNA2D3, 
CACNB1 and CACNB3. Among the 363 HCC samples, 168 had mutated calcium channel molecules with a 
frequency of 46.28%, with RYR2 having the most mutational frequency, primarily missense mutation. (Fig. 2I). 
These results indicated strongly that aberrantly expressed calcium channel molecules in HCC was associated 
with cancer progression.

Identification of 2 calcium channel subtypes based on consensus clustering
To fully elucidate the integrated networks of calcium channels in HCC, we identified 2 unique pattern of calcium 
channel gene expression by unsupervised clustering, termed Cluster 1 (C1), Cluster 2 (C2) (Fig. 3A,B). Figure S1 
depicts a suitable clustering effect when k = 2. GSE14520 was analyzed similar to TCGA-LIHC dataset (Figure S2). 
Based on PCA, the two clusters were effectively identified according to their expression profiles of 43 calcium 
channel molecules (Fig. 3C). The expression levels of calcium channels were then analyzed using heat maps, and 
we observed that calcium channel molecules were considerably upregulated in C2, compared to C1 (Fig. 3D). 
The Kaplan–Meier survival analysis of HCC patients demonstrated that patients in C2 have a relatively poor 
prognosis, including overall survival (OS) and disease-specific survival (DSS) (P < 0.05, Fig. 3E–H). Interest-
ingly, according to the results of pathological tissue sections, we observed that the sample tissue of C2 had a 
more abundant collagen structure than that of C1 (Fig. 3I). These data suggested that variants in the expression 
of calcium channels may be associated with abnormal deposition of collagen. Considering that HCC develops 
as a consequence of chronic liver disease and that the vast majority of HCC occurs in patients suffering from 
liver fibrosis and cirrhosis, we further analyzed the correlation between this background disease and calcium 
channel phenotypes. We found that Scheuer staging fibrosis score (S0–S4) and Scheuer grading inflammation 
score (G0–G4) were higher in C2 patients compared to C1 in GSE84044 (Figure S3), suggesting that the patients 
with C2 features have more severe fibrosis even in the non-malignant stage.

Clinical characteristics and biological functional differences associated with calcium channel 
phenotypes
We assessed alteration in the clinical profiles between the two groups at first and found that the type of C2 
patients was more advanced compared to C1 (Fig. 4A). To further investigate the causes of the pathological 
differences between the two clusters, we obtained differential genes between the two clusters (Fig. 4B), and 
functional enrichment analysis (FEA) showed major enrichment in the extracellular matrix (ECM)-associated 
signaling pathways (Fig. 4C). In addition, in the cohort of Yujin Hoshida et al. we found that the majority of C1 
were well-differentiated S3 subclass (good prognosis), and the majority of C2 were S1 and S2 subclasses at high 
risk of early recurrence (poor prognosis) (Figure S4A-B). Interestingly, TGFβ-activated signaling associated with 
an aggressive phenotype showed strong enrichment in S1; in our study, C2 showed more active EMT signaling 
(Figure S4C-D), which is associated with a tumor mesenchymal phenotype.

To screen for new modulatory targets between 2 clusters, we conducted the MEGENA algorithm to construct 
gene modules after aggregating all eligible DEGs (Fig. 4D). The largest module C1_2 showed 101 genes, C1_10 
showed 89 genes and module C1_8 showed 74 genes (Figure S5A-C). FEA revealed that C1_2 was involved in 
ECM, and C1_8 was involved in high-density lipoprotein (Fig. 4E–G). Finally, we chose the three highest scor-
ing genes in each module to conduct Kaplan–Meier plot and identified that FSTL3 in C1_2, PKM and TMEM51 
in C1_8, and SERPINC1 in C1 _10 were intricately linked to HCC patients’ outcome (P < 0.05, Figure S5D-F). 
Therefore, FSTL3, PKM, TMEN51 and SERPINC1 may be potentially valuable research targets.
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Figure 3.   Unsupervised learning to identify 2 molecular subtypes (MSTs). (A) Left: The cumulative distribution 
function (CDF) curves of consensus scores via varying subtype numbers (k = 2, 3, 4, 5, and 6). Right: Relative 
area alteration under the CDF curve for k = 2–6. (B) The consensus score matrix of all samples when k = 2. A 
higher consensus score increased the potential of assignment to the same group. (C) The PCA distribution of 
TCGA-LIHC samples via calcium channel molecule expression profiles. Each point denotes a single sample; 
distinct colors denote the different subtypes. (D) Expressional distribution of 43 calcium channel molecules 
between the two subtypes. (E–H) Survival analysis including Overall Survival (OS) (E), progression-free 
survival (PFS) (F), disease-specific survival (DSS) (G), progression-free interval (PFI) (H) based on two 
subtypes (Logrank test, n = 370). (I) Typical images of pathological Hematoxylin and eosin (HE) staining of two 
calcium channel phenotypes.
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Identification of FSTL3 as the main research objective
Considering that the desmoplastic reaction is the main trigger for resistance to anti-cancer immunotherapy, it is 
easy to understand that the significant difference in collagen connective tissue abundance between the two clus-
ters will contribute to their different responses to immunotherapy52–54. Thus, we calculated TIDE score as an effec-
tive biomarker of ICB response, and we demonstrated that the TIDE score was substantially elevated in C2 than 
in C1, implying that patients in C2 had a relatively unfavorable response to immunotherapy (P < 0.001, Fig. 5A). 
Gene mutations have been widely reported to be highly accurate indicators of immunotherapy response55. Fig-
ure S6A showed the 20 genes with the largest mutation frequencies in HCC, including TP53, TTN, and CTNNB1. 
We then compared the alterations in mutational frequencies between the two clusters and found that TP53 was 
more frequently mutated in C2, compared to C1, while the opposite was true for CTNNB1 (Figure S6B). Notably, 
we observed additional mutational co-occurrence and mutually exclusive mutation events in C1 (Figure S6C-D).

Figure 4.   Analysis of calcium channel-related clinical characteristics and signal pathways differences. (A) 
Relationship between two subtypes and the clinicopathological parameters, including gender, T, N, and M stage, 
pathological stage, and tumor grade (*P < 0.05) (B) Expression difference analyses between the two subtypes 
were performed via the “limma” R package on TCGA-LIHC dataset, and a volcano plot was constructed. 
Blue, genes lowly expressed in C1; Red, genes highly expressed in C1; Grey, genes with no statistical difference 
in expression level. (C) The “clusterProfiler” R package was employed for GO enrichment analysis. (D) The 
co-expression network based on MEGENA analysis. Each node denotes a module, and larger nodes represent 
more quantity of genes. (E–G) GO and KEGG enrichment analyses of the 3 largest gene module, including 
C1_2 (E), C1_8 (F), and C1_10 (G). Each colored bar represents a distinct biological process. The vertical 
coordinate represents each term and the horizontal coordinate represents − Log10 (P.adjust).
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We further calculated that the status of immune cell invasion in the two clusters was also very different, 
including B cell naive, B cell memory, T cell regulatory, NK cell resting, Monocyte, and Macrophage M0 (P < 0.05, 
Fig. 5B). Surprisingly, we found that C2 exhibited relatively high levels of ICP (P < 0.05, Fig. 5C), which is 
inconsistent with the meaning of the TIDE score and may imply that C2 belongs to a unique subtype of immune 
exclusion, which was characterized by a high degree of fibrosis. Previous results suggested that FSTL3, PKM, 
TMEM51, and SERPINC1 may be hub genes that influenced differences in pathological features intrinsic to the 
calcium phenotype.

Considering the significant TIDE score difference between the two clusters, we calculated the correlation 
between the FSTL3, PKM, TMEM51, SERPINC1 genes and TIDE score respectively and observed that the TIDE 
score was directly associated with a high FSTL3, PKM, TMEM51 while negatively correlated with SERPINC1 
(P < 0.001, Fig. 5D). Based on TCGA-LIHC, there was high expression of FSTL3 and PKM in the HCC tumor 
samples compared with the controls (P < 0.05, Fig. 5E). We observed at the pan-cancer level that the expression 
pattern of FSTL3 and PKM varied greatly among different cancer types (Fig. 5F). Considering that there has 
been an explosive growth in research on PKM in cancer, we further focus on FSTL3 and confirmed the abnormal 
expression of FSTL3 in two independent validations set (P < 0.0001, Fig. 5G). To establish a link between FSTL3 
and calcium channels, spatial transcription data in GSE203612 were obtained to characterize the spatial overlap 
of FSTL3 and calcium channel-encoding genes on HCC cancer tissues. We observed that FSTL3, ITPR2, ITPR3, 
TPCN1, and TPCN2 showed similar spatial distributions (other calcium channel-encoding genes are under-
expressed or not expressed at all), implying potential co-expression of FSTL3 and calcium channels (Figure S7A). 
We found that FSTL3 and most calcium channel-encoding genes are significantly positively correlated at the 
transcriptional level. Finally, we confirmed the co-localization of FSTL3 and TPCN1, ITPR3 by IF staining in 
HCC tissues (Figure S7C).

Given that our estimated results suggested that FSTL3 has potential association with worse immunothera-
peutic prognosis, we gathered clinical data from 40 HCC patients for further study. The average H-SCOREs for 
FSTL3 content in HCC were higher than that in paracancerous tissue (Fig. 5H–I; P < 0.001, ANOVA). Interest-
ingly, the FSTL3 content was also upregulated in C2 (P = 8.1e−13, Fig. 5J). Further calculations showed that 
FSTL3 was independent of MSI but inversely associated with TMB (r = − 0.244, P < 0.001, Fig. 5K–L). Notably, 
FSTL3 was also observed to positively correlate with PDCD1 levels (r = 0.377, P < 0.001, Fig. 5M), which indicates 
that patients with elevated FSTL3 levels are more likely to benefit from immunotherapy. Finally, we collected 40 
HCC samples and performed IHC staining to assign scores to FSTL3 expression levels, showing that responsive 
patients had lower FSTL3 expression than those non-responders (P = 0.023, Fig. 5N), and that patients with 
elevated FSTL3 levels had a reduced response rate, compared to patients with reduced FSTL3 levels (Fig. 5O). 
This part of the results strongly suggested that FSTL3 has some diagnostic value and was closely associated with 
immunotherapy response.

Identification of FSTL3 as a potent promoter of fibroblast activation
New techniques in SC profiling studies will contribute to an enhanced comprehension of the microenviron-
mental features during HCC occurrence. To better characterize the FSTL3 expression profile in TME, we first 
performed a SC level analysis based on GSE125449. The gene marker of each cluster was shown in Fig. 6A, 
and the SC analysis process was depicted in Fig. 6B with a UMAP and t- t-SNE that showed the distribution of 
individual cell clusters. We next obtained the specific cell types by unbiased annotation (Fig. 6C). The FSTL3 
expression at the SC level was illustrated in Fig. 6D, which was consistent with the fibroblast marker gene ACTA2 
(Fig. 6D,E), indicating that FSTL3 was mainly expressed on fibroblasts. CytoTRACE analysis indicateed that 
cluster 7 exhibited significantly less differentiated state than other fibroblasts cell populations (Figure S8A-B, 
starting point of fibroblast differentiation). With pseudotime inference, we found that there were two distinct 
evolutionary trajectories in the trajectory process of fibroblasts, including cluster 12 and cluster 7 (Fig. 6F). We 
then selected FSTL3, 11 fibroblast activation markers (ACTA2, S100A4, FAP, TNC, POSTN, DES, PDGFRB, 
THY1, PDPN, ITGB1, CAV1), and 43 calcium channel molecules (13 members were not shown due to extremely 
low expression levels making them unavailable for analysis) and observed the changes in their expression levels 
during fibroblast differentiation by pseudotime analysis. No significant changes were observed in the expression 
of 30 calcium channel molecules (Figure S9). Among fibroblast activation markers, the trends of ACTA2, CAV1, 
PDGFRB, THY1, S100A4 were consistent with FSTL3, suggesting that FSTL3 may be critical for fibroblast activa-
tion (Fig. 6G and Figure S10). Functional enrichment analysis showed that cells in cluster 12 were enriched for 
fibrosis-related genes (Fig. 6H). IF staining results further validated that the FSTL3 levels were highly consistent 
with ACTA2 in cancerous and paracancerous tissue (Fig. 6I and Figure S11).

TCGA-LIHC-based calculations revealed a strong associatiBon between FSTL3 and ACTA2 (Fig. 6J). It is 
well established that local and recruited Mesenchymal stem cells (MSCs) differentiates into cancer-associated 
fibroblasts (CAFs) at close proximity to tumor cells. Fibroblast activation protein (FAP), fibroblast-specific pro-
tein-1 (FSP-1, S100A4), and α-smooth muscle actin (α-SMA, ACTA2) are commonly employed for activated 
CAFs labelling. We co-cultured MSCs with HCC cells (Fig. 6K), and the significant increase in activation mark-
ers of CAFs indicated that MSCs were successfully induced into CAFs (Fig. 6L). When MSCs were induced into 
CAFs, there was a significant increase in the expression of FSTL3. Based on IF staining, α-SMA contents were 
strongly elevated in FSTL3-overexpressed cells, and they were markedly diminished in the sh-FSTL3-treated cells 
(Fig. 6M–O). These results suggested that FSTL3 is a potent promoter of fibroblast proliferation and activation 
in HCC.
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Identification of FSTL3 association with M2 Macrophages
Fibroblasts are now found to be highly correlated with interstitial fibrosis of tumor, representing a poor progno-
sis. Using ESTIMATE analysis, we demonstrated that FSTL3 was positively associated with immune (P = 0.002, 
r = 0.202; P < 0.001, R = 0.302; Fig. 7A) and stromal score (P < 0.001, r = 0.477; P < 0.001, R = 0.501; Fig. 7A) in 
the GSE36376 and GSE102079 datasets, respectively. In a manner of growth factors exchange, macrophages 
and fibroblasts do indeed form a two-cell circuit (Fig. 7B). Since we have demonstrated the role of FSTL3 in 
fibroblasts, we then conducted ssGSEA to profile the overall immune and stromal infiltration levels in associa-
tion with FSTL3 level, and the result exhibited an extremely strong positive correlation between FSTL3 and 
macrophages (Fig. 7C). Subsequently, 22 immune cell profiles for HCC samples were generated for assessing 
the relationship of FSTL3 levels with macrophage polarization (Fig. 7D) and we observed that the expression 
level of FSTL3 was directly associated with M2 macrophage abundance (r = 0.274, P < 0.001, GSE36376; r = 0.196, 
P = 0.016, GSE102079; Fig. 7E). We also calculated the association between FSTL3 and M2 macrophage markers 
according to TCGA-LIHC and noted that FSTL3 levels were positively associated with CD163 (r = 0.235, P < 0.001, 
Fig. 7F) and MRC1 (r = 0.380, P < 0.001, Fig. 7F). To further examine the impact of FSTL3 overexpression on 
M2 macrophage abundance in HCC, we developed a fibroblast–macrophage co-culture model and revealed 
that FSTL3 overexpression strongly elevated the surface markers of M2 macrophage (CD206 and CD163) in 
THP-1 macrophages (Fig. 7G–H). We used clinical samples to conduct IF and found that CD163 and CD206 
were also significantly highly expressed in the high FSTL3 expression region and was scarcely expressed with 
reduced FSTL3 expression (Figure S12). A recent study showed that SPP1 + macrophages and cancer-associated 
fibroblasts can stimulate extracellular matrix remodeling and promote Tumor Immune Barrier (TIB) formation56. 
Thus, we performed IF in CAFs and Macrophages Co-culture System. The abundance of SPP1 + macrophages 
changes with the expression level of FSTL3 in CAFs (Fig. 7I–J). As a group of cells that influence the effectiveness 
of immunotherapy, macrophages express PD-1 on their membranes and thereby mediate the immune escape of 
tumor cells57. Given that we have demonstrated a correlation between FSTL3 and PD-1 and that FSTL3 promotes 
the proliferation of M2-like macrophages, we further investigated whether FSTL3 is involved in the regulation 
of PD-1 expression. We found that FSTL3 was able to upregulate PD-1 expression on M2- like macrophages 
(Fig. 7K,L). In addition, in CAFs and HepG2 Co-culture System, the expression of PD-L1 can be altered by 
FSTL3 in CAFs (Figure S13). Together, these results suggest that FSTL3 regulates immunosuppression in TME 
in at least a fibroblast-macrophage axis-dependent manner.

Discussion
HCC remains a global health challenge. Due to its insidious onset and mild symptoms in the early stages, more 
than half of patients are diagnosed with tumors that are too large or have spread to distant organs to be treated 
surgically58. In these cases, hepatic artery chemoembolization, regional radiotherapy and molecular targeted 
therapy are not effective59. The combination of targeted and immunotherapy has ushered in a new era of liver 
cancer treatment. However, it still faces the problems of uncertain efficacy, low objective remission rate, many side 
effects, and patients may develop drug resistance even after benefit60. Therefore, to guide the selection of HCC 
treatment regimens based on molecular typing, so that more HCC patients can benefit from it, is the challenge 
to be solved and the direction of the future development of precision therapy for HCC.

The ion Ca(2 +) acts as a widespread second messenger in the body and mediates a variety of cellular functions 
throughout the cell cycle61. Numerous studies have confirmed that imbalance of calcium channel homeostasis 
underlies the pathology of many diseases, including tumors, particularly in the context of the important mecha-
nism of Store-operated Ca(2 +) entry (SOCE)62–64. Ca2+-mediated signaling pathways play an important role in 

Figure 5.   Analysis of the relationship between calcium channel phenotype and response to immunotherapy. 
(A) Analysis of TIDE score difference between the two subtypes (Wilcoxon test, TCGA-LIHC, n = 370). (B) 
Analysis of alterations in the immune cell abundance between two subtypes. The x-axis represents the immune 
cell type, and y-axis represents the immune score (CIBERSORT scores) in varying subtypes where distinct 
colors denote distinct subtypes. C1 (red) and C2 (blue), TCGA-LIHC. (C) Analysis of the differences in eight 
common ICPs between two subtypes (Wilcoxon test, TCGA-LIHC, n = 370). (D) Correlation between FSTL3, 
TMEM51, PKM, SERPINC1 expression and TIDE score as evaluated based on TCGA-LIHC (Spearman method, 
n = 370). (E) Expression difference analyses of FSTL3, TMEM51, PKM, and SERPINC1 based on TCGA-LIHC 
paired samples (Wilcoxon test, n = 50). (F) Human FSTL3 and PKM expression levels in different tumor types 
from TCGA database. Wilcoxon test was conducted. (G) FSTL3 expression differential analysis between 
tumor and normal tissues based on GSE10279 (left, n = 257), and GSE36376 (right, n = 433). Wilcoxon test was 
conducted. (H) Different IHC staining intensity of FSTL3 in HCC patients. (I) Statistical analysis of FSTL3 
contents (H-SCORE) in normal and tumor tissues (Wilcoxon test, n = 40). (J) Expression difference analyses of 
FSTL3 between C1 and C2 (Wilcoxon test, TCHA-LIHC, n = 50). (K–M) Correlation between FSTL3 and MSI 
(K), TMB (L), as well as PDCD1 (M), respectively (Spearman method, TCGA-LIHC, n = 370). (N) Box plot 
depicting different FSTL3 expressions between responder and non-responder following anti-PD-1 treatment in 
40 HCC patients. (O) The high/low FSTL3 expression groups were divided depending on median of IHC scores 
of 40 HCC patients’ specimens. Bar plot depicting different response rates between elevated- and reduced-
FSTL3 expression cohorts among 40 HCC patients. In the low FSTL3 expression groups, 14 patients were 
responders to anti-PD-1 therapy, and 6 patients were non-responders. There were 8 patients were responders to 
anti-PD-1 therapy, and 12 patients were non-responders in high FSTL3 expression groups. (**** P < 0.0001, *** 
P < 0.001, ** P < 0.01, * P < 0.05, ns not significant).
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cellular phenotypic transformation, such as the transformation of normal cells to cancer cells, tumor formation 
and growth, invasion, angiogenesis, and metastasis65–68.

Considering that previous studies were mostly limited to the promotion or inhibition of tumor development 
by individual calcium channels and the heterogeneity of calcium channel expression in individuals with HCC, 
we clustered the TCGA-LIHC cases based on the expression profiles of all 43 known calcium channel-encoding 
genes and confirmed that calcium channels could effectively stratify patients with HCC. To ensure the reli-
ability of this subtype definition as well as its reproducibility, we subsequently replicated it in the GEO dataset. 
We observed marked alterations in clinical features and statuses of immune cell infiltration between clusters. 
The biological behavior of both innate and adaptive immune cells have been proved to be tightly regulated by a 
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cascade of signals provided by different ion channel networks in previous studies69. Our study demonstrated a 
strong link between overall calcium channel levels and TME.

Recent studies have shown that Ca(2 +) oscillations are critical for regulating gene expression in fibroblasts 
and it is now known that, on the one hand, pulsatile released Ca(2 +) promotes a voltage-dependent Ca(2 +) influx 
pathways by activating membrane conductance and, on the other hand, calcium signaling acts upstream of mech-
anoenzyme, thereby mediating cellular rearrangements70,71. The above factors ultimately coordinating a large 
number of cellular events, particularly the synthesis/secretion of ECM proteins and activation of fibroblasts72. 
As the major reservoir of intracellular Ca2 + , the endoplasmic reticulum (ER) releases Ca2 + into the cytoplasm 
and mitochondria under the control of IP3Rs (encoded by ITPR3)73. Ca2 + release promotes the formation of 
mitochondrial ATP, which regulates cellular energy metabolism74. Calcium channel-stimulated Ca2 + release has 
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a significant effect on fibroblast behavior, not only promoting discrete reorganization of actin filaments and thus 
altering cell morphology, but also regulating secretion of fibroblast matrix metalloproteinases75. These facts influ-
ence the secretion of collagen by fibroblasts and remodel the structure of the extracellular matrix. Based on these 
perceptions, and to clarify the underlying causes of the different clinical outcomes between the two subtypes, 
we revealed an interesting phenomenon through histopathological sections: patients in C1 had a lower matrix 
content in the cancer tissue compared to C2, while the C2 subtype was highly fibrotic and formed dense collagen. 
Considering the unique pathological features of the C2 subtype, we further analyzed the biological functional 
differences between the two subtypes and found that the differential genes were mainly enriched in ECM and 
collagen formation-related pathways. To precisely identify key genes in differential genes, we used the MEGENA 
algorithm to obtain core gene modules and identified FSTL3, TMEM51, PKM, and SERPINC1 as potential piv-
otal genes based on degree ranking and Kaplan Meier analysis, where the levels of FSTL3, TMEM51 and PKM 
were positively correlated with TIDE, while the SERPINC1 expression was inversely associated with TIDE. We 
further observed overexpression of FSTL3 and PKM in HCC tissues, suggesting their possible involvement in 
HCC development. The significance of PKM, a key enzyme in the final rate-limiting step of glycolysis, in tumor 
cell metabolism has now been extensively studied76,77, whereas the potential function of FSTL3, an oncogene 
that has recently piqued the interest of researchers, in HCC has not been elucidated78,79. We further validated the 
aberrant expression of FSTL3 in HCC tissues with independent microarray datasets as well as additional clinical 
specimens and confirmed that HCC patients with elevated FSTL3 levels are less responsive to immunotherapy 
compared to patients with reduced FSTL3 levels. The work of Chao Yang et al. showed that FSTL3 can serve as 
a bioindicator of ECM remodeling in colorectal cancer and correlates with chemoresistance, and in particular 
they reported an extremely strong association between FSTL3 and CAFs80.

Emerging evidences indicate that, tumor matrix components, and in particular CAFs, are essential modulators 
of immunotherapeutic resistance81. It is a basic fact that the effectiveness of immunotherapy is mainly influenced 
by T-cell dysfunction, which refers mainly to the abundance of T cell invasion and the quality of T cells, and by 
T cell exclusion, which depends mainly on the abundance of immunosuppressive cells namely, CAFs and M2 
macrophages that restrict T cell infiltration in TME81–84. Meanwhile, due to the unique phenomenon of tumor 
fibrosis dominated by CAFs, most solid tumors exhibit three main immune phenotypes due to the heterogeneity 
of their intrinsic components, including immune inflamed, immune desert, and immune excluded85. FSTL3 spe-
cifically binds TGF-β superfamily members, inhibits Smad family protein-mediated intracellular signaling, thus 
affecting target gene expression86. Ankur Chakravarthy et al. demonstrated that the activation of TGF-β signaling 
is a guiding factor which links CAFs to immune evasion and ECM transcriptional programme dysregulation87. As 
no previous studies have reported the localization and function of FSTL3 in HCC, we subsequently performed a 
SC analysis and found that FSTL3 was ubiquitously present on fibroblasts with high ACTA2 expression, and the 
IF results further confirmed the co-localization of FSTL3 with ACTA2. Subsequently, the pseudotime analysis 
showed a consistent expression trend of FSTL3 and fibroblast activation associated genes. It is also noteworthy 
that FSTL3 highly enriched cell cluster (cluster 12) was characterized by a significant fibrosis-related phenotype. 
These results implied a potential function of FSTL3 in fibroblast activation. To verify this inference, we con-
structed a cell line of CAFs stably transfected with FSTL3 and confirmed that FSTL3 can significantly promoted 
the activation of CAFs. In TME, CAFs secrete large amounts of ECM molecules, such as collagen and fibronec-
tin, leading to intense tumor tissue remodelling. It is therefore now generally accepted that the intratumoral 
fibrotic response originates from the activation and proliferation of CAFs. Corresponding fibrillar conformational 
changes enhance tumor-stromal interactions, triggering a malignant phenotype of cancer cells by promoting 
cell dedifferentiation and cancer stem cell division. From this point of view, the over-activation of FSTL3 in C2 
may be a contributing factor to collagen matrix accumulation.

The complex signaling crosstalk that exists between fibroblasts and macrophages makes their malignant 
behavior highly consistent in many ways, especially in terms of weakening the local immune response of the 
body88,89. The ssGSEA and CIBERSORT revealed that FSTL3 was highly associated with macrophage abundance, 

Figure 6.   Evaluation of the relationship between FSTL3 and response to immunotherapy. (A) Cell-type 
markers. The relative cell type-sorted gene expression across all cells. Cell-type marker genes were recognized 
using an unbiased method (Wilcoxon rank-sum test, FDR < 0.01, and fold change > 1.5) and the leading 15 
genes are presented. (B) The Uniform Manifold Approximation and Projection (UMAP) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) plot of all high-quality cells for visualization of cell clusters. (C) Dot 
plot depicting the post manual modification condition, with individual colors indicating annotated cell types 
of individual clusters depending on the content of known marker genes. (D,E) Dot plots (D) and violin plot 
(E) illustrate the profile of FSTL3 and fibroblast activation marker gene ACTA2 expression. (F) Pseudotime 
trajectory of all fibroblasts. Circle with distinct colors indicate distinct Seurat-identified clusters and all 
fibroblasts were colored according to their assigned pseudotime values. (G) Jitter plots depicting the fibroblast 
activation markers and FSTL3 profile alterations over pseudotime. (H) Pathway enrichment analysis of Cluster 
12. (I) FSTL3 and ACTA2 double immunofluorescence-stained images within HCC tissue. FSTL3 and ACTA2 
co-staining is presented in the enlarged images below. Scale bars, 100 and 20 mm (enlarged images). Nuclei 
(DAPI) in blue. (J) Correlation between FSTL3 and ACTA2 (Spearman method, TCGA-LIHC, n = 370). (K) 
Non-contact MSCs and HepG2 cell co-culture in a 1:1 ratio. (L,M) Activation markers of CAFs and expression 
FSTL3 in MSCs was evaluated by Western blotting (n = 3 replicates), the full uncut gels in Figure S14. (N,O) 
immunofluorescence of untreated CAFs and CAFs incorporated with NC, sh-FSTL3, and oe-FSTL3 constructs 
(magnification, × 400, scale bars = 20 μm). Immunofluorescence intensity is presented as mean ± SEM (n = 3 
replicates).
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especially M2 macrophage, and these evidences indicated that FSTL3 may exert immunosuppressive effects 
through T-cell exclusion-related pathways. We finally confirmed by IF that FSTL3 expressed by CAFs could 
stimulate the proliferation of M2 macrophages, and that the expression of M2 macrophage marker proteins 
(CD163, CD206) increased in parallel when the local area had a relatively high level of FSTL3 expression. M2 
macrophages, a recognized anti-inflammatory component, are able to synergize with the over-abundant col-
lagenous tissue secreted by fibroblasts to jointly block immunotherapeutic agents from reaching the tumor 
component90–92. In addition, macrophages, one of the key cells that express PD-1 within tumors, are able to 
attenuate T-cell responses and are currently considered as biomarkers for determining therapeutic response93,94. 
Our results confirm that FSTL3 in the stroma component may play an important role in immune checkpoint 
inhibition.
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The present study also has some limitations. Firstly, the basic findings are based on computer simulation 
methods, although validated in their own samples, however, due to a relatively small sample population, there 
is a need to expand the study to obtain more adequate evidence. Second, since immunofluorescence staining is 
difficult to assess samples quantitatively, a more rigorous approach would be appropriate accordingly. Finally, the 
specific functional localization of FSTL3 in tumors remains ambiguous, and there is an urgent need to expand 
the scope and methods of studies targeting it.

Conclusion
Our findings suggested that calcium channel molecules are closely associated with hyperfibrosis in TME of HCC 
patients, while we identified the fibroblast-associated gene FSTL3 in a highly mesenchymal population. FSTL3 is 
associated with CD163/CD206 M2 macrophages, further contributing to anti-inflammatory effects and leading 
to immunotherapy resistance. Further studies of the fibroblast/FSTL3/M2 macrophage axis will help to provide 
potential new targets for HCC immunotherapy.

Data availability
The data and materials in the current study are available from the corresponding author: zxvery@126.com.
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