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MOTIVATION Single-cell RNA sequencing (scRNA-seq) has significantly advanced our understanding of
how different types of cells respond to immunotherapy. However, inconsistencies persist in our under-
standing of themechanistic underpinnings and in predictivemodels of immunotherapy, with studies report-
ing different cell subtypes contributing to mechanisms of response and prediction models without clear
explanation. Such inconsistencies might originate from uncharacterized cellular heterogeneity. To tackle
this issue, we present scCURE, which leverages pattern recognition modeling to differentiate between
changed and unchanged cells during the course of immunotherapy.
SUMMARY
A deep understanding of immunotherapy response/resistance mechanisms and a highly reliable therapy
response prediction are vital for cancer treatment. Here, we developed scCURE (single-cell RNA sequencing
[scRNA-seq] data-based Changed and Unchanged cell Recognition during immunotherapy). Based on
Gaussian mixture modeling, Kullback-Leibler (KL) divergence, and mutual nearest-neighbors criteria,
scCURE can faithfully discriminate between cells affected or unaffected by immunotherapy intervention.
By conducting scCURE analyses inmelanoma and breast cancer immunotherapy scRNA-seq data, we found
that the baseline profiles of specific CD8+ T and macrophage cells (identified by scCURE) can determine the
way in which tumor microenvironment immune cells respond to immunotherapy, e.g., antitumor immunity
activation or de-activation; therefore, these cells could be predictive factors for treatment response. In this
work, we demonstrated that the immunotherapy-associated cell-cell heterogeneities revealed by scCURE
can be utilized to integrate the therapy response mechanism study and prediction model construction.
INTRODUCTION

The successful development of cancer immunotherapies target-

ing T cells and their immune checkpoint proteins in recent years

is expected to provide promising clinical responses to cancer.1,2
Cell Report
This is an open access article under the CC BY-N
However, clinical benefit is only limited to a small subset of pa-

tients, and not all patients can be treated with immune check-

point blockade (ICB) to reduce recurrence rates and prolong sur-

vival.3,4 Given the high cost of treatment, understanding the

precise cellular and molecular mechanisms of therapy response
s Methods 3, 100643, November 20, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and resistance and assessing immune function prior to clinical

treatment to predict patients most likely to respond positively

to ICB therapy remain critical tasks to improve immunotherapies

and develop new treatment pathways.

Recently, much effort has been made to interpret the cell dy-

namics associated with immunotherapy using single-cell tech-

niques, including melanoma,4–6 breast cancer,7 renal cell cancer

(RCC),8 non-small cell lung cancer (NSCLC),9 hepatocellular car-

cinoma (HCC),10 acute myeloid leukemia (AML),11 colorectal

cancer,12 and head and neck squamous cell carcinoma

(HNSCC).13 Generally, the purposes of previous single-cell

RNA sequencing (scRNA-seq)-based immunotherapy studies

can be categorized into two types: mechanism investigation

and prediction model construction. In terms of prediction, pre-

diction models have been constructed for melanoma6 and

RCC8 by combining scRNA-seq and bulk RNA-seq datasets.

In HCC, Shi et al. identified CXCR3+CD8+ effector memory

T cells and type 1 conventional CD11c+ dendritic cells (DCs)

from peripheral blood mononuclear cells (PBMCs) as immuno-

therapy response factors.10 In breast cancer, Zhang et al. iden-

tified that high levels of CXCL13+ T cells at baseline could predict

a positive response to combination therapy.7 At the level of pan-

cancer, Zhang et al. develop a stemness-based signature to pre-

dict immunotherapy response.14 Other studies focused on

mechanism investigation. In AML, Abbas et al. identified the

expansion of T cell receptor (TCR) repertoires and the emer-

gence of GZMK+CD8+ T cell clonotypes in responders during

ICB treatment.11 Liu et al. reported a phenomenon termed clonal

revival during lung cancer ICB treatment.9 Li et al. revealed that

ICB changed the inflammatory features of colorectal tumors.12

There are also some studies that have simultaneously investi-

gated mechanisms and prediction models. In HNSCC, Obra-

dovic et al. investigated both immunotherapy response/resis-

tance mechanisms and therapy response prediction, but the

two aspects were linked with different cancer-associated fibro-

blast (CAF) cell subtypes, and the reason is still unclear.13 Until

now, it has been a challenge to comprehensively integrate the

above two aspects. It is reasonable to speculate that such incon-

sistency may be due to uncharacterized cell-cell heterogene-

ities. For example, in our previous studies, we successfully

extracted prediction markers from post-treatment RCC sam-

ples.8 Such a preliminary result implies that there must exist cells

that remain unchanged during the course of therapy, and those

cells may contain predictive features for therapy outcomes. In

addition, the ways in which immunotherapy reshapes immune

systems in various patients could be interpreted based on the

cells responding to treatment interventions. However, the pro-

files of changed and unchanged cells have yet to be fully

depicted.

Deep mining of single-cell data using machine learning can

lead to further understanding of cellular heterogeneity and the

underlying immune response mechanisms. To achieve this, a

variety of unsupervised clustering methods have been devel-

oped, including the k-means-based methods pcaReduce,15

SAIC,16 SC3,17 SCUBA,18 scVDMC,19 etc.; the hierarchical-

clustering-based methods BackSPIN,20 cellTree,21 CIDR,22

DendroSplit,23 ICGS,24 RCA,25 etc.; the graph-based clustering

methods TCC,26 SIMLR,27 SNN-Cliq,28 SCANPY,29 etc.; and
2 Cell Reports Methods 3, 100643, November 20, 2023
mixture-model-based clustering methods including BISCUIT,30

DTWScore,31 TSCAN,32 etc. However, unsupervised methods

usually fail to specifically reveal the cell heterogeneities related

to the problems being studied (e.g., pre- and post-treatment or

response and non-response). In addition, supervised methods,

e.g., differential expression gene identification,33 also cannot

be applied to investigate unknown cell heterogeneities.

To specifically characterize immunotherapy-related cell het-

erogeneities, we here present scCURE (scRNA-seq-based

Changed and Unchanged cell Recognition during immuno-

therapy). scCURE combines the Gaussian mixture model

(GMM) and Kullback-Leibler (KL) divergence, which endows

the algorithm with high noise robustness. On simulated data,

scCURE outperformed multiple existing methods in discrimi-

nating immunotherapy-induced gene expression variations

from irrelevant interferences. We demonstrate the utility of

scCURE in constructing more reliable therapy outcome predic-

tion models and better interpreting the associated response/

resistance mechanisms on melanoma and breast cancer

scRNA-seq datasets. We envisage that our work may promote

clinical applications of single-cell techniques and shed light on

the development of more precise, efficient, and broadly suitable

tumor treatment strategies.

RESULTS

Principles of scCURE
We hypothesize that the putative cell heterogeneities can be

categorized into two major types: (1) changed cells. The dy-

namics of these cells reflect the way in which patients respond

to immunotherapy. (2) Unchanged cells. Those cells from the

pre- and post-treatment conditions have similar cellular and mo-

lecular functions, and the differences are mainly caused by irrel-

evant factors, e.g., batch effects and random noise. The baseline

profile of unchanged cells may provide prediction feature for

therapy outcomes.

To appropriately capture such heterogeneity, it is key to

discriminate immunotherapy-induced cell-state transitions

from irrelevant variations. To achieve this, scCURE consists of

the following major steps: (1) model construction. The GMM is

trained using the expectation maximization (EM) method on

the cells from pre- and post-treatment conditions, respectively,

with pre-defined K numbers of Gaussian models (see STAR

Methods for parameter optimization). Each cell is assigned to a

specific Gaussianmodel based on themaximum likelihood crite-

rion. Assuming that the dataset consists of cells with K cate-

gories of subtypes/functions, within each subtype/functional

category, cells are homogeneous. Therefore, each subtype/

functional category can be modeled as a Gaussian distribution.

The combination of multiple Gaussian distributions with various

parameters can be used to approximate the real-world single-

cell data. Assuming that the number of Gaussian models is suf-

ficiently high to characterize intra-condition cell heterogeneities,

a Gaussian model represents either changed or unchanged

cells. (2) Changed and unchanged cell discrimination. To

discriminate theGaussianmodels representing changed and un-

changed cells, we exhaust all possible model pairs between the

two conditions and calculate KL divergences between them. If a
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pair of Gaussian models from two conditions are mutually

closest to each other in terms of KL divergence, the cells as-

signed to the two Gaussian models should not contain system-

atic variations, and these cells are annotated as unchanged;

otherwise, they are annotated as changed (see STAR Methods,

proof of concept).

Based on the characteristics of unchanged cells and a self-

defined prediction score, a new therapy outcome prediction

model can be constructed. In addition, the immunotherapy

response/resistance mechanisms interpreted from changed

cells can be well integrated with the prediction models. The

schematic diagram of scCURE is illustrated in Figure 1.

Validation of scCURE on simulated datasets
Simulated datasets mimicking pre- and post-treatment condi-

tions were generated (see STAR Methods for details), on which

the ability of scCURE in identifying unchanged cells was evalu-

ated in terms of sensitivity, specificity, F1 score, area under the

curve (AUC) of the receiver operating characteristic curve

(ROC), and positive prediction value (PPV) (see STAR Methods

for definition). The proposed algorithm was benchmarked

against multiple leading methods that are able to identify un-

changed cells, i.e., mutually nearest neighbor (MNN)34 and ca-

nonical correlation analysis (CCA)35 (STAR Methods). As the

number of neighbors set up in MNN and the CCA may affect

the final results, various parameters were tested, i.e., 5, 10, 20,

and 50. At the same time, various numbers of Gaussian models

K in scCURE were also evaluated.

The simulated datasets with signal-to-noise ratios (SNRs) from

low to high were generated, i.e., FCs (fold changes) from 1.1 to 2

(Figure 2; see STAR Methods simulated datasets). For low-SNR

datasets, the MNN and CCA methods had trouble in simulta-

neously improving sensitivity and specificity. A larger number

of neighbors resulted in higher sensitivity but lower specificity

and as such resulted in compromised PPV, F1 score, and

AUC. Satisfactory results were only obtained by MNN when

the SNRwas high enough, i.e., FC = 2, but theCCA had poor per-

formance in all circumstances. If K is no less than the actual num-

ber of cell subclusters, the highest sensitivity, specificity, PPV,

F1 score, and AUC could be achieved by scCURE, even in

low-SNR circumstances. We noticed that if K was not large

enough to cope with data heterogeneity, specificity, PPV, F1

score, and AUC were obviously affected. Moreover, we evalu-

ated the impact of different numbers of principal components

(5, 10, 20) on the model performance using these metrics (Fig-

ure S1). We found that scCURE was not obviously affected by

the choice of different numbers of principal components, but us-

ing top 5 principal components (PCs) could obtain the best AUC

in the case of 4 subclusters. Therefore, 5 PCs were used on the

subsequent analyses.

In summary, simulated data demonstrated that the proposed

scCURE algorithm is able to reliably capture treatment-associ-
Figure 1. Flowchart of scCURE-based immunotherapy scRNA-seq dat

‘‘scRNA-seq’’ demonstrates the data acquiring procedure. ‘‘scCURE’’ illustrates

‘‘Unchanged cells for prediction’’ illustrates the cell proportion characteristics a

scCUREmodel can be constructed using training data and applied on testing pati

illustrates how to interpret immunotherapy mechanisms on changed cells.
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ated cell heterogeneity in the presence of strong interferences.

The results were also insensitive to varied parameters as long

as the model was sufficiently comprehensive to cope with data

heterogeneity. In the subsequent sections, we will introduce a

strategy to optimize the choice of K in experimental applications.

Baseline CD8+ T cell composition profiles predict ICB
outcome in patients with melanoma
We then demonstrate how scCURE can be used to reveal

immunotherapy response/non-response characteristics using

a melanoma scRNA-seq dataset.5 The dataset contained cells

collected from pre- and post-ICB-treated patients with mela-

noma who showed response or non-response phenotypes.

The cells were reannotated, and CD8+ T cells were selected for

analysis. There were 2,538 CD8+ T cells collected from pre-treat-

ment patients (including responders and non-responders), 1,074

cells from post-treatment responders, and 3,228 cells from post-

treatment non-responders. Unchanged CD8+ T cells were iden-

tified for ICB outcome prediction purposes. Specifically, all pre-

treatment cells were compared to the cells from post-treatment

responders and post-treatment non-responders using scCURE,

respectively. The scCURE parameter K was optimized by maxi-

mizing the prediction capability of themodel (see STARMethods

for details). We annotated the pre-treatment cells as R-like if they

were identified as unchanged cells when comparing all pre-treat-

ment cells and post-treatment responder cells. Similarly, non-

responder (NR)-like cells were the pre-treatment unchanged

cells when compared to post-treatment NRs. We defined an

ICB outcome prediction score for each individual patient as the

ratio number of cells between responder (R)-like/NR-like cells.

Using this score, the prediction capability of scCURE with

various parameter K values was evaluated using leave-one-out

cross validation (see STAR Methods for details). According to

the results, K = 5 was set for pre-treatment and K = 3 for post-

treatment (both Rs and NRs) in unchanged/changed discrimina-

tion. According to Seurat36 standard analysis process, all the

identified pre-treatment unchanged cells were reclustered into

3 main clusters using t-distributed stochastic neighbor embed-

ding (t-SNE) (without cross validation; Figure 3B). Based on the

results of FindAllMarker and the expression of canonical

markers, we annotated the three clusters as CD8-C2-SELL

(naive state), CD8-C1-HAVCR2 (exhausted state), and CD8-

C3-GNLY (intermediate state) (Figure 3C). Moreover, we

observed that CD8-C2-SELL was dominated by R-like cells

and the other two clusters were dominated by NR-like cells (Fig-

ure 3D). Figure 3E illustrates that the R-like/NR-like ratios could

be used to well predict the response patterns (the ratios were

calculated using leave-one-out cross validation as described in

the STAR Methods section). Moreover, Rs had a higher mean

expression of the CD8-C2-SELL signatures than NRs in the

PREJEB23709 dataset (Rs = 49, NRs = 42) (Figure 3F; STAR

Methods). Gene set enrichment analysis (GSEA) revealed that
a analysis

the model construction and discrimination of changed and unchanged cells.

re related to immunotherapy outcomes. In clinical application scenarios, an

ent to identify unchanged cells. ‘‘Changed cells for mechanisms interpretation’’



Figure 2. scCURE evaluation on simulated data

The values of K for pre- and post-treatment cells were set to equal.
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significant enrichment of the immune-related pathways in CD8-

C2-SELL clusters, such as the interferon a/g (IFN-a/g) response,

complement signaling pathways, whereas the p53, apoptosis,

and transforming growth factor b (TGF-b) signaling pathways

were activated in the CD8-C1-HAVCR2 cluster and the tumor

necrosis factor a (TNF-a) signaling via the nuclear factor kB

(NF-kB) and MTORC1 signaling pathways were activated in the

CD8-C3-GNLY cluster (Figure 3G). Interestingly, the changed

cells in pre-treatment could also predict the ICB outcome. The

1,709 changed cells were identified as CD8-C1-HAVCR2,

CD8-C2-SELL, and CD8-C3-GNLY (Figures S2A and S2B).

Like the result of the unchanged cells, the ratios of R change

andNR change could also discriminate Rs andNRs (Figure S2C).

For comparison purposes, we also tried to use MNN and CCA

to identify the R-like cells and NR-like cells (Figure S3). For most

patients, MNN failed to assign R-like or NR-like cells; therefore,

the ratio cannot be calculated. The R/NR ratios for the rest of the

patients were irrelevant to response pattern, which failed to pre-

dict the ICB outcome. CCA was unable to predict the response

status of the cells, as it could not identify any specific R-like or

NR-like cells (data not shown).

ICB treatment induces dual CD8+ T cell state transition
paths in both Rs and NRs
The dynamic patterns of changed CD8+ T cells induced by ICB

treatment were comprehensively interrogated to investigate

the mechanisms of the ICB response and non-response.
First, 1,478 CD8+ T cells from pre-treatment responders and

582 CD8+ T cells from post-treatment Rs were identified as

changed. All 2,060 cells were categorized into 7 main clusters.

Among these clusters, CD8-C1-PDCD1, CD8-C2-CTLA4, CD8-

C4-LAYN, and CD8-C6-GNLY mainly expressed co-inhibitory

receptors (PDCD1, CTLA4, HAVCR2, LAYN, TIGIT), while

CD8-C3-CCR7, CD8-C5-IL7R, and CD8-C7-FGFBP2 enriched

in naive/co-stimulation molecules (SELL, IL7R, CCR7, TNF,

FGFBP2, GNLY) (Figures 4A and 4B). Additionally, the propor-

tion of CD8-C2-CTLA4 and CD8-C5-IL7R clusters had

increased and the proportion of CD8-C1-PDCD1, CD8-C4-

LAYN, CD8-C3-CCR7, CD8-C6-GNLY, and CD8-C7-FGFBP2

clusters had decreased after treatment, which indicated that

ICB might reverse the exhausted state of CD8+ T cells. Pseudo-

time trajectory analysis37 (STAR Methods) illustrated that there

may exist two transitional pathways from pre- to post-treat-

ment samples, i.e., from two pre-treatment start nodes, the ter-

minal exhausted cluster (CD8-C1-PDCD1) and naive/effector

clusters (CD8-C7-FGFBP2 and CD8-CD3-CCR7), to one post-

treatment end node, CD8-C5-IL7R (Figure 4C). It is reasonable

to deduce that naive/effector and terminal exhausted CD8+

T cells might be activated into the progenitor exhausted state,

which is responsible for tumor killing, as illustrated by survival

analysis using the top 30 markers of CD8-C5-IL7R (Figure 4H).

Previous studies showed that exhausted CD8+ T cells can be

further categorized into progenitor and terminal cells.38,39

Here, we evaluated the expression distribution of the terminal
Cell Reports Methods 3, 100643, November 20, 2023 5



Figure 3. scCURE identified R-like and NR-like CD8+ T cells from pre-treatment patients with melanoma

(A) The AUC and p values of prediction models obtained using different choices of scCURE parameters.

(B) t-SNE plot of the scCURE-identified unchanged CD8+ T cells colored by cell type, cell group, and ICB response pattern.

(C) Heatmap of canonical CD8+ T cell functional markers.

(D) Chord diagram showing the association between cell clusters and R-like/NR-like categories by hypergeometric distribution test.

(E) Bar plot showing the well distribution of R-like/NR-like ratios between Rs and NRs.

(F) Signature scores of CD8-C2-SELL cluster computed on the PREJEB23709 dataset (Rs = 49, NRs = 42) and compared between cell groups with a two-sided

Wilcoxon test. Signature scores were defined by the average expression of the top 30 CD8-C2-SELL markers. Statistical significance indicated by asterisks is as

follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(G) Hallmark pathways enriched in different CD8+ T cell clusters (Benjamini-Hochberg [BH]-adjusted p < 0.05).
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and progenitor exhaustion markers reported in Bi et al.38 and

found that the expression of progenitor exhaustion markers

tended to improve after treatment, and terminal exhaustion fea-

tures were the opposite (Figure 4D). This transition was also

demonstrated by showing the expression of progenitor and ter-

minal exhausted markers within different cell clusters along the

trajectory (Figure 4E). We then investigated the molecular func-

tions of these clusters by hallmark pathway enrichment anal-

ysis. Compared with CD8-C1-PDCD1 and CD8-C7-FGFBP2,

immune-related pathways were enriched in CD8-C5-IL7R,

such as IFN-g, complement pathways. We discovered that

CD8-C1-PDCD1 was dominated by p53 and epithelial-mesen-

chymal transition (EMT) pathways and that CD8-C7-FGFBP2

was dominated by TGF-b or estrogen response late pathways

(Figure 4F).

To validate the above observation, we examined an indepen-

dent cohort of patients (GEO: GSE91061) undergoing therapy

with the anti-PD-1 antibody nivolumab for whom pre- and

post-therapy bulk transcriptomes were obtained (STAR

Methods). In these biopsies, we observed significantly increased

levels of the top 30 marker genes in the post-treatment samples

(Seurat FindAllMarkers function) of the single-cell dataset CD8-

C5-IL7R (Figure 4G).

Similar analyses were conducted for the changed cells be-

tween pre-treatment and post-treatment NRs (Figure S4). Sur-

prisingly, we observed that the antitumoral characteristics of

naive/effector/terminal exhausted CD8+ T cells were also acti-

vated. The major difference between Rs and NRs lies in that

the upregulation trend of progenitor exhausted markers was

relatively less obvious in NRs.

In summary, similar CD8+ T cell activation procedures were re-

vealed in both Rs and NRs, but the activation seemed less effec-

tive in NRs. Taking the prediction model into consideration, it is

reasonable to deduce that the activation path from naive/

effector to progenitor exhausted CD8+ T cells may be more

effective than the other path. As a result, patients withmore naive

and effector CD8+ T cells at baseline were more prone to

respond. This speculation is also consistent with a previous

study,40 which suggests that responsiveness to immune check-

point inhibitors is less dependent on the reinvigoration of ex-

hausted T cells using scTCR-seq.

Baseline macrophage subtype compositions affect
melanoma ICB outcomes
In addition to adaptive immune cells, the influence of innate im-

mune cells, e.g., macrophages, on ICB outcomes was also eval-

uated. There were 405 macrophage cells collected from pre-
Figure 4. The ICB treatment responsemechanism explained in the scCU

and post-treatment Rs

(A) Heterogeneity of the dynamical CD8+ T cells shown in the t-SNE scatterplot. Ce

treatment.

(B) Heatmap shows the expression of canonical T cell functional markers across

(C) Pseudotime trajectory reconstruction and its association with cell clusters an

(D) Heatmap in t-SNE space showing the signature scores for terminally exhaust

(E) Terminally exhausted and progenitor exhausted CD8+ T cell signatures acros

Wallis test between groups for each signature as follows: *p < 0.05, **p < 0.01, *

(F) Enriched GSEA hallmarks of two representative CD8+ T clusters of pre- and p

(G) Signature scores for the top 30 markers of CD8-C5-IL7R in bulk RNA-seq sa

(H) Survival analysis using the top 30 markers of CD8-C5-IL7R on TCGA melano
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treatment patients, 98 cells from post-treatment Rs, and 905

cells from post-treatment NRs.

Using K = 2 for pre-treatment and K = 2 for post-treatment

(both Rs and NRs) (Figure 5A), a total of 351 unchanged pre-

treatment macrophage cells were obtained, including 85 R-like

and 266 NR-like cells (Figure 5B). For cell-subtype annotation

purposes, the cells were categorized into 5main clusters, among

which Macro-C2-IL27RA was dominated by R-like cells and

Macro-C1-CCL17, Macro-C3-CXCL10, Macro-C4-CCL23, and

Macro-C5-IL2RA were associated with NR-like cells

(Figures 5B and 5D). The expression pattern of canonical

markers of M1 and M2 macrophages38 indicated that the

R-like cluster Macro-C2-IL27RA might be unpolarized macro-

phage cells and NR-like clusters Macro-C4-CCL23 and Macro-

C5-IL2RA might be M2 macrophages (Figure 5C).

With the same results as for CD8+ T cells, the ratio of R-like/

NR-like of each patient could be a potential predictor for ICB

outcomes (Figure 5E). The therapeutic outcome prediction capa-

bilities of the different unchanged macrophage clusters (top 10

markers by Seurat FindAllMarkers function) were evaluated

on three independent bulk datasets (GEO: GSE78220 and

GSE91061 and PREJEB23709) in terms of prediction AUC (Fig-

ure 5F). scCURE_C1 had high prediction capability in three data-

sets, and scCURE_C3 and scCURE_C4 possessed potential

predictive in some datasets. We also evaluated prediction capa-

bilities of each cluster by cancerclass41 and lasso regression

(Figure S5; STARMethods). In summary, all five clusters showed

prediction potentials (AUC > 0.6) on various independent bulk

datasets using various machine learning methods, which ex-

plains why the ratio between R-like/NR-like cells can be used

as a predictor. GSEAs were then performed on the three clusters

with higher predictive capability, C1-CCL17, C3-CXCL10, and

C4-CCL23. It can be seen that C1-CCL17 was dominated by

allograft rejection, IFN-a, and fatty acid metabolism pathways,

while inflammatory response, EMT, and interleukin-2 (IL-2)

STAT5 signaling pathways were activated in C3-CXCL10 and

coagulation and MTORC1 signaling pathways were activated

in C4-CCL23 (Figure 5G).

Macrophage polarization/depolarization is associated
with ICB response/non-response
Similar to CD8+ T cells, the changed macrophage cells were

characterized to interpret the mechanisms of Rs/NRs.

To probe the cell kinetics in Rs, 279 cells from pre-treatment

and 42 cells from post-treatment Rs were identified as changed.

All 321 cells were categorized into 3 clusters, among which

Macro-C4-CXCR4 was dominated by post-samples and the
RE identified changed CD8+ T cells between pre-treatment samples

ll cluster frequency shown as a fraction of total cells in pre-treatment and post-

cell clusters.

d sample labels.

ed and progenitor exhausted CD8+ T cells.

s CD8+ T cell subtypes. Asterisks indicate statistical significance by Kruskal-

**p < 0.001, ****p < 0.0001.

ost-treatment samples (Benjamini-Hochberg [BH]-adjusted p < 0.05).

mples from the GEO: GSE91061 melanoma cohort.

ma data.



Figure 5. scCURE identified predictive R-like and NR-like macrophage cells from pre-treatment patients with melanoma

(A) The AUC and p values of prediction models obtained based on different choices of scCURE parameters.

(B) t-SNE plot of the scCURE-processed macrophage cells colored by cell type, cell group, and ICB response.

(C) Heatmap of M1 and M2 macrophage cell markers.

(D) The association between clusters and response patterns by hypergeometric test.

(E) The ratio of R-like and NR-like can well discriminate Rs and NRs.

(F) Circos plot depicting the performance of signatures of each cluster in three bulk melanoma cohorts. The vertical axis indicates AUC values.

(G) Enriched GSEA hallmarks of three predictive macrophage clusters (Benjamini-Hochberg [BH]-adjusted p < 0.05).

Article
ll

OPEN ACCESS
other two clusters by pre-samples (Figures 6A and 6C). Canon-

ical M1 and M2 macrophage markers indicated that Macro-C4-

CXCR4 may be unpolarized macrophage cells (Figure 6B). Tra-

jectory analysis implied that ICB therapy may reprogram M2

macrophage cells to M0 phenotype (from Macro-C2-CCL18 to

Macro-C4-CXCR4) (Figure 6D). GSEA of the C4-CXCR4markers
illustrated that proinflammatory functions, e.g., the IFN-a/g

response, were activated in Rs after treatment (Figure 6E). Sur-

vival analysis of TCGA data revealed that ICB may improve the

overall survival of patients with melanoma (Figure 6F).

To further investigate how immune cells coordinate in

response to ICB treatment, the NicheNet R package42 was
Cell Reports Methods 3, 100643, November 20, 2023 9



Figure 6. Analyses of the changed macrophage cells in Rs show that antitumoral functions are activated by depolarization of M2 macro-

phages, which coordinates with the activation of CD8+ T cells

(A) Heterogeneity of the dynamical macrophage cells shown in the t-SNE scatterplot. Cell cluster frequency shown as a fraction of total cells in pre-treatment and

post-treatment.

(legend continued on next page)
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adopted. It was noticed that the ligands TNF and IFN-g from

CD8+ T cells were outstandingly highly correlated with a few

target markers on macrophage cells, including the M2 markers

CXCR4 and CCL2 (Figure 6G). Considering that TNF and IFN-g

were relatively high in pre-treatment CD8+ T cells and tended

to decrease after ICB treatment (Figure 4B), we hypothesized

that in Rs, the activation of CD8+ T cells may coordinate with

the depolarization of M2 macrophage cells; as a result, antitu-

moral inflammatory functions are activated.

In contrast, we found a reverse macrophage transition pattern

in NRs. In NRs, the antitumoral unpolarized macrophage cells

were polarized toward the M2 macrophage subtype, and the

antitumoral functionality was lost. We did not observe coordina-

tion between macrophages and CD8+ T cells in NRs (Figure S6).

The ICB response characteristics shared between
melanoma and breast cancer
To further validate scCURE, the data from a triple-negative

breast cancer (TNBC) chemoimmunotherapy study were adop-

ted.7 In this study, the CD8+ T cells collected from chemoimmu-

notherapy-treated tissue samples were reanalyzed, i.e., scCURE

was used to compare 11,599 pre-treatment CD8+ T cells with

3,906 cells from post-treatment Rs and 3,468 cells from post-

treatment NRs. According to the maximization of AUC criteria,

K = 3 was set for pre-treatment and K = 4 for post-treatment (Fig-

ure 7A). As a result, 2,014 and 6,418 pre-treatment cells were

identified as R-like and NR-like, respectively. The identified un-

changed cells were categorized into 6 main clusters, among

which CD8-C1-SELL, CD8-C2-PDCD1, CD8-C5-GNLY, and

CD8-C6-HAVCR2 were dominated by R-like cells and CD8-

C3-CX3CR1 and CD8-C4-IFN-g were dominated by NR-like

cells (Figures 7B and 7C). Among all clusters, CD8-C1-SELL

had obvious naive (high SELL andCCR7) and progenitor exhaus-

tion (high GZMK and moderate high TIGIT and PDCD1) charac-

teristics. The R-associated CD8-C1-SELL, CD8-C2-PDCD1,

and CD8-C6-HAVCR2 clusters specifically highly expressed

CXCL13, which was consistent with the findings reported in

the original study (Figure 7D). Rs and NRs can be well separated

based on the ratio of R-like to NR-like cells (Figure 7E). We then

evaluated predictive performance of each cluster in the I-SPY2

trial cohort. By using top 10 markers, the AUC of each cluster re-

vealed that scCURE_C1, scCURE_C2, and scCURE_C3 had

higher predictive potential (Figure 7F). The result demonstrated

again that CD8-C2-PDCD1 had stronger correlation with ICB

response. We also performed GSEA to investigate their molecu-

lar functions (Figure 7G). In R-like cells, CD8-C1-SELLwas domi-

nated by protein folding and response to oxidative stress and

CD8-C2-PDCD1 was dominated by cell adhesion, and regula-

tion of cell differentiation and cell activation were enriched in

CD8-C3-CX3CR1 of NR-like cells.
(B) Heatmap showing the signature scores for M1 and M2 macrophages.

(C) Enrichment of different cell clusters in pre- and post-samples.

(D) Pseudotime trajectory reconstruction and its association with cell clusters an

(E) Enriched GSEA hallmarks of two representative macrophage clusters of pre-

(F) Survival analysis using the top 30 markers of Macro-C2-CCL18 and Macro-C

(G) Nichnet cell-cell communication betweenmacrophages and CD8+ T cells in NR

macrophage depolarization and proinflammatory function activation.
DISCUSSION

scRNA-seq has made it possible to systematically profile cell

types and cell molecular functions in patients with tumor

receiving immunotherapy. Although scRNA-seq may provide a

detailed modality of data, high noise levels and limited a priori

knowledge hamper the discovery of immunotherapy-associated

mechanisms from scRNA-seq data. Here, we presented a novel

algorithm, scCURE, which leveraged pattern recognition

modeling to discriminate changed and unchanged cells during

the course of immunotherapy. By elucidating the usage of

changed and unchanged cells in immunotherapy investigation,

we shed light on the application of single-cell techniques in pre-

cision immunotherapy.

The whole work was conducted based on the assumption that

undiscovered immunotherapy-associated cell-cell heterogene-

ities exist and that such heterogeneities are themain cause of in-

consistencies between previous prediction model construction

and mechanism exploring studies. In conventional studies,

some investigators focused on linking specific cell characteris-

tics, e.g., stemness,14 with immunotherapy outcomes. This

kind of study can be categorized as supervised. However, in

most studies, cell heterogeneities are usually revealed by unsu-

pervised methods, e.g., clustering,35 pseudotime trajectory

analysis,37,43 and cell-cell interaction.42,44 Then, the heterogene-

ities associated with immunotherapy outcome were identified,

which can be referred to as unsupervised. The supervised

methods are limited by the availability of a priori knowledge

and therefore cannot exhaust all informative characteristics con-

tained in data. In contrast, unsupervised methods do not rely on

a priori knowledge, but the analyses are easily distracted by irrel-

evant factors. Different from the aforementioned conventional

methods, scCURE can specifically extract the cell heterogene-

ities related to immunotherapy intervention; at the same time,

no additional a priori information is required. Given the robust-

ness of scCURE against batch effects, the patients contained

in the pre- and post-treatment datasets are not necessarily

matched. Therefore, by leveraging existing post-treatment

data, scCURE can calculate R-like/NR-like ratios of treatment-

naive patients.

In this article, we have demonstrated two strategies in which

scCURE can help to construct immunotherapy prediction

models, i.e., signature identification for bulk RNA-seq data-

based prediction and a new prediction score for scRNA-seq

data. Although the former can achieve promising prediction re-

sults inmany practical circumstances, the characteristics of spe-

cific cell subtypes cannot be extracted, which may compromise

the prediction performance. The latter can make full use of cell-

subtype information, but the high costs of single-cell techniques

may hamper their clinical applications. Since unchanged cells
d sample labels.

and post-treatment samples (Benjamini-Hochberg [BH]-adjusted p < 0.05).

3-CXCR4.

s reveals that the decrease in TNF and IFN-g on CD8+ T cells is correlated with
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Figure 7. scCURE identified predictive R-like and NR-like CD8+ T cells from pre-treatment patients with TNBC

(A) The AUC and p values of prediction models obtained using different choices of scCURE parameters.

(B) t-SNE plot of the scCURE-processed CD8+ T cells colored by cell type, cell group, and ICB response.

(C) Chord diagram showing the enrichment result between cell type and cell group by hypergeometric distribution.

(D) Heatmap of canonical CD8+ T cell functional markers.

(E) Histogram showing the well distribution of R-like/NR-like ratios between Rs and NRs.

(F) The multiple ROC plot depicting the predictive performance of the average expression of top 10 markers of each cluster in I-SPY2 cohort.

(G) Hallmark pathways enriched in the predictive macrophage clusters. Hypergeometric test. BH-adjusted p < 0.05.
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can profile cell-subtype characteristics of Rs and NRs, deconvo-

lution methods, e.g., CIBERSORT,45 Batman,46 and EPIC,47

might be applied to combine the merits of the above two strate-

gies. Specifically, scCURE can be applied to extract cell-sub-

type characteristics from scRNA-seq data, and such character-

istics can then be profiled from bulk RNA-seq data by

deconvolution methods and used to guide cancer treatment. In

the future, wewill systematically explore the potential of scCURE

in more clinical applications.

We noticed that the choice of cell clusters K was usually rela-

tively small, and such small numbers may not be enough to ac-

count for the complexity of scRNA-seq data. However, as we are

only interested in the cell heterogeneities related to treatment in-

terventions, some cell subtypes/functional categories may be

merged without affecting the final results.

Although scCURE has been demonstrated to have potential in

immunotherapy investigation, it mathematically does not contain

any specifications for immunotherapy. Therefore, we envisage

that it can be applied in other circumstances, in which immune

profile changes may be associated, e.g., chemotherapy.48,49

Different from other methods that investigate cell abundance

changes between experimental conditions, e.g., Milo,50 scCURE

is designed to detect cell functional alterations between condi-

tions, i.e., whether a and b change between pre- and post-treat-

ment conditions in Equation 5. Although scCURE is not designed

to directly investigate cell abundance changes, we found that the

abundance of cells with specific functional characteristics is

associated with phenotypes, i.e., response and non-response.

We envisage that the combination of scCURE and existing

methods can provide a profile of the problem of interest with

more biologically and clinically meaningful details.

Limitations of the study
Upon application of scCURE on melanoma and breast cancer

immunotherapy scRNA-seq data, preliminary results reveal

that the baseline profiles of scCURE-identified CD8+ T and

macrophage cells can determine the way in which tumor micro-

environment immune cells respond to immunotherapy, e.g., anti-

tumor immunity activation or de-activation. Despite three bulk

RNA-seq datasets being leveraged to validate the dynamic mo-

lecular change after treatment, there remains a pressing need for

larger immunotherapy cohorts and an expanded array of immu-

notherapy datasets to further elucidate the potential treatment

mechanism. Furthermore, the application of scCURE across

different tumor types is essential for the construction of a

comprehensive predictive model for immunotherapy at the

pan-cancer level.
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METHOD DETAILS

Proof of concept
Let’s denote X and Y were scRNA-seq expression data matrices with genes as rows and cell as columns, from pretreatment group

and post-treatment group, respectively. It is reasonable to assume that both X and Y are composed of common basic cell subtypes

or biological functions, each of which can be characterized as variable expression patterns of specific genes. Therefore, define a

matrix B = ½b1;b2;.bK �, each column vector b represents a gene expression pattern of cell subtype of cell function. Each single

cell data can be represented as a combination of those fundamental functions with various weights. Furthermore, we introduce

an additional variable v to describe the mismatch between two datasets caused by non-biological factors, e.g., random technique

noise or batch effect. Although v may occasionally be correlated with B, on a large scale, the noise and signal components can be

considered independent. In summary, the data X and Y can be described as:

X = Ba (Equation 1)
Y = Bb + v (Equation 2)

where a and b are weights representing the cell subtype and/or cell function shifting between the pre- and post-treatment conditions,

i.e., therapy-induced biological changes. Our aim is to find a group of cells Y, modeled by Gaussian distribution pðYÞ, which is most

similar to the given X, modeled by pðXÞ, given fixed B. KL divergence can be used to measure the distances between the two

Gaussian distributions,

KLðXkYÞ =

Z
pðXÞlogpðXÞ

pðYÞ dX =

Z
pðXÞlogðpðXÞÞdX �

Z
pðXÞlogðpðYÞÞdX
=

Z
pðXÞlogðpðXÞÞdX �

Z
pðXÞlogðpðYÞÞdX (Equation 3)

Unfortunately, the evaluation of
R
pðXÞlogðpðYÞÞdX requires integrating over all possible values of X, which is generally intractable.

To simplify the calculation, we assume that the function inside the integral (i.e., pðYÞ = pðY � BbÞpðBbÞ) has a maximum, then the

integral may be approximated by evaluating the function at its maximum. Therefore, our goal becomes:

KLz

Z
pðXÞlogðpðXÞÞdX �

Z
pðXÞlogðpðvÞÞdX �

Z
pðXÞlogðpðBbÞÞdX (Equation 4)

Because v is random and supposed to have the same distribution across cells, the term
R
pðXÞlogðpðvÞÞdX can be considered a

constant. AsX and a are linearly related, the probability density functions of them have pðXÞ = ��detðB� 1Þ��pðaÞ for any fixedB (https://

stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/

03%3A_Distributions/3.07%3A_Transformations_of_Random_Variables). Therefore, the minimization of Equation 4 can be trans-

formed as:

MinðKLðXkYÞÞ5min

���det�B� 1
���Z pðaÞlogpðaÞ

pðbÞ da
�
5minðKLðakbÞÞ (Equation 5)

where det is the determinant of the matrix. Equation 5 indicates that the KL divergence between the two groups of cells, X and Y, can

be minimized to zero (as the KL divergence is nonnegative) if and only if there are no biological differences between X and Y.

The above derivation clearly indicates that if cells are characterized by multiple Gaussian distributions, unchanged cells from pre-

and post-treatment groups can be identified by finding the mutually nearest Gaussian models in terms of KL divergence.

GMM construction
The Gaussian mixture modeling (GMM) method is applied to profile intra-heterogeneities of cells from each group due to its strong

capability in dealing with complicated data structures.59 The GMMcontains a series of Gaussian models, each of which represents a

cluster of cells. The data frompre- and post-treatment groups are first pooled together and PCAwas conducted for dimension reduc-

tion purposes. The top 5 PCs with the highest eigenvalues were used. After that GMMmodels were constructed from the cells from

pre- and post-treatment samples separately. First, the K-means clustering method was applied to categorize all cells into K clusters

as an initial clustering result (https://smorbieu.gitlab.io/gaussian-mixture-models-k-means-on-steroids/). The mean mk and variance

s2k of each cluster were calculated as the initial parameters of the GMM. The initial weight of each Gaussian model was the relative

size of each cluster to the whole dataset, denoted by pk .

The expectationmaximization method iteratively updates the GMMparameters pk , mk and sk until maximum likelihood is obtained.
Cell Reports Methods 3, 100643, November 20, 2023 e2

https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/03%3A_Distributions/3.07%3A_Transformations_of_Random_Variables
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/03%3A_Distributions/3.07%3A_Transformations_of_Random_Variables
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/03%3A_Distributions/3.07%3A_Transformations_of_Random_Variables
https://smorbieu.gitlab.io/gaussian-mixture-models-k-means-on-steroids/


Article
ll

OPEN ACCESS
rnk =
pkN ðxnjmk ;skÞPK
k = 1pkN ðxnjmk ;skÞ

(Equation 6)
pk =

PN
n = 1rnkPK

k = 1

PN
n = 1rnk

(Equation 7)
mk =

PN
n = 1rnkxnPN
n = 1rnk

(Equation 8)
s2
k =

PN
n = 1rnkðxn � mkÞðxn � mkÞTPN

n = 1rnk
(Equation 9)

where n indicates cells, k specifies index of Gaussian model, andN denotes the Gaussian distribution model. After the GMM is con-

structed, each cell is assigned to a Gaussian model based on the maximum likelihood criterion,

class k argmax k
*

N ðxjmk ;skÞ (Equation 10)

The KL divergence between two Gaussian models N iðxjmi;siÞ and N jðx
��mj;sjÞ can be calculated as:

KLðN ijjN jÞ =
1

2

�
log

��sj

��
jsij � m +

�
mi � mj

�
sj

� 1
�
mi � mj

�T
+ tr

�
sj

� 1si

��
(Equation 11)

where tr() is the matrix trace, �1 is the matrix inverse and T is the matrix transpose. We define N i � N j as paired if

i = argmin
i0˛K

ðKLðN i0 jjN jÞÞ and j = argmin
j0˛K

ðKLðN j0 jjN iÞÞ. After paired Gaussian models are identified and cells have been assigned

to specific Gaussian models, unchanged and changed cells from pretreatment samples can be discriminated by

x =

	
unchangd
changed

; ifx˛N pre � N post

others
(Equation 12)
Therapy outcome prediction score definition
The pretreatment cells that are identified as unchanged when compared with post-treatment responders are denoted as R-like cells.

NR-like cells were identified in a similar way. We assume that the unchanged cells from pretreatment samples contain predictive in-

formation for immunotherapy outcomes. Based on such an assumption, a therapy outcome prediction model can be constructed on

a self-defined prediction score, i.e., the ratio of R-like and NR-like cells. Based on a hard threshold of the ratio, patients can be

discriminated into responders and non-responders.

Using the score as prediction factor, the number of Gaussian models for pre- and post-treatment samples can be optimized by

maximizing the area under the curve (AUC) of the receiver operating characteristic curve (ROC). To avoid overfitting, leave-one-

out cross validation is applied. Specifically, the cross validation is performed in the following steps: 1) in each iteration, assign a pa-

tient from pre-treatment dataset as test one, and remove all cells belonging to the test patient from post-treatment data if there are

any. As scCURE is theoretically insensitive to batch effects, the patients contained in the pre- and post-treatment datasets are not

necessarily matched. 2) we use scCURE to compare pre- (including the test patient) and post-treatment (excluding the test patient)

datasets, and assign each cell from the pre-treatment dataset as either R-like or NR-like. By doing so, we can count the numbers of

R-like and NR-like cells from the test patient. As the whole procedure calculates the ratio of R-like/NR-like without requiring post-

treatment data of the patient, it mimics a real clinical application scenario. (3) repeat the two steps for each patient contained in

the pre-treatment dataset, and we can calculate the R-like/NR-like ratio for each patient. Each obtained AUC is evaluated on a

null hypothesis model obtained by randomly shuffling the response patterns of all individuals 100 times, and a p value is obtained.

In application scenarios, the R-like/NR-like ratio cutoff values may vary across tumor and immune cell types. The authors suggest

that for a specific tumor type and immune cell type, leave-one-out cross validation (as described in the last paragraph) should be

performed using training data to determine the most appropriate cutoff value.

Simulated datasets
The protocol presented in Haghverdi et al.34 is adopted to generate simulated datasets to benchmark the proposed algorithm against

existing methods. The simulated datasets contain two groups that mimic case-control studies, and the datasets contain batch

effects and random and biological factors. In the simulated dataset, each group contains 1000 cells characterized by 100 genes.
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Random noise is equally distributed across all 2000 cells, and batch effect factors are evenly distributed within groups. Both random

noise and batch effect factors are simulated using the default parameters of the original protocol. The heterogeneity with the case

groups was generated by manipulating the fold changes (FCs = 1.1, 1.2, 1.3, 1.4, 1.5, 2) of randomly selected case group cells and

differentially expressed (DE) genes. In the case group, 2 to 4 subclusters were generated to represent cell heterogeneity, and the

proportions of subclusters were equal. Among the subclusters in the case group, there was always one subcluster without manip-

ulated gene fold changes, which mimics the unchanged cells in the case group compared to the control group. Each subcluster con-

tained 25 DE genes, and each simulated dataset was generated 50 times.

Evaluation metrics
The ability of the scCURE to reliably differentiate cells with unchanged/dynamic characteristics is compared with that of the MNN

method in terms of three metrics, i.e., sensitivity, specificity, positive prediction value (PPV), F1-score and AUC of ROC. These

are calculated using the equations shown below:

sensitivity =
TP

P
(Equation 13)
specificity = 1 � FP

N � P
(Equation 14)
PPV =
TP

TP+FP
(Equation 15)
F1 score =
2P3R

P+R
(Equation 16)
TPR =
TP

TP+FN
(Equation 17)
FPR =
FP

FP+TN
(Equation 18)
AUC = ½FPR; TPR� (Equation 19)

True positives (TPs) were defined as the cells correctly identified as changed between groups and false positives (FPs) indicate

spectral variables incorrectly identified as changed cells. True negatives (TNs) indicate cells were correctly identified as unchanged

between groups and false negatives (FNs) were defined as the spectral variables incorrectly identified as unchanged cells. P is the

total number of changed cells, and N is the total number of cells within the dataset. R is the cells correctly identified as changed be-

tween groups in the true changed cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reprocessing published datasets
The key resources table elucidates the diverse datasets employed throughout thismanuscript. In this study, two scRNA-seq datasets

(GSE120575 and GSE169246) were reprocessed for developing scCURE.We applied Seurat36 (4.9.9) to generate SeuratObject con-

taining UMI counts, normalized gene expression, reduction information, cluster identities and cell type annotations. Subsequently,

CD8+ T and macrophage cells were divided into changed and unchanged cells by scCURE. Then, changed and unchanged cells of

each cell type were reanalyzed by Seurat, respectively.

Comparison of scCURE with alternative uncovering cellular heterogeneity approaches
To better estimate the performance of scCURE, we compare it with CCA andMNN through real data. As the number of neighbors set

up in the MNN and CCAmay affect the final results, various parameters were tested, i.e., 5, 10, 20, and 50. At the same time, various

numbers of Gaussianmodels K in scCUREwere also evaluated. Then, the ratios of R-like/NR-like cells were calculated and observed

their distribution in barplot.
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Single cell pseudotime analysis
To analyze the trajectory of changed CD8+ T and macrophage cells based on scRNA-seq expression data, we utilized Moncle237 to

determine the potential lineage differentiation. The 2000 highly variable genes (HVGs) were selected to reconstruct ‘‘trajectory skel-

eton graph’’, indicating the differentiation trajectories. In CD8+ T cells, based on previous knowledge, we selected two pre-treatment

start nodes terminal exhausted cluster (CD8-C1-PDCD1) and naive/effector clusters (CD8-C7-FGFBP2 and CD8�CD3-CCR7) to one

post-treatment end node CD8-C5-IL7R. Simailarly, M2 macrophage cells to M0 phenotype (from C2-CCL18 to C4-CXCR4) were

selected. All functions were performed with default parameters to characterize the data.

Calculation of signature score
Single cell signature scoring was performed using the VISION v3.0.1 R package.60We used progenitor exhausted CD8 and terminally

exhausted CD8 signature5 to calculate progenitor exhausted signature score and terminally exhausted signature score, which

improve the accuracy of progenitor/terminal exhausted cell identification.

Functional enrichment analysis
The FindAllMarker function in the Seurat package was used to obtain the differentially expressed genes in clusters utilizing the Wil-

coxon rank-sum test. A Bonferroni false discovery rate (FDR) correction less than 0.05 was used as a cutoff for identifying statistically

significant DEGs. Then, we used GSEA to perform GO biological process and hallmark enrichment analysis on the differentially ex-

pressed genes within each subset that was associated with before or after treatment. Gene sets with a significance level of FDR of

<0.05 were considered significant.

Survival analysis
A standard Kaplan-Meier survival analysis was used to analyze the top 30 markers of CD8-C5-IL7R, Macro-C2-CCL18 and Macro-

C4-CXCR4 clusters with overall survival in TCGA datasets. The website is here: http://gepia2.cancer-pku.cn/#survival.

CD8+ T cell – Macrophage cell interaction analysis
NicheNet analysis was performed on cells from changed CD8+ T and macrophage cells according to the code deposited in GitHub

(https://github.com/saeyslab/nichenetr). We used post-treatment group as reference datasets. The list of prioritized ligands for each

‘‘sender’’ cell type was identified on the basis of the top DEGs that were found in the ‘‘receiver’’ cell type.
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