Skip to main content
. 2023 Oct 23;3(11):100621. doi: 10.1016/j.crmeth.2023.100621

Table 3.

The comparison of the performance of Mol-GDL and SOTAs on synergistic drug combination dataset

Methods
Metrics
AUC AUPR Recall Precision F1
XGBoost46 0.92(0.01) 0.92(0.01) 0.84(0.01) 0.84(0.01) 0.84(0.01)
RF47 0.86(0.01) 0.85(0.02) 0.74(0.01) 0.78(0.02) 0.76(0.01)
TranSynergy43 0.90(0.01) 0.89(0.01) 0.80(0.01) 0.84(0.01) 0.82(0.01)
DTF45 0.89(0.01) 0.88(0.01) 0.77(0.03) 0.82(0.01) 0.80(0.02)
DeepSynergy44 0.88(0.01) 0.87(0.01) 0.75(0.01) 0.81(0.01) 0.78(0.01)
DeepDDSGAT42 0.93(0.01) 0.93(0.01) 0.84(0.07) 0.85(0.07) 0.85(0.07)
DeepDDSGCN42 0.93(0.01) 0.92(0.01) 0.84(0.01) 0.85(0.01) 0.84(0.01)
Mol-GDL 0.94(0.01) 0.94(0.01) 0.86(0.01) 0.86(0.01) 0.86(0.01)

Note that the subindex indicates standard deviation values. Bolding indicates best results.