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SUMMARY
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-
related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a
complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless,
the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we
elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures
associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 spec-
imens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of
poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status,
tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibro-
blast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under
the receiver operating characteristic curve (AUCs) of 0.872–0.903, differentiating survivorship by 655 days.
Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer
outcomes.
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains the only ma-

jor cancer with a rising death rate in the United States and is pro-

jected to be the second leading causeof cancer-related deaths in

the next decade.1 Recurrence of PDAC commonly occurs within

2 years after curative intent pancreatectomy and either preoper-

ative and/or postoperative chemotherapy.2 Accordingly, the

overall 5-year survival rate remains roughly 8%–10%.3 A deeper

understanding of the factors driving PDAC progression, recur-

rence, andmetastatic spread is necessary todevelopmoreeffec-

tive therapeutic strategies and prognostic tools.

PDAC and other solid tumors are defined by desmoplasia, an

extensive fibrotic reaction that results from malignant cell cross-

talk with stromal tissue.4,5 Interestingly, univariatemorphological

properties of the desmoplastic milieu, such as collagen density

and fiber orientation, have been correlated with differential

patient outcomes, though there is minimal consensus across

findings.6–9 Critically, these approaches do not capture the full
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geometric complexity of matrix patterning observed in PDAC

desmoplasia. Thus, the impact of complex desmoplastic archi-

tecture on PDAC patient outcomes remains unclear.

PDAC is further characterized by a heterogeneous tumor

microenvironment (TME) with spatially defined tumor, stromal,

and immune populations that drive overall disease progression

and patient outcomes.4,10,11 Prior studies have focused on iden-

tification of a limited array of cell phenotypes that influence

PDAC prognosis.12,13 For instance, immune subtypes, such as

activated B lymphocytes and human leukocyte antigen, DR iso-

type (HLA-DR)+ macrophages, may influence PDAC outcomes

via effects on immune regulation.8,14 Recent literature has also

implicated cancer-associated fibroblasts (CAFs), classified into

mechanoresponsive and inflammatory subtypes, in the deposi-

tion of fibrotic desmoplasia, pro-inflammatory signaling, and

elaboration of tumor-modulating factors.6,15–17 However, these

analyses have not fully evaluated the prognostic value of spatial

cell organization, which includes a myriad of cell-cell interac-

tions, spatially defined cell communities, and local extracellular
s Medicine 4, 101248, November 21, 2023 ª 2023 The Author(s). 1
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matrix (ECM) architectures. Emerging literature suggests that

spatially defined cell neighborhoods may shape and predict dis-

ease progression in other diseases such as colorectal and renal

cancer,18–20 but this concept has not been thoroughly explored

in PDAC. Thus, we hypothesized that cell- and matrix-based

spatial organization may predict differential PDAC patient

outcomes.

Here, we leveraged two complementary analyses to systemat-

ically profile the spatial heterogeneity of PDAC: (1) matrix anal-

ysis using an ultrastructural quantification algorithm and (2) cell

spatial analysis using co-detection by indexing (CODEX). By

integrating these analyses with clinical metadata using machine

learning (ML), we uncovered holistic signatures that strongly

differentiate patients’ overall survival (OS). Critically, we vali-

dated our prognostic signatures in an independent, blinded

patient cohort. Our findings represent a desmoplastic-stromal

signature that predicts patient outcomes in PDAC and suggests

promising therapeutic targets.

RESULTS

High-dimensional matrix architecture stratifies patient
survival and disease recurrence
First, we analyzed the architecture of PDAC desmoplasia

using an ultrastructural quantification algorithm developed in

our laboratory for fibrotic tissue analysis.21 A total of 578 pan-

creaticoduodenectomy pathology specimens were collected

across three separate cohorts—Stanford University, the Univer-

sity of Virginia (UVA), and commercial tissue microarrays

(TMAs)—yielding 13,048 trichrome image tiles (Figure 1A;

Table S1). Of these specimens, 437 PDAC specimens were

included in downstream analysis, 129 were excluded because

they did not have a diagnosis of PDAC, and 12 were excluded

due to operative mortality without follow-up data, loss to

follow-up, or metastasis at time of pancreaticoduodenectomy.

Matrix ultrastructure in each Trichrome image was quantified

using an automated analysis pipeline of 147 fiber features, which

collectively capture architectural variation on local (individual

fiber length, width, persistence, etc.) and global scales (align-

ment, packing, porosity, etc.) (Figure 1B).21 This high-dimen-

sional feature matrix was reduced by uniform manifold approxi-

mation and projection (UMAP) to visualize differences in

overall matrix architecture between images. We envisioned

that ultrastructural states of the desmoplasia could be mathe-

matically ordered based on stepwise deviations in the fiber

feature matrix, similar to the relative ordering of transcriptional

states based on quantitative shifts in a gene expression matrix.22

Thus, the DDRTree algorithm was utilized to learn a minimum-

spanning-tree-based trajectory that connects datapoints based

on similarity in ultrastructural parameters (Figure 1C), assigning

pseudotime scores based on relative deviation from a root

point near baseline histological architecture (healthy pancreas;

Figure 1D).23,24

Pseudotime analysis revealed three general desmoplastic

ECM patterns. The first, represented by images in the lower

pseudotime (Figure 1C, left) region of the manifold (most similar

to healthy pancreatic architecture), was characterized by intact

glandular structures nestedwithin regions of thinnermatrix fibers
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(Figure 1C, bottom left). Increasing pseudotime involved gradual

loss of glandular architecture and spindle-like fibrosis (Figure 1C,

top left) until a split in the trajectory on the right region of the

manifold into two branches: (1) a direct progression to high-

pseudotime, terminal ECM patterning on the upper right and

(2) progression through an intermediate state, followed by pro-

gression to terminal ECM patterning. The intermediate ECM

pattern, represented by images in the bottom right quadrant

(Figure 1C, bottom right), included confluent globules of matrix

proteins and near-complete disruption of glandular architecture.

The terminal ECM pattern, represented by images in the upper

right quadrant (Figure 1C, top right), was characterized by thick,

aligned cables of matrix and further disordered glandular

architecture.

Initial visualization of clinical outcomes on the manifold

suggested that architectural differences were associated with

OS (death from time of pancreaticoduodenectomy; Figure 1E)

and disease-free survival (DFS; recurrence or death from time

of pancreaticoduodenectomy; Figure 1F). Thus, patient-specific

ultrastructural data for PDAC specimens was averaged and

integrated with clinical metadata (Figures 1G–1L), while

healthy pancreas and non-PDAC neoplasms initially utilized for

manifold training were censored and excluded from all down-

stream quantitative analyses. First, each patient’s average

ultrastructural state was quantified by calculating the centroid

(median) pseudotime of all patient-specific images. High median

pseudotime values demonstrated a strong statistical correlation

with decreased OS (Pearson coefficient [R] = �0.194, p = 0.006)

and trended toward significance in predicting lower DFS

(R = �0.093, p = 0.197) (Figures 1G and 1J). Furthermore, pa-

tient-level pseudotime demonstrated a stronger association

with outcome than stained matrix area (R = �0.128/�0.092,

p = 0.074/0.203 for OS and DFS, respectively), a parameter in

the algorithm representing quantity of fibrosis (Figures 1H and

1K). Interestingly, intra-patient heterogeneity in matrix architec-

ture, as quantified by sum of variances for all 147 ultrastructural

parameters, also trended toward statistical significance in pre-

dicting lower OS and DFS (R = �0.089/�0.102, p = 0.212/

0.153) (Figures 1I and 1L). Overall, these data suggested the

strongest prognostic role for high-dimensional matrix architec-

ture, particularly for predicting OS, rather than quantity of des-

moplasia or intra-patient heterogeneity.

We next integrated patient-level pseudotime with clinical meta-

data tounderstandassociationsbetweenmatrix architectural pro-

gression and patient and tumor characteristics (Figures S1A and

S1B). Interestingly, high pseudotime was correlated with more

advancedpatient age (R=0.151, p=0.002) but did not showasta-

tistically significant association with patient gender (Figure S1B).

Additionally, while pseudotimewas statistically independent of tu-

mor grade, it was correlated with more advanced American Joint

Committee on Cancer (AJCC) staging (Spearman coefficient [Rs]

= 0.183, p < 0.001). Further analysis indicated that this positive as-

sociation was primarily driven by the N stage (Rs = 0.281,

p < 0.001), representing involvement of regional lymph nodes, as

opposed to the T stage, which characterizes tumor size/extent

and exhibited a negative correlation (Rs = �0.105, p = 0.031).

Higher matrix pseudotime was accordingly associated with a

greater number of tumor-positive regional lymph nodes



Figure 1. Matrix ultrastructural analysis of PDAC desmoplasia

(A) CONSORT diagram of imaging and ultrastructural analysis for patients with PDAC.

(B) Ultrastructural quantification from histological images, including pseudotime modeling of ultrastructural states and integration with CODEX.

(C) Manifold of PDAC desmoplastic architecture with higher pseudotime representing increasingly disrupted, heterogeneous desmoplastic architecture. Boxed

images show representative tiles along the pseudotime trajectory. Scale bars represent 100 mm.

(D) Visualization of healthy pancreas samples, which localize near the root point of the pseudotime trajectory.

(E and F) Integration of overall survival (E) and disease-free survival (F) with clinical metadata.

(G–I) Correlation of overall survival with patient-level pseudotime (G), stained quantity of fibrosis (H), and ultrastructural variance (I). Pearson coefficients and

associated p values are shown.

(J–L) Correlation of disease-free survival with patient-level pseudotime (J), stained quantity of fibrosis (K), and ultrastructural variance (L). Pearson coefficients

and associated p values are shown.
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(R=0.295,p<0.001)butwasagnostic tomeasured tumorsize (R=

0.081,p=0.259).Pseudotimewasalsostatistically independentof

CA19-9 levels or neoadjuvant chemotherapy status. As a whole,

our analysis indicated that terminal ECM patterning was largely

correlated with older patients and tumors with greater lymph

node involvement. These findings suggested that complex stro-

mal phenomena, particularly immune-stromal interactions, could

be associatedwith differential matrix architecture and patient out-

comes in PDAC.
Spatially defined cell-cell interactions among stromal,
immune, and tumor cell populations predict differential
patient outcomes
To analyze contributions of stromal cell organization to PDAC

patient outcomes, we applied CODEX to spatially profile 78 pan-

creaticoduodenectomy specimens, consisting of >1,250,000

spatially indexed cells (Figure 2A; STAR Methods). Individual

cell populations were identified across patient specimens based

on protein expression (Figures 2A and S2A–S2D), including
Cell Reports Medicine 4, 101248, November 21, 2023 3



Figure 2. Spatial phenotyping and cell spatial analysis of PDAC tumors

(A) CODEX spatial phenotyping and identification of cell phenotypes (e.g., more and less activated tumor cells, fibroblast subpopulations, macrophages, B and T

lymphocytes, endothelial cells) by protein expression.

(B) Signatures of cell phenotypic representation for overall survival and disease-free survival.

(C) Representative patient specimens with spatially indexed cell phenotypes.

(D and E) Prognostic patient-level interactions for overall survival (D) and disease-free survival (E). Blue and red lines indicate outcome-positive and outcome-

negative correlations, respectively. Width of line represents magnitude of the Pearson coefficient.

(F) Differential interactions in patients who did and did not receive neoadjuvant chemotherapy before pancreaticoduodenectomy. Blue and red lines represent

interactions that are enriched andweakened, respectively, in patientswho received neoadjuvant chemotherapy.Width of line represents the average difference in

interaction score.

(G–I) Association of tumor grade (G), stage (H), and size (I) with cell interactions. Blue lines represent interactions that are associated with decreased (i.e.,

outcome-positive) clinical values, while red lines represent increased (i.e., outcome-negative) clinical values. Width of line represents magnitude of the Spearman

coefficient for grade and stage and Pearson coefficient for size.

4 Cell Reports Medicine 4, 101248, November 21, 2023
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inflammatory (interleukin-6 [IL-6]+) and mechanoresponsive

(alpha-smooth muscle actin [aSMA]+) CAF subpopulations,

differentially activated (programmed death-ligand 1 [PDL1]/

stromal cell-derived factor 1 [SDF1]/human leukocyte antigen

[HLA1]+) tumor cells, immune cell subpopulations (B and T

lymphocyte subtypes, macrophage subtypes), and vascula-

ture-associated cells (endothelial cells, pericytes) (Table S2;

Figures S3A–S3F). Interestingly, the annotated pericyte cluster

(aSMAhigh/matrix gla protein [MGP]+; see Table S2) clustered

directly adjacent to both endothelial cells and the "fibroblasts

3" cluster (CD26high/aSMAmed/IL-6low) and also expressed fibro-

blast-like markers (e.g., aSMA, collagen [COL] I). Thus, this pop-

ulation may contain an admixture of cell phenotypes such as

pericytes and perivascular fibroblasts. First, cell phenotypic rep-

resentation was correlated with OS and DFS at the patient level

(Figures 2B and 2C), demonstrating that a high abundance of

cytotoxic T lymphocytes (CD4low/CD8high) was the most

strongly positive correlate of OS and DFS (R = 0.234/0.246,

p = 0.028/0.021, respectively). In contrast, an abundance of

a highly activated/immunomodulatory tumor cells 4 subtype

(E-cadherinhigh/pan-cytokeratin [PANCK]med/PDL1high/SDF1high)

was the most negative correlate of both OS and DFS (R =

�0.223/�0.178, p = 0.036/0.096, respectively). To analyze the

contributions of spatially defined cell-cell relationships, we

computed 153 interaction scores (e.g., T lymphocyte-B lympho-

cyte, fibroblast-tumor subtype interactions) representing the fre-

quency of specific cell-cell spatial colocalizations and integrated

these scores with patient metadata (Figures 2D–2I). Our analysis

revealed that poorer survival was strongly driven by two OS-

negative interaction ‘‘nodes’’: highly activated/immunomodula-

tory tumor cells 4 (E-cadherinhigh/PANCKmed/PDL1high/SDF1high)

and mature/activated B lymphocytes 1 (CD20high/HLA-DRhigh/

IL-6high/Vimentinhigh), which both produced universally OS-

negative cell interactions (Figures 2D, 3A, 3B, and S4A). Accord-

ingly, the singular most survival-negative cell interaction was

between tumor cells 4 and B lymphocytes 1 (R = �0.305,

p = 0.004). Cytotoxic T lymphocytes and helper T lymphocytes,

on the other hand, represented OS-positive nodes that drove

predominantly survival-positive spatial interactions (Figures 2D,

3A, 3C, and S4A). The singular most survival-positive cell spatial

interaction was between cytotoxic T lymphocytes and pericytes

(R = 0.424, p < 0.001), implying T lymphocyte infiltration

into the TME. Additionally, we examined associations of cell-

cell spatial interactions with disease recurrence. Earlier disease

recurrence was associated with interactions by tumor cells 4,

B lymphocytes 1, and the relatively neutral fibroblasts 2

subtype (CD26med/aSMAlow/IL-6low) (Figures 2E, 3D, and S4B).

Conversely, DFS-positive drivers included cytotoxic T lympho-

cytes and pericytes, whose interaction was, similar to OS, the

most outcome-positive interaction (R = 0.474, p < 0.001)

(Figures 2E, 3D, and S4B).
Figure 3. Correlation between cell-cell spatial interactions and patient

(A) Pearson coefficients for overall survival (OS), ordered to highlight cell phenot

(B and C) Representative patient specimens highlighting survival-negative (B) an

cell phenotypic distribution (left) and areas of highest interaction score indicated in

CODEX staining shown, in addition to a magnified view (far right) of the area of in

(D) Pearson coefficients for disease-free survival (DFS).
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Prognostic cell-cell interactions are primarily short-
range associations
For the top outcome-positive and outcome-negative interac-

tions, we used linear regressionmodeling to analyze the relation-

ships between interaction distance and clinical correlation

strength at length scales from 50 to 500 mm (Figure 4A), in order

to infer mechanisms of paracrine vs. long-range interaction.25

Short-range cell-cell interactions were defined as weakening

correlation strength (i.e., absolute value of Pearson coefficient)

with increased distance, while long-range interactions were

conversely defined as increasing strength with distance (Fig-

ure 4B). First, we analyzed range-dependent behavior of the

most highly OS-positive interactions (Figure 4C). Pericyte inter-

actions with cytotoxic T lymphocytes, helper T lymphocytes

(CD4high/CD8low), and other pericytes were distinctly OS positive

(R = 0.424/0.341/0.267, p < 0.001/p = 0.001/p = 0.012, respec-

tively) and short range, suggesting that T lymphocyte infiltration

into a vascularized TME serves as a positive clinical factor.

Interestingly, interaction of cytotoxic T lymphocytes with inflam-

matory fibroblasts 5 (CD26low/aSMAmed/IL-6high) appeared to be

long range and survival positive (R = 0.295, p = 0.005), implying

potential interaction through secreted cytokines or intermediate

actors rather than direct interaction.

Next, we analyzed range dependence of the top OS-negative

interactions (Figure 4D). B lymphocyte 1 interactions with highly

activated/immunomodulatory tumor cells 4, relatively neutral

fibroblasts 2 subtype (CD26med/aSMAlow/IL-6low), and helper T

lymphocytes were short range and highly survival negative (R =

�0.305/�0.259/�0.256, p = 0.004/0.015/0.016, respectively),

indicating that mature B lymphocytes may correlate with poorer

outcomes through an array of direct/paracrine interactions,

particularly in a more activated TME. Accordingly, the activated

tumor cells 4 phenotype drove its own subset of short-range,

survival-negative (R = �0.232/�0.305, p = 0.030/0.004, respec-

tively) interactions with immune cells such as helper T lympho-

cytes and B lymphocytes 1, as well as a survival-negative (R =

�0.280, p = 0.008) but range-agnostic interaction with the me-

chanoresponsive fibroblasts 4 subtype (CD26high/aSMAhigh/

IL-6med).

Further, we analyzed the range dependence of the most

DFS-positive and DFS-negative interactions (Figures 4E and

4F). The top DFS-differentiating interactions largely mirrored

the top OS-differentiating interactions in both identity and

range-dependent behavior, with a few notable exceptions. For

instance, interaction of endothelial cells with the less activated

tumor cells 2 phenotype (E-cadherinmed/PANCKmed/PDL1med/

SDF1med) was recurrence positive (R = 0.275, p = 0.010) and

long range, indicating that co-occurrence of vasculature and

less activated tumor cells within a single tumor, but not neces-

sarily in close proximity, was correlated with longer duration

until disease recurrence. Additionally, interaction between the
outcomes

ypes driving OS-positive and OS-negative interactions.

d survival-positive (C) interactions. Spatial plots are shown for both the overall

red (right). Boxes indicate an area of interest for each cell interaction, with raw

terest.
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neutral fibroblasts 2 and mechanoresponsive fibroblasts 4 sub-

types was short range and recurrence negative (R = �0.215,

p = 0.044), indicating that close colocalization of these fibroblast

subtypes was associated with faster disease recurrence.

Beyond this, short-range interactions involving cytotoxic T lym-

phocytes, most notably with pericytes in an inferred context of

T lymphocyte infiltration, were positive factors for a longer DFS

duration as previously observed for OS (Figures 4C and 4E).

Similarly, a wealth of short-range, recurrence-negative interac-

tions were driven by B lymphocytes—particularly the mature B

lymphocyte 1 subtype—aswell as the activated tumor cell 4 sub-

type (Figure 4F). Thus, outcome-negative cell spatial organiza-

tion appeared to be largely driven by activated and immunomod-

ulatory cell subpopulations in close proximity.

Neoadjuvant chemotherapy and tumor characteristics
are associated with differences in cell spatial
organization
We analyzed differences in the spatial TME associated with neo-

adjuvant chemotherapy, as well as clinically relevant metrics

such as tumor grade, AJCC stage, and size. Patients who had

received neoadjuvant chemotherapy exhibited highly enriched

fibroblast-B lymphocyte interactions (e.g., fibroblasts 5-B lym-

phocytes 2, fibroblasts 5-B lymphocytes 1) compared with pa-

tients who did not receive neoadjuvant chemotherapy before

pancreaticoduodenectomy (Figures 2F and 5A). In particular,

the inflammatory fibroblast 5 subtype (CD26low/aSMAmed/IL-

6high) appeared to drive the spatial TME associated with neoad-

juvant chemotherapy, with this cell phenotype participating in 4

out of 5 (80%) of the top enriched interactions (Figure 5A). In

contrast, neoadjuvant chemotherapywas associatedwith weak-

ened interactions involving the relatively less activated tumor cell

1 (E-cadherinlow/PANCKmed/PDL1low/SDF1low) and tumor cell 2

(E-cadherinmed/PANCKmed/PDL1med/SDF1med) subtypes (e.g.,

tumor cells 1-endothelial cells, tumor cells 2-macrophages 1)

(Figure 5A). These data suggest that neoadjuvant chemotherapy

promotes a more inflammatory TME mediated by fibroblast-B

lymphocyte interactions. Interestingly, higher tumor grade was

largely associated with helper T lymphocyte-driven interactions,

particularly with pericytes (Figures 2G, 5B, and S4C), while

lower grade was associated with inter-fibroblast interactions.

Higher AJCC stage, on the other hand, was associated with

several fibroblast-driven interactions, particularly by fibroblasts

3 (CD26high/aSMAmed/IL-6low) and fibroblasts 4 (CD26high/

aSMAhigh/IL-6med), while lower AJCC stage was associated

with interactions involving endothelial cells and pericytes

(Figures 2H, 5C, and S4D). Larger tumor size, which is incorpo-

rated in AJCC staging, was similarly correlated with fibroblast

4-mediated interactions, while smaller tumor size was correlated

with inter-tumor cell interactions (Figures 2I, 5D, and S4E). Over-

all, these data suggested that clinical characteristics of PDAC

were associated with highly differential CAF-immune cell spatial
Figure 4. Distance-based analysis of top outcome-differentiating COD

(A) Definition of short- and long-range correlations.

(B) Illustration of characteristic short-range (orange) and long-range (green) beha

(C and D) Distance-based analysis of top survival-positive (C) and survival-negat

(E and F) Distance-based analysis of top recurrence-positive (E) and recurrence-
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organization, such as enriched CAF-B lymphocyte interactions

in tumors that received neoadjuvant chemotherapy.

Inflammatory and mechanoresponsive fibroblasts
exhibit distinct interactomes
While CAF heterogeneity has been investigated in the context of

spatially agnostic tissue digests and/or in vitro culture,11,26 the in

situ spatial niches of clinical CAFs have not been thoroughly

explored. Thus, cell-cell spatial niches, i.e., interactomes, were

examined for PDAC-associated CAFs via principal-component

analysis (PCA) of all pairwise cell-cell interactions involving

fibroblasts (Figure 6A). Overall, fibroblast subtypes appeared

to exhibit distinct niches based on inflammatory vs. mechani-

cally activated protein expression (Figures 6A and 6B). For

instance, the inflammatory fibroblast 1 (CD26low/aSMAlow/IL-

6med) and fibroblast 5 (CD26low/aSMAmed/IL-6high) subtypes

clustered together by PCA centroids, suggesting similarity

in interaction space (Figure 6B, right). Accordingly, both

fibroblasts 1 and fibroblasts 5 were strongly defined by B

lymphocyte 1 and 2 interactions (e.g., PC3, PC4, PC5). The me-

chanically activated fibroblast 3 (CD26high/aSMAmed/IL-6low) and

fibroblast 4 (CD26high/aSMAhigh/IL-6med) subtypes also clustered

together in PCA centroids (Figure 6B, right). These fibroblast

subtypes were strongly defined by their interactions with

the relatively less activated tumor cell 2 phenotype (E-cadher-

inmed/PANCKmed/PDL1med/SDF1med) (e.g., PC1, PC2). To a

lesser extent, these two mechanically activated fibroblast sub-

types were also defined by interactions with the least activated

tumor cells 1 phenotype (E-cadherinlow/PANCKmed/PDL1low/

SDF1low) (e.g., PC1, PC2) but did not appear to be strongly asso-

ciated with more activated tumor cell phenotypes. Lastly, the

neutral fibroblasts 2 subtype (CD26med/aSMAlow/IL-6low) was

strongly defined by interactions with the most highly activated

tumor cells 4 phenotype (E-cadherinhigh/PANCKmed/PDL1high/

SDF1high) (e.g., PC3). Thus, mechanically activated and neutral

fibroblast subtypes appeared to occupy a primarily tumor-adja-

cent spatial niche, while inflammatory fibroblasts resided in a

predominantly B lymphocyte-adjacent niche. Critically, this

juxtacrine analysis also revealed that mechanically activated

fibroblast subtypes were associated with less activated tumor

cell subpopulations while indicating that more neutral fibroblast

subtypes were adjacent to more highly activated tumor cells,

suggesting a relationship between fibroblast mechanical activa-

tion and tumor cell state.

Spatial interactomes were also examined for B lymphocytes,

which consisted of the immature B lymphocytes 2 (CD20low/

HLA-DRlow/IL-6low/Vimentinlow) and mature B lymphocytes 1

(CD20high/HLA-DRhigh/IL-6high/Vimentinhigh) subtypes (Figure 6C).

Overall, B lymphocytes exhibited a spectrum of spatial niches,

starting from (1) immature phenotype and vasculature adjacent

(e.g., endothelial cells andpericytes inPC3) to (2)mixedphenotype

and neutral tumor/fibroblast adjacent (e.g., tumor cells 1 and
EX cell interactions

vior for outcome-positive and outcome-negative interactions.

ive (D) interactions. p values are indicated for linear regression models.

negative (F) interactions. p values are indicated for linear regression models.



Figure 5. Differential cell spatial organiza-

tion associated with neoadjuvant chemo-

therapy and clinically relevant tumor met-

rics

(A) Top 5 positively (top) and negatively (bottom)

associated cell-cell interactions with neoadjuvant

chemotherapy. p values are indicated for Stu-

dent’s t test.

(B and C) Spearman coefficients for ordinal cate-

gories of tumor grade (B) and AJCC stage (C).

(D) Pearson coefficients for continuous data on

tumor size.
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Figure 6. Interactomes of cancer-associated fibroblasts and B lymphocytes, as well as their variation with protein phenotype

(A) Principal-component analysis (PCA) of fibroblast interaction space up to 5 PCs, as determined by vertex of scree plot. Fibroblasts appear to exhibit distinct

interaction patterns that are defined by differences in inflammatory vs. mechanically activated protein expression.

(B) Heatmaps of PCA coefficients and centroids for each fibroblast subtype.

(C) PCA of B lymphocyte interaction space up to 4 principal components, as determined by vertex of scree plot. B lymphocytes appear to exhibit distinct

interaction patterns based on maturity of protein phenotype.

(D) Heatmaps of PCA coefficients and centroids for each B lymphocyte subtype.
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fibroblasts 1 in PC2 and PC4), and finally, (3) mature phenotype

and inflammatory fibroblast adjacent (e.g., fibroblasts 5 in PC4)

(Figures 6C and 6D). B lymphocyte maturity thus appeared to be

correlatedwith an increasingly fibroblast-adjacent andpro-inflam-

matory interaction space. Macrophages, on the other hand, ex-

hibited weaker associations between a more mature phenotype

(HLA-DRhigh) and helper T lymphocyte adjacency (Figures S5A

and S5B), while tumor cells displayed highly heterogeneous

interaction spaces (Figures S6A and S6B). Overall, across the

single-cell interactomes (Figures 6, S5, and S6), more mature, an-

tigen-presentingcell subtypessuchasB lymphocytes1 (CD20high/

HLA-DRhigh/IL-6high/Vimentinhigh) and macrophages 2 (HLA-
10 Cell Reports Medicine 4, 101248, November 21, 2023
DRhigh) were generally associated with increasingly inflammatory

and/or immune-adjacent interaction spaces, which may include

inflammatory CAFs.

Macrophage and fibroblast subpopulations colocalize
with differential matrix architectures
In addition to assessing cell spatial niches, we sought to analyze

associations between desmoplastic matrix architecture and cell

spatial organization. To integrate matrix analysis with CODEX,

we analyzed collagen I ultrastructure within 103 10 subsampled

CODEX tiles (3,247 subsamples) and mapped the computed

ultrastructural features to the original Trichrome manifold



Figure 7. Spatial signatures of PDAC patient prognosis using ML

(A) ML model training using cell interactions, matrix ultrastructure, and clinical metadata. Areas under the receiver operating characteristic curve (AUCs) ranged

from 0.884–0.953 for six representative models: an artificial neural network (ANN), a generalized additive model (GAM), a k-nearest neighbors (KNN) model, a

linear discriminant analysis (LDA), a random forest (RF), and a support vector machine (SVM).

(legend continued on next page)
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(Figure S7A), producing no significant difference in Trichrome vs.

CODEX-defined pseudotime values at the patient level (p =

0.294). Interestingly, outcome-positive matrix architecture (low

pseudotime) was strongly associated with macrophage-driven

interactions, particularly by the less activated macrophage 1

(HLA-DRlow) subtype (Figure S7B, top). Outcome-negative

CODEX architecture (high pseudotime), on the other hand, was

associated with several interactions involving inflammatory

fibroblasts 5 (CD26low/aSMAmed/IL-6high) and pericytes. Interest-

ingly, interactions between fibroblasts 5 and mature/activated B

lymphocytes 1 (CD20high/HLA-DRhigh/IL-6high/Vimentinhigh), an

outcome-negative cell interaction node, were also highly associ-

ated with high pseudotime. Given the associations of inflamma-

tory, activated cell-cell interactions with both matrix pseudotime

and worse patient outcomes, we examined how cell-type abun-

dance varied in regions of differential matrix architecture, with a

focus on immune composition (Figure S7B, bottom). Notably,

high matrix pseudotime was associated with a high abundance

of helper T lymphocytes, but not cytotoxic T lymphocytes,

suggesting a relatively higher CD4/CD8 ratio in regions of

outcome-negative architecture. While associations with B

lymphocyte abundance were relatively weaker, it appeared

that the macrophages 1 subtype (HLA-DRlow) was enriched in

regions of outcome-positive architecture, in accordance with

their involvement in multiple low-pseudotime cell interactions

(Figure S7B, top). We additionally investigated associations

between matrix architecture and tumor-endothelial cell interac-

tions, which may represent metastatic spread, and found a

potential trend between high pseudotime and endothelial cell in-

teractions with more highly activated tumor cells (R = �0.053/

�0.074/0.020/0.058 for tumor cells 1–4, respectively). Further,

an examination of underlying ultrastructural features indicated

that low pseudotime was strongly associated with individual

fiber-level measures of dispersion (e.g., standard deviation of

skeletonized fiber lengths and diameters), representing spin-

dle-like fiber distributions observed in histology (Figure S7C).

On the other hand, high pseudotime was associated with

increasing topological porosity (Euler number) and texture het-

erogeneity (energy), consistent with its disrupted architecture

of globular and sheet-like collagen fibers. To explore if other

histological modalities such as hematoxylin and eosin (H&E)

could be used to quantify matrix architecture and ECM-associ-

ated cellular features, we performed H&E staining on a pilot

cohort of 48 sections taken consecutively to CODEX (Fig-

ure S7D). These samples were aligned one to one with the orig-

inal CODEX data using a DAPI-based alignment mask, followed

by subsampling of aligned H&E tiles (944 subsamples). H&E tiles

were then color deconvoluted to isolate matrix components,

quantified for 147 architectural features as previously described,
(B) Blinded testing of prognostic ML models using an independent dataset of 4

formance achieved by the ANN model.

(C and D) Kaplan-Meier analysis of ML spatial signature for blinded testing datas

signature successfully differentiated patient survival by a difference of 655 days (h

curve for patients with spatial signature A did not cross 50%.

(E and F) Explanatory analysis of top-performing prognostic model using Shapley

importance (F). Tumor grade and overall ECM architecture played the largest ro

ultrastructural parameters and cell interactions.
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and similarly mapped to the Trichrome manifold. High matrix

pseudotime, based on H&E staining, revealed a similar set of

cell spatial interactions that involved inflammatory fibroblasts 5

(CD26low/aSMAmed/IL-6high), mature/activated B lymphocytes 1

(CD20high/HLA-DRhigh/IL-6high/Vimentinhigh), and T lymphocytes

(Figure S7D). Low H&E pseudotime, on the other hand, did not

correlate as strongly with macrophage-driven interactions but

rather with inter-tumor cell interactions, including a cell-cell inter-

action between the less activated tumor cells 1 and tumor cells 2

subtypes that reflected their enrichment in regions of low pseu-

dotime (Figure S7B, bottom). Thus, H&E staining may offer an

alternative means of matrix architectural analysis to Trichrome

and collagen I staining that warrants further exploration. Collec-

tively, the integration of CODEX and matrix architecture

indicated that the cellular niche of outcome-negative architec-

ture may involve pro-inflammatory populations such as fibro-

blasts 5 and B lymphocytes 1, while the niche of outcome-pos-

itive matrix architecture may be driven by less mature/activated

macrophages (HLA-DRlow) and/or inter-tumor cell interactions.

Unified spatial signatures predict patient outcomes
using ML
Lastly, we unified cell spatial organization, matrix ultrastructure,

and clinical metadata using ML modeling to produce holistic

spatial signatures of PDAC survival (Figure 7). First, we trained

six representative ML models—an artificial neural network

(ANN), a generalized additive model (GAM), a k-nearest neigh-

bors (KNN) model, a linear discriminant analysis (LDA), a random

forest (RF), and a support vector machine (SVM)—using 3,247

subsampled CODEX tiles with computed cell interaction scores,

ultrastructural parameters, and patient metadata. Categorical

variables such as AJCC stage were ordinally encoded,27 and a

pseudotime threshold of 24 was also applied to generate a bi-

nary ‘‘ECM architecture’’ variable representing tiles with terminal

ECM patterning (Figure 1C, top right; STAR Methods). This

dataset was processed by sequential feature selection (SFS) in

MATLAB to prevent model overfitting,28 identifying a highly

compact feature set of 9 parameters (5 cell interactions, 3 ultra-

structural parameters, 1 clinical metadata feature; Figures S8A

and S8B). These features were used to train the six ML models

with automated Bayesian optimization of hyperparameters

(10-fold cross-validation), producing training areas under the

receiver operating characteristic curve (AUCs) of 0.884–0.953

(Figure 7A).

To validate prognostic efficacy, an independent, blinded

cohort of 40 patients was processed by the established CODEX

pipeline and classified by the previously trained ML models (Fig-

ure 7B). Briefly, new protein expression data were aligned by

anchor-based transfer to the prior manifold (see Figure 2A,
0 patients with PDAC. AUCs ranged from 0.872–0.903, with the highest per-

et (C) and entire set of patients (D). For the blinded testing dataset, the spatial

azard ratio [HR] = 4.29; p = 0.00183). For the overall patient dataset, the survival

additive explanations (SHAP), including SHAP values (E) and average feature

les in explaining poor predicted survival, with additional support by individual
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right-side manifold), generating predicted cell phenotypes. Cell

interaction scores, ultrastructural parameters, and patient meta-

data were then generated for the new dataset of 1,714 tiles. Sur-

vival classification produced AUCs of 0.872–0.903, with the

strongest performance (AUC = 0.903) generated by the ANN

model with an associated sensitivity of 0.916, a specificity of

0.815, and a balanced accuracy of 0.866 (Table S3). To quantify

discriminatory ability for OS duration, Kaplan-Meier survival

analysis was performed on patient-averaged classes, termed

spatial signatures A (survival positive) and B (survival

negative; see STAR Methods for binary outcome classification

scheme), for the blinded patient group and the overall patient da-

taset (Figures 7C and 7D). In the blinded testing group, spatial

signature B predicted a worse median OS of 655 days (p =

0.00183), with an associated hazard ratio of 4.29 (Figure 7C).

For the overall patient dataset, spatial signature B was associ-

atedwith a hazard ratio of 3.39; thedifference inmedianOScould

not be predicted, as the Kaplan-Meier survival curve for patients

with spatial signature A (survival positive) did not cross 50%

(Figure 7D).

After establishing prognostic efficacy, we explained the

contributions of individual parameters to theML spatial signature

using Shapley additive explanations (SHAP) analysis (Figures 7E

and 7F).29 Tumor grade exhibited the highest feature importance

(Figure 7F), with high feature values consistently contributing to

worse predicted survival, as represented by the right side of

the SHAP value distribution (Figure 7E). Interestingly, discretized

ECM architecture (for which underlying pseudotime did not

significantly covary with grade; Figure S1B) produced the sec-

ond highest feature importance, with terminal ECM patterning

similarly contributing to predictions of worse survival. Individual

ultrastructural parameters and cell interactions also contributed

prognostic value, albeit at a lesser magnitude compared with

global metrics such as tumor grade and overall ECMarchitecture

(Figure 7F). For instance, high values of collagen I grayscale

homogeneity, representing increasingly sheet-like fiber organi-

zation as observed in terminal ECM patterning, contributed

to predictions of poor survival (Figure 7E). Interestingly, interac-

tions by the mature/activated macrophage 2 subtype (HLA-

DRhigh) appeared to contribute primarily to survival-negative

predictions (e.g., macrophages 2-endothelial cells, macro-

phages 2-cytotoxic T lymphocytes), while interactions driven

by cytotoxic T lymphocytes (e.g., cytotoxic T lymphocytes-B

lymphocytes 2, cytotoxic T lymphocytes-fibroblasts 5) appeared

to contribute predominantly to survival-positive predictions (Fig-

ure 7E). Overall, our explanatory analysis indicated that poorer

survival was predicted by a multifactorial signature that included

tumor grade, desmoplastic architecture, and differential stromal-

immune cell organization.

DISCUSSION

The desmoplastic milieu of PDAC contains complex and highly

variable mixtures of fibrotic tissue, for which the exact functional

role is not fully understood.4 Furthermore, PDAC is associated

with a heterogeneous mixture of cell phenotypes, including

cancer cells, endothelial cells, pericytes, lymphocytes, macro-

phages, and CAFs.4,12 This study applies an advanced fibrosis
grading algorithm to prognosticate PDAC in the postoperative

setting, a scenario with increasing clinical relevance as more

cancer centers take on locally advanced disease.1 Early recur-

rence after pancreaticoduodenectomy continues to trouble pa-

tients and physicians alike, as surgery represents amajor trauma

unlikely to be of benefit to this group.3 Similarly, histologic

response grading to neoadjuvant therapies remains crude, with

relatively few tumors demonstrating sufficient necrosis for

scores to be prognostic.3 This study provides an additional his-

tologic tool that may help meaningfully characterize responses

to therapies, particularly emerging agents targeting mesen-

chymal cells, and assist physicians in prognostic discussions

postoperatively. Spatially defined cell interactions provide

further context to this algorithm in differentiating both patient

outcomes and desmoplastic patterning.

In our first analysis, we uncovered global desmoplastic matrix

architectures that predicted differences in patient outcome. The

prognostic relevance of desmoplastic patterning was further un-

derscored by the high feature importance values assigned to

ECM architecture in our SHAP analysis. Recent literature has

identified high collagen content as a positive suppressor of tu-

mor growth in mouse models,6–8,17 and varying studies have

also implicated collagen fiber alignment as either a negative or

positive prognostic indicator in clinical PDAC.9,30 A study of stro-

mal composition in clinical specimens of PDAC has, in contrast,

implicated discrete tumor glands with higher stromal content as

being negatively prognostic.31 Many studies have also applied

qualitative evaluations of tumor and gland morphology to stratify

patient outcomes.4,5,32 Nevertheless, these prior analyses eval-

uate either gross, univariate properties of collagen or subjective

evaluations of tumor morphology, and they do not encapsulate

the full spatial complexity of desmoplasia, which includes an

array of quantifiable fiber-level properties such as averaged fiber

dimensions, as well as higher-order features such as porosity

and branching. Our architectural analysis quantifies complex

histological patterning in PDAC desmoplasia using amultivariate

signature of >147 local and global matrix features, which can be

summarized using dimensional reduction techniques and

applied to complementary analyses of cell spatial organization

and clinical correlates (e.g., grade, stage). Our ultrastructural al-

gorithm, like other emerging methods of graph representation

learning in histopathology, consists of feature extraction from

sampled histological images, followed by unsupervised learning

of a trajectory that connects images based on feature similar-

ity.33–35 We envision that future studies can apply this algorithm

to study graph representations of matrix architecture in other

solid tumors and fibrotic diseases.

Interestingly, several clinical metrics of tumor progression

such as tumor grade and measured tumor size did not appear

to be strongly correlated with position along the pseudotime tra-

jectory, suggesting that desmoplastic architecture may bemedi-

ated by biological processes orthogonal to tumor cell dedifferen-

tiation and other established correlates of PDAC progression.

Future mechanistic studies will help elucidate the specific causal

factors that drive these variations in desmoplastic architecture.

Additionally, prior studies have implicated stromal heterogeneity

in worse clinical outcomes,26 and our measure of architectural

variability trended toward statistical significance in correlating
Cell Reports Medicine 4, 101248, November 21, 2023 13
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with differential outcomes, suggesting that this concept may be

a promising route for continued investigation. It is worth noting

that survival-negative desmoplastic patterning was strongly

associated with complex, emergent properties of global fiber or-

ganization such as increasing topological porosity and texture

heterogeneity, features that have not been investigated in prior

clinical literature and may serve as effective histopathological

predictors of patient outcomes. These features and their associ-

ated global architectures may be directly quantified using our ul-

trastructural algorithm, which is designed as an automated im-

age analysis pipeline. While our original ultrastructural analysis

was performed with Trichrome due to its more specific colora-

tion of matrix staining, our exploration of mapping H&E to Tri-

chrome and one-to-one integration with CODEX suggested

that H&E may be used analogously for the quantification of ma-

trix architecture and identification of co-occurrent cell spatial

features. We believe that further exploration of H&E-based im-

age features may therefore be a promising route for future inves-

tigation that may be more readily adapted to existing clinical

workflows. Clinical testing can further utilize this ultrastructural

algorithm to investigate how treatment protocols, such as

stroma-targeted antifibrotic drugs,36 influence the architecture

of desmoplasia in PDAC and other solid tumors.

Furthermore, we investigated the contributions of cell-cell

spatial interactions to PDAC prognosis. We observed an axis of

activated, pro-inflammatory spatial interactions that were associ-

ated with worse outcomes, with mature B lymphocytes 1

(CD20high/HLA-DRhigh/IL-6high/Vimentinhigh) and highly activated/

immunomodulatory tumor cells 4 (E-cadherinhigh/PANCKmed/

PDL1high/SDF1high) acting as primary survival-negative drivers.

Interestingly, the elevated expression of IL-6 and Vimentin that

we observed in B lymphocytes 1 has been implicated in pro-in-

flammatory signaling and suppression of antitumor response by

B lymphocytes and other immune cells in contexts outside of

PDAC.37,38 Our data suggest that these effects may be mediated

through a myriad of interactions with stromal cells such as CAFs.

B lymphocytes, like CAFs, have been implicated in paradoxical

roles of both tumor suppression and promotion. For instance,

while B lymphocyte infiltration in the context of tertiary lymphoid

structures (TLSs) is considered to be a positive prognostic factor,

accumulation of mature, transforming growth factor b (TGF-b)

signaling B lymphocytes has also been identified as negatively

prognostic. The survival-negative associations of our IL-6high B

lymphocyte subpopulation, relative to other B lymphocytes, sug-

gest a significant role of B cell dysfunction, particularly within a

pro-inflammatory context, in influencing PDAC outcomes. In

contrast, survival-positive spatial interactions appeared to be

largely associatedwith cytotoxic T lymphocytes, helper T lympho-

cytes, and vasculature-adjacent interactions, highlighting the pos-

itive influence of T lymphocyte infiltration. Our findings build upon

the earlier work of Sch€urch et al. in establishing the importance of

spatial context in tumor biology, particularly for immune cells and

immune-interactive cell phenotypes.18 Similar to their findings of

T cell-associated cellular communities promoting survival in colo-

rectal cancer,18weobserved thatTcell-associatedspatial interac-

tions were predictive of improved outcomes in PDAC.

Critically, a highly pro-inflammatory fibroblast 5 subtype

(CD26low/aSMAmed/IL-6high) appeared to drive spatial interac-
14 Cell Reports Medicine 4, 101248, November 21, 2023
tions associated with outcome-negative desmoplastic architec-

ture. This finding builds upon prior studies in CAF heterogene-

ity6,16,17,39 by establishing that inflammatory CAFs, rather than

mechanically activated or neutral CAF subtypes, may mediate

outcome-negative desmoplastic architecture via elaboration of

a pro-inflammatory spatial niche. A prior study by Gr€unwald

et al. demonstrated that CAFs, when cultured in vitro from

PDAC specimens, exhibit distinct gene expression signatures

depending on the histology of the originating tumor.26 Our data

build upon this prior research by evaluating in situ stromal and

cellular organization in PDAC, revealing direct co-occurrence

of outcome-negative architecture with an inflammatory fibro-

blast niche. This niche-associated matrix architecture was spe-

cifically defined by a combination of local (e.g., standard devia-

tion of fiber length, diameter) and global (e.g., porosity, texture)

fiber features rather than by the quantity of fibrosis. Furthermore,

our single-cell interactome analysis underscores the differential

spatial interaction signatures of inflammatory and mechanically

activated CAFs, which are distinctly immune cell adjacent or tu-

mor cell adjacent, respectively. A prior study by Moncada et al.

demonstrated colocalization of inflammatory CAFs with acti-

vated/inflammatory cancer cells in PDAC but did not directly

evaluate non-inflammatory fibroblast populations.40 Our study

builds upon this prior work by examining a spectrum of mecha-

noresponsive to inflammatory fibroblasts present in PDAC,

revealing that more inflammatory fibroblast subpopulations are

both more immune adjacent and spatially associated with

outcome-negative stromal matrix architecture. Furthermore,

our analysis of cellular niches supports prior findings that me-

chanically activated CAFs are proximal to tumor foci, while in-

flammatory CAFs are more distant to tumor cells.13,41 Sub-

type-specific analysis provides further granularity to these

findings by suggesting that mechanically activated CAFs are in

fact directly adjacent to less activated tumor cells and also by

specifically implicating B lymphocytes as an immune component

of the inflammatory CAF niche. The inflammatory fibroblast 5

subtype specifically appears to be associated by interactome

analysis with B lymphocytes 1, a primary survival-negative driver

in our patient-level analysis. For the reasons outlined above, in-

flammatory CAFs may represent a cell phenotype of interest for

desmoplasia-targeted therapeutic development. This popula-

tion could potentially be modulated by the targeting of IL-6 re-

ceptors or upstream signaling pathways to inflammatory CAF

activation such as Janus kinase-signal transducer and activator

of transcription (JAK-STAT).42 Additionally, our analysis indi-

cated that macrophage-driven interactions were associated

with outcome-positive matrix architecture. Recent studies in

other tumor contexts such as colorectal cancer have suggested

that the macrophage phenotype and the M1:M2 ratio within the

stroma may predict differential patient outcomes,43 and future

research may also investigate the role of more granular macro-

phage subpopulations in driving PDAC progression and desmo-

plastic composition.

Interestingly, patientswho received neoadjuvant chemotherapy

exhibited differential cell spatial organization but not significantly

different desmoplastic architecture. The spatial TME of neoadju-

vant-chemotherapy-treated patients was particularly enriched

with pro-inflammatory fibroblast-B lymphocyte interactions. Prior
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studies have indicated that aSMA+ CAFs may be depleted after

neoadjuvant chemotherapy, and our data suggest that inflamma-

toryCAFsmaydominate the stromalmicroenvironment inpatients

who receivedneoadjuvant chemotherapy, supportingapreviously

posited ‘‘push-pull’’ relationship between inflammatory and me-

chanoresponsive CAF subtypes.11,15,44 This association with

CAFs may also help explain the shifts in collagen composition

and volume previously observed for patients who have received

neoadjuvant chemotherapy.45 Furthermore, while prior literature

has demonstrated an increased B lymphocyte presence in

PDAC following neoadjuvant chemotherapy, our findings eluci-

date that B lymphocyte infiltration may be primarily mediated by

or associated with enhanced inflammatory fibroblast-B lympho-

cyte interactions. Futureexperimentsmaydelineatewhether these

results are attributable to the presence of individual tissue-infil-

trating B cells vs. the development ofmore organized TLSs. Other

correlations of CODEX with clinical characteristics such as tumor

size and AJCC stage confirmed previously established associa-

tionsbetween aSMA+CAFsandmoreprogressed tumors, though

knockout of these populations has paradoxically resulted in

accelerated disease progression and reduced survival in the

literature.13,17 Interestingly, higher tumor grade was associated

with enriched interactions between CD4+ T lymphocytes and

pericytes, whichmay relate to the elevation of CD4+ T lymphocyte

infiltrate that hasbeenassociatedwithPDACprogression.46Over-

all, our data established an association between neoadjuvant

chemotherapy and an increasingly immunomodulated TME

centered around inflammatory fibroblasts and B lymphocytes.

Lastly, we developed a holistic spatial signature of cell interac-

tions, ultrastructural features, and clinical metadata to predict pa-

tient outcomes using ML. Our unified models produced AUCs of

0.872–0.903onan independent, blinded testing cohort, represent-

ing superior performance compared with existing magnetic

resonance imaging (MRI)- and lab-value-based ML models of

PDAC classification (AUCs: �0.801–0.900).47,48 Furthermore, the

ML spatial signature distinguished OS by a median of nearly 2

years—a substantial finding for a disease with a 5-year survival

rate of 20%–25% in the postoperative setting.3 This approach

could be used to stratify patients who may require more intensive

therapy. For instance, patients classified at a higher risk may be

recommended for more aggressive treatment regiments such as

folinic acid-fluorouracil-irinotecan (FOLFIRI) chemotherapy± radi-

ation therapy.49On the other hand, patientswith lower riskmay be

recommended for less aggressive treatments such as gemcita-

bine + Abraxane without radiation.49 Importantly, our explanatory

SHAP analysis revealed that ECM architecture played an outsize

role in predicting differential patient outcomes. Furthermore, a

subset of immune-stromal interactions—particularly with cyto-

toxic T lymphocytes—contributed prognostic value to the ML

spatial signature, underscoring the relevance of cell spatial organi-

zation in predicting PDAC outcomes.

Ultimately, our findings establish the prognostic value of des-

moplastic architecture and stromal-immune cellular organiza-

tion. In addition to our prognostic findings, our data establish

spatial biology with regards to CAFs and other desmoplasia-

associated cells in the PDAC TME. These associations include

inflammatory CAFs and outcome-negative desmoplastic archi-

tecture, links between neoadjuvant chemotherapy and enriched
CAF-B lymphocyte interactions, and identification of highly acti-

vated B lymphocyte and tumor cell subtypes that drive outcome-

negative spatial interactions. Overall, a more disordered and

sheet-like desmoplastic architecture appears to coincide with

a more activated and pro-inflammatory spatial TME, predicting

worse patient outcomes in PDAC.

Limitations of the study
While the present study utilizes a pseudotime-based trajectory

to model changes in high-dimensional matrix architecture, other

graph learning and dimensional reduction techniques may be

equally appropriate for the clustering and analysis of ultrastruc-

tural features. Furthermore, while this analysis was performed

largely unsupervised, various input parameters such as mini-

mum branch length, root point selection, etc., may be freely

selected based on alternative biological criteria of interest to

the field (e.g., proximity to PDAC or other carcinomas rather

than healthy pancreas). Thus, we encourage readers to apply

their own trajectories and analytic parameters to the raw histo-

logical image dataset (see STAR Methods). Additionally, while

the present study defines cell phenotypes by protein expression,

single-cell RNA sequencing (scRNA-seq)-based and/or chro-

matin-accessibility-based analysesmay provide additional utility

by assaying the underlying biological mechanisms involved. An

inherent limitation of CODEX is its reliance on quantification of

fluorescence from antibody-based staining, which may intro-

duce artifacts related to non-specific antibody binding,

sample-to-sample variations in imaging, etc. While these irregu-

larities can be corrected to some degree through postprocess-

ing methods such as stain normalization and batch correction,

CODEX-defined cell populations may include non-specific

markers or admixtures ofmultiple cell phenotypes. A notable lim-

itation of this study is that sampling for each modality involved

the capture of an isolated region of each tumor, which may not

comprehensively represent the holistic biological features and/

or intra-tumoral heterogeneity observed in PDAC and other can-

cers.12 This phenomenon may likely account for the relatively

lower magnitude of Pearson correlation coefficients identified

by thematrix architecture analysis, and future studiesmay there-

fore build upon this methodology by more comprehensively

analyzing multiple regions within each tumor and directly

exploring the clinical impact of intra-tumoral heterogeneity. In

addition to its spatial complexity, the PDAC microenvironment

evolves with time, and various transcriptionally defined stromal

subtypes likely emerge during distinct stages of tumor growth,

metastasis, etc., to drive disease progression.13 Thus, future

studies should utilize mechanistic mouse models to evaluate

the biological impact and kinetics of enriching or knocking out

specific cell phenotypes or cell-cell interactions identified in

the study.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

aSMA, polyclonal Abcam Cat# ab5694; RRID: AB_2223021

Vimentin, clone RV202 BD Biosciences Cat# 550513; RRID: AB_393716

S100A4 (FSP1), clone S100A4 Biolegend Cat# 810101; RRID: AB_2564748

PDGFRa, clone 16A1 Abcam Cat# ab96569; RRID: AB_10687154

FAP, polyclonal Millipore Sigma Cat# SAB2900181; RRID: AB_10600445

IL-6, clone 1.2-2B11-2G10 Abcam Cat# ab9324; RRID: AB_307175

IL-1, polyclonal Abcam Cat# ab9722; RRID: AB_308765

MGP, clone OTI8D6 Abcam Cat# ab273657; RRID: N/A

YAP, clone EPR19812 Abcam Cat# ab223126; RRID: N/A

CXCL-12 (SDF-1), polyclonal Abcam Cat# ab9797; RRID: AB_296627

CD26, polyclonal R&D AF1180 Cat# AF1180; RRID: AB_354651

CD56, clone MRQ-42 Cell Marque Custom; RRID: N/A

HLA Class I, clone EP1395Y Abcam Cat# ab216653; RRID: N/A

Collagen I, polyclonal Abcam Cat# ab34710; RRID: AB_731684

Collagen IV, polyclonal Abcam Cat# ab6586; RRID: AB_305584

Fibronectin, polyclonal Abcam Cat# ab23751; RRID: AB_447656

PD-1, clone D4W2J Cell Signaling Technologies Custom; RRID: N/A

PD-L1, clone E1L3N Cell Signaling Technologies Custom; RRID: N/A

CTLA-4, clone CAL49 Abcam Cat# ab237712; RRID: AB_2905652

Ki67, clone B56 BD Biosciences Cat# 556003; RRID: AB_396287

CD4, clone EPR6855 Abcam Cat# ab181724; RRID: AB_2864377

CD8, clone C8/144B Biolegend Cat# sc-53212; RRID: AB_1120718

CD11c, clone EP1347Y Abcam Cat# ab216655; RRID: AB_2864379

CD20, clone rIGEL/773 Novus Biologicals Cat# NBP2-54591; RRID: AB_2864380

CD31, clone C31.3 + 31.7+31.10 Novus Biologicals Cat# NBP2-47785; RRID: AB_2864381

CD68, clone KP-1 Biolegend Cat# 916104; RRID: AB_2616797

HLA DR, clone EPR3692 Abcam Cat# ab215985; RRID: AB_2864390

Pan Cytokeratin, clone AE-1+AE-3 Biolegend Cat# 914204; RRID: AB_2616960

E-cadherin, clone 4A2C7 Thermo Fisher Cat# 33–4000; RRID: AB_2533118

Biological samples

Archival tumor specimens Stanford University, University of Virginia

pathology repositories

Deidentified

Tissue microarrays US Biomax, Inc. Cat# PA2082a, PA806, PA1921a, PA501,

PA803, PA961f

Critical commercial assays

CODEX Staining Kit Akoya Biosciences Cat# 7000008

CODEX Antibody Conjugation Kit Akoya Biosciences Cat# 7000009

Chemicals, peptides, and recombinant proteins

Assay Reagent for CODEX Akoya Biosciences Cat# 7000002

Nuclear Stain for CODEX Akoya Biosciences Cat# 7000003

CODEX Barcode/Reporter RX046 Akoya Biosciences Cat# 6150016

CODEX Barcode/Reporter RX049 Akoya Biosciences Cat# 6150017

CODEX Barcode/Reporter RX035 Akoya Biosciences Cat# 6250010

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CODEX Barcode/Reporter RX042 Akoya Biosciences Cat# 6550023

CODEX Barcode/Reporter RX043 Akoya Biosciences Cat# 6150015

CODEX Barcode/Reporter RX016 Akoya Biosciences Cat# 6150006

CODEX Barcode/Reporter RX027 Akoya Biosciences Cat# 6550019

CODEX Barcode/Reporter RX020 Akoya Biosciences Cat# 6250005

CODEX Barcode/Reporter RX010 Akoya Biosciences Cat# 6150004

CODEX Barcode/Reporter RX005 Akoya Biosciences Cat# 6250002

CODEX Barcode/Reporter RX040 Akoya Biosciences Cat# 6150014

CODEX Barcode/Reporter RX034 Akoya Biosciences Cat# 6150012

CODEX Barcode/Reporter RX002 Akoya Biosciences Cat# 6250001

CODEX Barcode/Reporter RX030 Akoya Biosciences Cat# 6550020

CODEX Barcode/Reporter RX045 Akoya Biosciences Cat# 6550024

CODEX Barcode/Reporter RX037 Akoya Biosciences Cat# 6150013

CODEX Barcode/Reporter RX036 Akoya Biosciences Cat# 6550022

CODEX Barcode/Reporter RX041 Akoya Biosciences Cat# 6250011

CODEX Barcode/Reporter RX004 Akoya Biosciences Cat# 6150002

CODEX Barcode/Reporter RX047 Akoya Biosciences Cat# 6250012

CODEX Barcode/Reporter RX003 Akoya Biosciences Cat# 6550025

CODEX Barcode/Reporter RX026 Akoya Biosciences Cat# 6250007

CODEX Barcode/Reporter RX024 Akoya Biosciences Cat# 6550018

CODEX Barcode/Reporter RX007 Akoya Biosciences Cat# 6150003

CODEX Barcode/Reporter RX001 Akoya Biosciences Cat# 6150001

CODEX Barcode/Reporter RX021 Akoya Biosciences Cat# 6550028

CODEX Barcode/Reporter RX015 Akoya Biosciences Cat# 6550027

CODEX Barcode/Reporter RX033 Akoya Biosciences Cat# 6550021

CODEX Barcode/Reporter RX019 Akoya Biosciences Cat# 6150007

CODEX Barcode/Reporter RX014 Akoya Biosciences Cat# 6250003

Deposited data

Trichrome Histological Images Github Github: HageyLab/PDAC2023

CODEX Phenotyping Data Github Github: HageyLab/PDAC2023

Software and algorithms

R R Foundation for Statistical Computing 4.1

RStudio Posit PBC 1.4.1106.0

AdjacencyScore Govek et al.50 0.1.0

Batchelor Haghverdi et al.51 1.6.3

DDRTree Mao et al.23 0.1.5

Monocle3 Trapnell et al.24 1.2.9

RANN Github jefferislab/RANN (2.6.1)

Seurat Hao et al.52 4.1.1

STvEA Govek et al.50 1.0

MATLAB (Image Processing Toolbox,

Statistics and Machine Learning Toolbox)

The MathWorks, Inc. R2021a

Akoya Multiplex Analysis Viewer Akoya Biosciences 1.5
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Dr. Michael Longaker (longaker@

stanford.edu).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Data processing code, raw images, spatial phenotyping data, and deidentified patient data are all publicly available on Github

(https://github.com/HageyLab/PDAC2023). Any additional information required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and samples
Whipple procedure paraffinized specimens were obtained from pathology archives at Stanford University Hospital and UVA Hospital

under the respective institutions’ IRB approval. For the TMA cohort, de-identified core biopsy specimens were obtained through a

commercial vendor (US Biomax, Inc.). Informed consent was exempted, given the retrospective coded nature of data collection. The

study included only patients with pathology-confirmed pancreatic ductal adenocarcinoma without metastatic disease. Specimens

containing normal pancreas or other pancreatic neoplasms (e.g., islet cell tumors, acinic cell carcinoma, duodenal adenocarcinoma,

neuroendocrine carcinoma, solid pseudopapillary neoplasm) were excluded from downstream clinical analysis. Clinical metadata

(age, gender, AJCC stage, grade, neoadjuvant chemotherapy, etc.) were either gathered from patient charts (Stanford, UVA cohorts)

or provided in a de-identified fashion from the commercial third-party vendor (TMA cohort). For patient characteristics within each

cohort, see Table S1.

METHOD DETAILS

Histological image acquisition
A total of 578 histologic specimens were gathered, sectioned, and stained with Masson’s Trichrome at the institution or vendor of

origin. Slides were assigned random identifier numbers and imaged at 203 magnification on multiple microscopes (Leica

DMI4000 B, DMI5000 B) in a blinded fashion by multiple participants not involved in data analysis. For Stanford and UVA specimens,

slides were imaged in tiles, generating 20–100 images per specimen. For TMA specimens, 4 images were acquired per core biopsy.

Images remained blinded throughout ultrastructural analysis and were subsequently categorized by cohort and patient of origin after

integration with clinical metadata.

Matrix ultrastructural algorithm
A total of 13,048 trichrome histology image tiles were processed using amatrix ultrastructural algorithm previously utilized for fibrotic

tissue analysis.21 Briefly, trichrome images were normalized by the red/green/blue (RGB) histogrammethod and color deconvoluted

using the algorithm previously described by Ruifrok et al. wherein each pure stain is characterized by absorbances within the three

RGB channels.53,54 Ortho-normal transformation of the histology images produced individual images corresponding to each color’s

individual contribution to the image. This methodology produces deconvoluted blue images corresponding to ECM fibers alone,53,54

which were used for downstream analysis. Noise reduction of deconvoluted fibers was achieved using an adaptive Wiener filter,

which tailors itself to local image variance within a pre-specified neighborhood (3-by-3 pixels). The filter preferentially smooths

regions with low variance, thereby preserving sharp fiber edges. Smooth images were binarized using the im2bw command and

processed through erosion filters with diamond-shaped structuring elements to select fiber-shaped objects. Finally, the fiber network

was ‘‘skeletonized’’ using the bwmorph command and various parameters of the digitized map (fiber length, width, persistence,

alignment, etc.) were measured.

Quantified matrix values were imported into RStudio and reduced to a two-dimensional UMAPmanifold using uwot. The DDRTree

algorithm, which has been utilized for graph representation learning in biological data, was used to fit all ultrastructural datapoints to a

minimum spanning tree with a minimum branch length of 30, maximizing similarity in ultrastructural features between successive

points along the trajectory and assigning pseudotime values based on geodesic distance to the root point.23 The trajectory’s root

point, representing baseline histological architecture, was selected by identification of a branch terminus closely situated to normal

pancreatic tissue (Figure 1D). Patient-level centroids along the pseudotime trajectory, representing averagematrix architecture, were

then calculated as themedian value for all patient-specific images. Architectural heterogeneity was also quantified for each patient by

taking the sum of variance in all 147 ultrastructural parameters for all patient-specific images.

CODEX spatial phenotyping
To spatially profile PDAC specimens, we used CODEX, an assay in which 30 or more protein markers are labeled with oligonucleo-

tide-conjugated antibodies and iteratively imaged between cyclic additions and washouts of complementary dye-labeled oligonu-

cleotides.18 A total of 118 unique patient specimens were assayed, of which 40 patients were held out for blinded testing. A custom
Cell Reports Medicine 4, 101248, November 21, 2023 e3
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30-plex CODEX panel was designed for PDAC and validated on lymphoid tissues per manufacturer protocols for stromal cell pop-

ulations, tumor cells, immune cells, andmarkers of fibroblast heterogeneity (PANCK, CD4, CD8, aSMA, YAP, etc.; see key resources

table). Antibodies were individually barcoded and validated using the commercial supplier’s protocols (Akoya Biosciences). Custom

microarrays containing circular tissue sections of 4 mm diameter and 8 mm thickness were deparaffinized, and antigens

were retrieved by standard citrate-EDTA processing. Multiplexed CODEX images were acquired using the PhenoCycler platform

and Keyence BZ-X800 epifluorescence microscope per standard protocols.55 The built-in CODEX processor was used for image

processing, stitching, and cell segmentation using standard manufacturer settings andmethodology previously established by Golt-

sev et al.56

To visualize and analyze CODEX data, we used the Multiplex Analysis Viewer (MAV) in ImageJ. Segmented cells were gated for

marker expression and exported as.fcs files for concatenation in flowJo and further analysis in RStudio.50 Single-cell protein expres-

sion profiles were pre-processed in STvEA by filtering cell size to the 2.5–99% percentile range and normalizing individual protein

channels to a Gaussian distribution.50 Following this, protein expression was batch corrected between specimens by imputing

mutual nearest neighbors at k = 25 inBatchelor, then imported toSeurat for Louvain clustering and dimensional reduction of the entire

protein marker set by principal component analysis (PCA) and UMAP, with a post-manifold threshold of >10,000 cells per cluster.51

Macrophages and T lymphocytes were additionally split into subtypes based on HLA-DR and CD8 expression, respectively (see

Figures S3B and S3F).

Cell interaction analysis
For all possible cell type pairings, cell-cell spatial interactions were quantified first by extracting cell type vectors fa and fb represent-

ing the presence (1) or absence (0) of cell type a and b at each point within a CODEX specimen.50 Following this, an adjacencymatrix,

j, was extracted to identify neighboring points within k = 20 nearest neighbors of each other using AdjacencyScore. Single-cell

interaction scores were then calculated using the dot product of paired cell type vectors with the adjacency matrix (i.e., fa$j$fb).

The single-cell dataset of 153 cell interaction scores was reduced by PCA using prcomp to analyze the interactome of individual

cell phenotypes. Scree plots were generated to identify the appropriate number of principal components (PCs) based on the plot

vertex, and the resulting PCswere plotted and analyzed for the loadings assigned to each cell interaction (i.e., coefficients represent-

ing the contribution of each cell interaction to the PC). To assess correlations between cell phenotype and spatial niche, the PCA

centroid (i.e., median per PC) was also calculated for each cell phenotype to determine how each cell phenotype clustered within

PCA space.

To calculate normalized patient-level interaction scores, the single-cell interaction scores (i.e., fa$j$fb) for the patient were summed

and divided by the number of patient-specific cells. To analyze the effects of interaction distance on prognostic strength, patient-level

cell interactions were also quantified within radii of 50-500mm, with no constraint on k, followed by linear regression modeling of

correlation strength (Pearson coef.) vs. distance (interaction radius, mm) using the lm function. Furthermore, differential interaction

maps were generated in ggraph to illustrate prognostic correlations (Pearson coefficients for continuous comparisons, Spearman

coefficients for ordinal comparisons, magnitude of difference for paired categorical comparisons) between patient-level cell interac-

tions and clinical metrics.

Ultrastructure-CODEX integration
To integrate ultrastructural analysis with CODEX and generate paired parameters for matrix-cell interaction correlation, CODEX

samples were first processed into 10 3 10 subsampled tiles with a threshold of R20 cells per tile, yielding a total sample set of

3,247 tiles. The subsampled CODEX tiles were converted to spatial plots of COL I expression, which were analyzed using the above

matrix algorithm andmapped to the original Trichromemanifold using the model transformation pipeline inMonocle3.22 Pseudotime

values were then assigned by nearest neighbors using RANN. Cell interactions and individual ultrastructural parameters were

correlated with lower and higher ECM pseudotime using Pearson correlations.

Machine learning analysis of patient survival
Unified prognostic signatures were developed using six representative ML models (ANN, GAM, KNN, LDA, RF, SVM) using the Ma-

chine Learning and Parallel Computing toolboxes in MATLAB. For classification, patients were initially assigned to binary survival

classes for ML prediction based on two-year overall survival (OS < orR730 days). To increase dimensionality of matrix ultrastructure,

CODEX tiles were additionally converted to spatial plots of COL I and COL IV and analyzed using the matrix algorithm for 294 param-

eters in total. COL I ultrastructural parameters were mapped to pseudotime values as described above, and an additional binary

‘‘ECM Architecture’’ feature was generated to identify tiles with predominantly terminal ECM patterning (Figure 1C). The centroid

of the right half of the ultrastructure manifold (24), which appeared to demarcate terminal ECM patterning (Figure 1C, top right)

and approximated the upper 20th percentile of pseudotime scores, was utilized for this feature discretization. The unified feature

set was composed of cell interaction scores (153 features), ultrastructural features (294 features), matrix pseudotime and architecture

(2 features), and patient-level metadata (e.g., age, gender, AJCC stage, grade; 14 features). The feature matrix for all 3,247 tiles was

then reduced by sequential feature selection (SFS) using sequentialfs to prevent model overfitting.28 This compact feature set was
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used to train all models with imputation of missing data using knnimpute and automated Bayesian optimization of hyperparameters

with 10-fold cross validation using bayesopt.57 Average performance of the trained models was assessed using receiver operating

characteristic (ROC) curves.

Blinded testing of prognostic models
To evaluate prognostic efficacy, an independent, blinded cohort of 40 patients was spatially sequenced using CODEX. Raw

CODEX data was processed using the standardized pipeline described above and batch corrected to the original dataset at

k = 25 in Batchelor. In Seurat, the new protein expression matrix was projected onto the PCA space of the original CODEX manifold

by anchor-based transfer, predicting cell phenotypes for the new cells.58 After anchor-based transfer, cell interaction scores, ultra-

structural parameters, and clinical metadata were generated for the new 10 3 10 subsampled dataset (1,714 tiles). The previously

trainedMLmodels were used to predict binary survival classes without a priori knowledge. Model performance on the blinded testing

dataset was then assessed using ROC curves. To quantify discriminatory ability for OS, Kaplan-Meier survival analysis was per-

formed on the patient-averaged classifications assigned by the highest performing ML model, determined by greatest AUC.

SHAP analysis was performed in MATLAB to quantitatively explain the impact of individual features on model predictions.29

SHAP values were assigned on a per-sample basis to each parameter based on quantitative contribution to the sample/prediction’s

deviation from average. SHAP values were visualized as a collective distribution using ggbeeswarm, and feature importance values

were calculated as the mean absolute SHAP value across the dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

For Kaplan-Meier survival analysis and associated hazard ratios, log rank tests were performed at a = 0.05. Individual cell interactions

and ultrastructural parameters were correlated with OS or DFS using Pearson correlations to determine prognostic relevance (a =

0.05). OSwas defined as the duration between pancreaticoduodenectomy and time of death or alternatively, database lock (if patient

still alive). DFS was defined as the duration between pancreaticoduodenectomy and clinically confirmed disease relapse/progres-

sion or alternatively, death (patients without recurrence and still alive at time of database lock were therefore censored). Correlations

with clinical metadata were calculated as Pearson correlations for continuousmetadata (e.g., tumor size) and Spearman correlations

for ordinal metadata (e.g., grade, AJCC stage) (a = 0.05). To identify prognostically relevant parameters between discrete patient

groups, one-way analysis of variance (ANOVA) or a two-tailed, unpaired Student’s t test was performed. Relevant p values were

controlled for multiple hypothesis testing using the Benjamini-Hochberg procedure.
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