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SUMMARY
During cancer progression, tumorigenic and immune signals are spread through circulating molecules, such
as cell-free DNA (cfDNA) and cell-free RNA (cfRNA) in the blood. So far, they have not been comprehensively
investigated in gastrointestinal cancers. Here, we profile 4 categories of cell-free omics data from patients
with colorectal cancer and patients with stomach adenocarcinoma and then assay 15 types of genomic, epi-
genomic, and transcriptomic variations. We find that multi-omics data are more appropriate for detection of
cancer genes comparedwith single-omics data. In particular, cfRNAs aremore sensitive and informative than
cfDNAs in terms of detection rate, enriched functional pathways, etc. Moreover, we identify several periph-
eral immune signatures that are suppressed in patients with cancer. Specifically, we establish a gd-T cell
score and a cancer-associated-fibroblast (CAF) score, providing insights into clinical statuses like cancer
stage and survival. Overall, we reveal a cell-freemulti-molecular landscape that is useful for bloodmonitoring
in personalized cancer treatment.
INTRODUCTION

Extracellular nucleic acid molecules include cell-free DNA

(cfDNA) and cell-free RNA (cfRNA). Thesemolecules are typically

fragmented but resist full degradation in plasma because of pro-

tection from extracellular vesicles or binding proteins (e.g., nu-

cleosomes for cfDNA and ribonucleoproteins for cfRNA). These

extracellular molecules have been extensively utilized in assess-

ments of cancer diagnosis and prognosis because cancer-

induced modifications in tumor cells are detectable via cfDNAs

and cfRNAs in circulating blood.1 Additionally, a patient’s clinical

status during cancer treatment is strongly influenced by factors

such as the tumor microenvironment and peripheral immune

system. For example, a patient’s stromal cell activity and sys-

temic immune response can have substantial impact on treat-

ment outcome (e.g., immunotherapy).2,3 Importantly, cell-free
Cell Repor
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molecules, especially cfRNAs, include signals derived from

these non-neoplastic cellular constituents.4

Many cfDNA features (e.g., methylation pattern, mutation,

copy number, fragment pattern, and nucleosome footprint)

have been utilized for noninvasive assessments of disease diag-

nosis and prognosis.5–7 Many cfRNA features can also serve as

biomarkers; such features include the abundance of micro-

RNAs8 and circular RNAs,9 fragment copies, and alternative

splicing patterns of mRNAs and long noncoding RNAs.10–12

Various RNA-regulatory elements altered in tumor cells, such

as RNA editing,13 also have potential applications in the field of

liquid biopsy.

Multi-omics data regarding tumor cells and tissues reportedly

provide a more holistic understanding of the corresponding dis-

eases compared with single-omics data.14,15 The combined use

of multiple cell-free molecules in liquid biopsy can enhance
ts Medicine 4, 101281, November 21, 2023 ª 2023 The Authors. 1
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Figure 1. Cell-free multi-omics data summary and quality control

(A) Cell-free multi-omics data in plasma. Numbers inside and outside of brackets are datasets and samples, respectively, where some samples were mixed for

sequencing. The gap in the ring means no paired data.

(B) Multi-omics reads mapped on a housekeeping gene, GAPDH, and a tumor suppressor gene, TP53. The coverage is normalized by total mapped reads. Red

dashed line, the average coverage of cfDNA reads mapped on a gene.

(C) Density plots of multi-omics correlation coefficients of genes in tissues (TCGA), cell lines (CCLE), and plasma (this study).
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diagnostic efficacy. For example, the utilization of cfRNA and

cfDNA facilitates the detection of EGFR mutations in plasma.16

Similarly, a multi-analyte blood assay involving 61 DNA muta-

tions and 8 proteins has demonstrated clinical value in cancer di-

agnostics.17 However, there has been limited systematic explo-

ration of cell-free multi-omics data involving cfDNAs and cfRNAs

in the context of cancer, including prevalent gastrointestinal ma-

lignancies such as colorectal cancer (CRC) and stomach adeno-

carcinoma (STAD). Current methods for diagnosis and moni-

toring of these two cancers (e.g., endoscopy and tissue

biopsy) lack the ability to reveal the heterogeneity of molecular

mechanisms among patients.18 Therefore, an in-depth explora-

tion of the common and unique cell-free signatures that charac-

terize these two gastrointestinal cancers could elucidate their

extracellular biology and facilitate noninvasive monitoring

applications.

Here, we present a systematic evaluation of cell-free

multi-omics data, including methylated cfDNA immunoprecip-

itation sequencing (cfMeDIP-seq) and cfDNA whole genome

sequencing (cfWGS) as well as total and small cfRNA

sequencing (cfRNA-seq). Each set of matched multi-omics

data was derived from a 2- to 3-mL plasma sample. Using

CRC and STAD as examples of gastrointestinal cancers, we

investigated various alterations within cfDNAs and cfRNAs

to delineate a cell-free multi-molecular landscape.

RESULTS

Cell-free multi-omics profiling and data quality control
To explore the realm of cell-free multi-omics and conduct

comparative analyses in the context of CRC and STAD, we per-

formed sequencing analyses across four types of omics data,

involving 161 individuals (Figure1A, seedetails inSTARMethods;
2 Cell Reports Medicine 4, 101281, November 21, 2023
Figures S1A–S1C; Table S1). We implemented stringent mea-

sures to ensure data integrity (see quality control steps in STAR

Methods; Table S2). In particular, the intra-omics correlation

between samples exceeded 0.75 in each single-omics analysis,

inter-omics correlations were near zero (Figure S1D), and the

concentrations, read lengths, and readdistributionswere consis-

tent with previous reports5,12,19 (Figure S2). As expected, there

were disparities in the read distributions of sequenced cfDNAs

and cfRNAs; cfRNA-seq provided abundant information in

exonic regions, whereas cfDNA-seq providedmore extensive in-

formation in exonic, intronic, and intergenic regions (Figure 1B).

We performed a comprehensive assessment of multi-omics

correlations across plasma data (this study), cell line data (Can-

cer Cell Line Encyclopedia [CCLE]20), and tissue data (The Can-

cer Genome Atlas [TCGA]21) (Figure 1C). In contrast to cellular

data,20,22,23 correlations between cfDNAs and cfRNAs were

less pronounced, probably because of the heterogeneous ori-

gins of cfDNAs and cfRNAs.4,24 The signals in plasma were

derived from various cellular origins, suggesting that altered

DNA and RNA sequences in plasma are not derived from similar

origins. Thus, the combined insights from diverse cell-free mo-

lecular constituents in plasma could potentially enhance the

detection of cancer pathologies relative to the use of single-

omics data. Accordingly, we utilized combined multi-omics

data to facilitate the identification of cancer genes and evaluate

their detection capabilities.

Combination of cell-freemulti-omics data enhanced the
detection of cancer genes in plasma
We comprehensively profiled 15 cell-free molecular variations

using multi-omics data (STAR Methods). These variations can

be utilized for comprehensive analysis of patients with cancer

and healthy donors (HDs), considering multidimensional
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Figure 2. Detection of the cancer genes using different types of variations

(A) Overview of the plasma multi-omics variation atlas (including 30 patients with STAD, 23 patients with CRC, and 18 HDs).

(B) cfDNA copy number and cfRNA abundance for TP53. HD, healthy donor; CRC, colorectal cancer; STAD, stomach adenocarcinoma. The dotted lines

represent 95% specificity defined by HDs.

(C) Detection capacity for each cancer gene, combing different variations derived from cfDNA (cfWGS and cfMeDIP-seq) and total cfRNA-seq data. Frequently

altered genes are defined by a greater than 75% detection ratio.

(D) Distribution of variation types among all genes that are frequently altered.

(E) Altered genes with top detection ratios ranked by cfRNA and cfDNA, respectively.
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individual samples (Figure 2A) and gene-based results (Fig-

ure 2B). For example, within tumor samples, the TP53 gene is

usually depleted at the DNA copy number level and downregu-

lated at the RNA expression level in patients with cancer (Fig-

ure 2B). Our investigation revealed that certain cancer patients

could not be detected simultaneously through the cfDNA and

cfRNA methodologies at 95% specificity, implying that the com-

bination of cfDNA and cfRNA data could substantially enhance

the capacity for TP53 detection. The establishment of the 95%

specificity benchmark was based upon variation measurements

in HDs; an individual with a variation value out of the 95th percen-

tile (e.g., mutation rate or abundance level) in the HD population

was considered an outlier.
We quantified the sensitivity of cancer gene detection, defined

as the proportion of cancer patients being detected at 95%

specificity, and then investigated various types of variations

associated with a predetermined ensemble of cancer genes.

The cancer gene collection was based on the reference dataset

of Catalog of Somatic Mutations in Cancer (COSMIC) hallmark

cancer genes,25 which comprises 38 genes with annotated so-

matic mutations in the colorectal or gastric spectrum. Our

data showed that the combination of multiple variations led to

a substantial increase in detection capacity compared with the

detection rate in cases of single variations (Figure 2C). For 9

cancer genes, including CUX1, SMAD2, QKI, and TP53, a sub-

stantial proportion of patients (>75%) exhibited variations at
Cell Reports Medicine 4, 101281, November 21, 2023 3
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the cfDNA or cfRNA level, implying that variations in these genes

frequently occurred among patients with cancer. Specific varia-

tions in cfRNA were particularly prevalent, including alternative

promoters (average ratio: 17.7%), RNA expression (average ra-

tio: 13.3%), allele-specific expression (average ratio: 12.5%),

and RNA splicing (average ratio: 11.4%).

Overall, our results showed that combined cell-free multi-

omics data could enhance the detection capacity for each of

the pre-defined cancer genes (i.e., sensitivity score with 95%

specificity); variations in cfRNA often exhibited a greater effect

on sensitivity compared with their cfDNA counterparts among

the 38 cancer genes. Next, we expanded the investigation

beyond pre-defined cancer genes to include genes that showed

variation in patients with cancer (i.e., cancer-related genes).

Compared with variations in cfDNA, variations in cfRNA
demonstrated greater sensitivity in cancer-related gene
detection
Genes were considered cancer-related when they exhibited

outlier behavior (out of 95% in HDs) in more than 75% of patients

with cancer. Patient detection rates for all genes across cfDNA

and cfRNA are shown in Table S3. Similar to the pre-defined can-

cer genes, frequently altered genes were mainly identified by

analysis of variations in cfRNA (Figure 2D). Generally, variations

in cfRNA tended to be more sensitive than variations in cfDNA

with respect to cancer detection. This observation in plasma

samples is similar to the results of a multi-omics study involving

tumor cells, which revealed that variations in RNA constituted

78.23% of all alterations identified across 731 genes with signif-

icant recurrent abnormalities.14

We also identified the 30 genes with the highest sensitivity (ex-

pressed as the proportion of detected patients) for alterations at

either the cfDNA or cfRNA level (Figure 2E). These data empha-

size that variations in cfRNA exhibit greater sensitivity than

their cfDNA counterparts; the top genes with variations in cfDNA

typically exhibited lower sensitivity relative to the top genes with

variations in cfRNA. Furthermore, we revealed considerable dif-

ferences between the top genes recognized by cfDNA and the

top genes recognized by cfRNA. These differences indicate

that the genetic insights offered by these two modalities are

complementary when evaluated within plasma. For example,

numerous top genes (e.g., MAP3K7CL, DEK, CLEC1B, and

SKAP2) with variations in cfRNA displayed functional associa-

tions with oncogenes and immune pathways. Among the top

genes with variations in cfDNA, altered mitochondrial DNA se-

quences were common; these alterations may be associated

with the increase metabolic activity present in cancer.26

Identification of differential alterations in cell-free
molecules among patients with cancer
In addition to the identification of variations within individual pa-

tients, we conducted statistical analyses to detect variations

with differential characteristics between two distinct cohorts: pa-

tients with cancer vs. HDs and patients with CRC vs. patients

with STAD (STAR Methods; Figure 3A). Among these differential

alterations, key observations were that cfRNA abundance,

cfDNA methylation level, and cfDNA windowed protection

score (WPS) primarily exhibited distinct variations within STAD;
4 Cell Reports Medicine 4, 101281, November 21, 2023
similarly, cfRNA abundance, cfRNA single-nucleotide variant

(SNV), and cfDNA WPS primarily exhibited distinct variations

within CRC, with numerical differences (Figure 3A). Many

well-known cancer alterations were identified in the differential

analysis. For example, increased abundance of cfRNA associ-

ated with KRASwas identified in patients with cancer (edgeR ex-

actTest, p = 0.011). Moreover, increased accessibility of the

KRAS promoter region was observed among patients with can-

cer, as indicated by its cfDNA WPS (Figure 3B). As another

example, the methylation level of cfDNA associated with

PGRMC1, a carbon monoxide-responsive molecular switch

associated with EGFR,27 exhibited significant hypomethylation

within the promoter region among patients with cancer (edgeR

exactTest, p = 0.047) (Figure 3B).

Next, we evaluated the discriminatory abilities of these diverse

alterations in cancer classification (Figures 3C andS3).We quan-

titatively determined the classification efficacy for each variation

using the ratio of inter-class distance to intra-class distance. We

found that the variations identified within cfWGS data performed

well in cancer detection (i.e., patients with cancer vs. HDs) and

the identification of distinct cancer types (i.e., CRC vs. STAD).

In contrast, cfMeDIP-seq data exhibited robust identification of

cancer types rather than detection of cancer. Notably, microRNA

abundance data derived from small cfRNA-seq data displayed

suboptimal performance in both scenarios; variations derived

from total cfRNA-seq data usually demonstrated superior cancer

detection efficacy rather than identification of specific cancer

types. Additionally, microbial cfRNA abundance (derived from

total cfRNA-seq data) more effectively distinguished the two

cancer types compared with features derived from human

cfRNAs, consistent with our previous findings12 (Figure 3D).

To compare the performance of combined multi-omics data

with single-omics approaches regarding classification, we per-

formed random forest classification and subsequent validation

through bootstrapping. Although classification performance

regarding STAD vs. HD and STAD vs. CRC was considerably

enhanced by using combined multi-omics data, the CRC detec-

tion task did not show a similar benefit. However, conclusions

based on the current cohort could be affected by the random

nature of the bootstrapping procedure and the cancer-type-spe-

cific attributes of cell-free nucleic acids. Thus, a broader valida-

tion cohort is needed to confirm these findings (Figure S4).

Identification of suppressed immune signatures in
plasma using cell-free multi-omics data
We explored the enriched pathways involved in differential al-

terations (Figure 3A) between patients with cancer and HDs.

The analysis showed that cfRNA data had comparatively better

information, relative to cfDNA data, regarding the quantity (Fig-

ure 4A) and functional attributes (Figure 4B) of the enriched

pathways. In terms of upregulated genes, we found that can-

cer-related pathways were significantly enriched in variations

detectable by cfDNA copy number and cfRNA abundance

(edgeR exactTest, p < 0.05). Additionally, we identified various

immune pathways (e.g., T cell and B cell receptor signaling

pathways) that were enriched in genes with downregulated

cfRNA abundance among patients (Figures 4B, S5A, and

S5B), implying that the plasma of these patients exhibits a state
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Figure 3. Differential alterations of various cell-free molecules

(A) Numbers of the differentially altered events in plasma between patients with cancer (n = 80) and HDs (n = 81) and between patients with CRC (n = 44) and

patients with STAD (n = 36).

(B) Examples of KRAS cfRNA abundance, KRAS window protection score (WPS), and PGRMC1 cfDNA methylation. The blue blocks, lines, and arrows below

each panel are genemodels. Black blocks above the promoter region of KRAS, promoter regions; gray blocks, enhancer regions; red arrowhead, open regions in

cancer.

(C) PCAs of 3 representative differential alterations among cancer patients and HDs.

(D) Ratio of inter-class distance over intra-class distance for each type of differential alteration. Ratios larger than 1 (dashed line) are colored red.
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of immunosuppression within these pathways. For example,

CD8A, a marker of cytotoxic T cells, and ZAP-70, a gene

with a critical activating role in downstream T cell signal trans-

duction pathways,28 were downregulated in the plasma of pa-

tients with cancer. CD19, a marker of B cells, was similarly

downregulated in these patients. PD-L1, a well-known immune

suppressor in cancer, was significantly upregulated in the

plasma of patients with CRC (Figure 4C).

Multi-omics pathway enrichment analysis (STAR Methods)

also confirmed this immunosuppression phenomenon; most

instances of downregulation involved cfRNA rather than cfDNA.

For example, among the 32 genes with differential variation that

were enriched in the T cell receptor signaling pathway, 28 ex-

hibited significant variation in cfRNA abundance, whereas 7 dis-

played significant variation in cfDNA abundance (Figures 4D,

S5C, and S5D).

Next, we validated the immunosuppression phenomenon in

published cell-free data for 710 samples, including total cfRNA
and extracellular vesicle–enriched cfRNA data for CRC, STAD,

esophageal carcinoma (ESCA), hepatocellular carcinoma

(HCC), pancreatic ductal adenocarcinoma (PDAC), and lung

adenocarcinoma (LUAD) (Table S4). Our validation analysis indi-

cated that the T cell and B cell receptor signaling pathways were

significantly downregulated in plasma from patients with these

types of cancer (Figure 4E).

In summary, cell-free multi-omics data revealed many cancer-

related functional pathways and signatures in plasma. In partic-

ular, we identified several downregulated immune signatures in

plasma from patients with cancer, which were mostly derived

from cfRNAs.

cfRNA features were derived from specific circulating
cells and components of the tumor microenvironment
To elucidate the origins of these cfRNA-derived signatures, we

performed total RNA-seq of matched samples, including

plasma, primary tumor, normal tissue adjacent tumor (NAT),
Cell Reports Medicine 4, 101281, November 21, 2023 5
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Figure 4. Enriched functional pathways of the differential alterations
(A) Numbers of the enriched pathways for the differentially altered genes defined by different variation events in cancer patients’ plasma.

(B) Kyoto Encyclopedia of Genes and Genomes (KEGG) terms of the top enriched pathways for each differential alteration.

(C) Differential cfRNA abundance for the example genes in the immune pathways. The y axis indicates transcripts per million (TPM).

(D) Example genes in the T cell receptor signaling pathway altered at different omics levels. The p-value represents the significance of the differential alterations.

The combined p-value was calculated by Activepathways.

(E) Down-regulated T cell and B cell receptor signaling pathways calculated by the public total and extracellular vesicle-enriched (EV-enriched) cfRNA-seq

datasets.

Single-tailed Wilcoxon rank-sum test was used. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant. ESCA, esophageal carcinoma; HCC,

hepatocellular carcinoma; LUAD, lung adenocarcinoma; PDAC, pancreatic ductal adenocarcinoma.

Article
ll

OPEN ACCESS
and peripheral blood mononuclear cells (PBMCs) from 16 pa-

tients with CRC and 6 HDs (Figure 5A). We used the computa-

tional deconvolution tool named "estimating the proportion of

immune and cancer cells" (EPIC)29 to assess RNA-seq reads in

plasma, tissue, and PBMCs, facilitating the identification of their

origins and components. Surprisingly, we found that the cfRNAs

in plasma were derived from blood hematopoietic constituents,

including lymphocytes (including B cells, CD4 T cells, CD8

T cells, and natural killer [NK] cells) and macrophages, as well

as encapsulated elements derived from components of the tu-

mor microenvironment (e.g., endothelial cells and cancer-asso-

ciated fibroblasts [CAFs]). Notably, cfRNAs in plasma contained

CAF-associated signals that were nearly undetectable in RNA

fromPBMCs (Figure 5B). Overall, the results showed that plasma

cfRNAs included peripheral blood cell-associated cues as well

as tissue-derived cellular signatures.

To determine which cells were downregulated in patients with

cancer, we investigated immune cell abundance via cfRNA-seq

data based on LM22 immune cell markers30 (Figure 5C). Plasma

from patients with cancer (vs. HDs) and primary tumor samples

(vs. adjacent normal tissue) exhibited substantial downregula-

tion of CD8-positive T cells; these phenomena were confirmed

by the Wilcoxon rank-sum test (p = 0.006 and p = 0.009, respec-
6 Cell Reports Medicine 4, 101281, November 21, 2023
tively). Similarly, immune cell populations with tumor suppressor

potential (i.e., B cells and NK cells) displayed similar downregu-

lation tendencies within plasma and primary tumors. These

downregulated immune signatures, present in plasma and tu-

mors, were not prominent in PBMCs (Figure 5C), highlighting

the potential for plasma cfRNAs to more effectively identify char-

acteristics of the tumor microenvironment and cancer progres-

sion compared with RNA from PBMCs.

We also assessed a broader range of pathways to identify

gene expression relationships in paired tumor and plasma sam-

ples. This analysis demonstrated significant positive correlations

across many pathways, including the Rap1 signaling pathway

(Spearman correlation, R = 0.764, p = 0.002), mismatch repair

(Spearman correlation, R = 0.698, p = 0.005), cancer-related

pathway (Spearman correlation, R = 0.5, p = 0.043), complement

and coagulation cascades (Spearman correlation, R = 0.588, p =

0.019), and platelet activation (Spearman correlation, R = 0.533,

p = 0.032) (Figure 5D).

In summary, this analysis revealed robust positive correlations

between plasma cfRNAs and tumor RNAs with respect to

specific cancer- and immune-related signatures. The finding

that plasma cfRNAs can detect tumor-derived signals and

origins suggests that those cfRNAs can serve as a noninvasive
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Figure 5. RNA expression signals compared in plasma, PBMCs, and tumors

(A) RNA-seq data in the paired samples of 22 patients with CRC. NAT, normal tissue adjacent tumor.

(B) Inferred signals originating from different cell types for 3 types of RNA-seq data (plasma, PBMCs, and tissue). The y axis indicates the log10-transformed cell

type ratio estimated by EPIC. Single-tailed Wilcoxon rank-sum tests were used.

(C) Inferred relative abundance of more cell types.

(D) Correlated pathways of plasma and paired tumor samples. The abundance value of a pathway was averaged from the genes in this pathway. The numbers on

the x axis corresponds to the sample identifiers in (A).
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modality for clinical monitoring of cancer progression and pa-

tient status.

Plasma cfRNA-derived signatures reveal the clinical
status of patients with cancer
To confirm the utility of plasma cfRNA-derived signatures in dy-

namic monitoring of clinical status among patients with cancer,

we performed an investigation of 143 total cfRNA-seq datasets

derived from patients with CRC and patients with STAD, using

our previously published data (GSE174302).12 We calculated

various cell type signature scores and determined their correla-

tions with cancer stage based on the deconvolution of

total cfRNA-seq data (STAR Methods; Figures 6A and 6B). We

found significant associations between scores corresponding

to distinct cell types (e.g., gd T cells, resting NK cells, M2 tu-

mor-associated macrophages, and CAFs) and overall cancer

stage (Figures 6C–6F). Among them, the gd-T cell score and

CAF score showed the greatest positive and negative correla-

tions with cancer stage, respectively (gd-T cell score: Spearman

correlation = �0.2385, p = 0.0022; CAF score: Spearman corre-

lation = 0. 2734, p = 0.0005).

Furthermore, we examined the correlations of these two

scores with the clinical indexes other than cancer stage. The

gd-T cell score also showed a negative correlation with respect

to tumor size in patients with CRC (Figure 6G; Spearman corre-

lation =�0.1700, p = 0.0709), consistent with its anti-tumor func-

tion.31,32 Patients with low plasma-derived CAF score in a TCGA

cohort (1,006 patients with CRC and patients with STAD)

showed significant longer survival time (Figure 6H; Log-rank

p = 0.00095). The other signatures correlated with patient sur-

vival in the TCGA cohort are described in Figure S6. Correlations

of all signatures and clinical indexes are summarized in Table S5.
In summary, this study revealed distinct immune (e.g., gd

T cell) and tumor microenvironment (e.g., CAF) signatures

derived from plasma cfRNA-seq data. These signatures have

potential as predictive scores to monitor clinical status in terms

of cancer stage, tumor size, and survival. However, it is impor-

tant to emphasize that rigorous validation of these signatures

in diverse CRC and STAD cohorts is warranted prior to their

use in clinical practice.

DISCUSSION

Conclusion
In this study, we revealed the cell-free nucleic acid landscape

for CRC and STAD, using matched data that included genomic,

epigenomic, and transcriptomic analyses of plasma. Next, we

demonstrated the concept of combined multi-omics in liquid bi-

opsy. Finally, we provided a cfRNA-based utility for dynamic

monitoring of cancer status.

Clinical significance of cancer status monitoring via
noninvasive biomarkers
Convenient monitoring of patient status, in terms of tumor size,

cancer stage, and immune response, is essential during cancer

treatment (e.g., immune and neoadjuvant therapies).33 However,

methods for evaluating treatment response and effectiveness

remain inconvenient and inaccurate.34 Liquid biopsy based

on cfDNA/cfRNA biomarkers has emerged as a promising

approach because of its noninvasive nature, minimal discomfort,

economic viability, and ease of implementation. Quantitative sig-

natures/scores based on noninvasive biomarkers can help clini-

cians to tailor therapeutic strategies to individual patients. Addi-

tionally, the gene signatures and functional pathways inferred
Cell Reports Medicine 4, 101281, November 21, 2023 7
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Figure 6. Clinical status-informative signatures derived from the plasma cfRNA

(A) Correlations between cancer stage and cfRNA-derived cell-type signatures for 77 patients with CRC and 66 patients with STAD. TME, tumor microenvi-

ronment; CAF, cancer-associated fibroblast; iCAF, inflammatory CAF; myCAF, myofibroblastic CAF.

(B) Overview of various cfRNA-derived signatures and individual clinical status, ranked by gd-T cell score and resting NK cell score. The cfRNA-derived scores of

(C) gd T cells, (D) EPIC: CAFs, (E) resting NK T cells, and (F) TIDE: TAM are shown at different cancer stages for CRC and STAD patients. EPIC: CAFs, CAFs score

defined by EPIC; TIDE: TAM, TAM score defined by TIDE; TIDE, a computational method named "tumor immune dysfunction and exclusion"; TAM, tumor

associated macrophages.

(G) Tumor sizes for 2 subtypes of CRC patients categorized by the gd-T cell scores (positive, >0; negative, = 0) in plasma. Single-tailed Wilcoxon rank-sum tests

were used. *p < 0.05, **p < 0.01, ***p < 0.001.

(H) Survival with high (top 50%) and low (bottom 50%) scores of EPIC CAFs in the TCGA cohort of 475 patients with colon adenocarcinoma (COAD), 164 patients

with rectal adenocarcinoma (READ), and 367 patients with STAD. Log rank test was used for survival time comparison.
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from plasma sequencing data can provide targets for investiga-

tion of the mechanisms that lead to disparate treatment

responses.

Functional targets revealed by the multi-omics data
The present study revealed many enriched pathways related to

the tumor microenvironment (Figure 4). For example, the focal

adhesion pathway plays an essential role in cellular communica-

tion and is strongly correlated with cancer progression.35

Furthermore, therewas substantial downregulation of translation

pathways in cfRNA data from the plasma of patients with cancer.

This phenomenon is consistent with the notion of tumor-

educated platelets.36 Additionally, the suppressed immune sig-
8 Cell Reports Medicine 4, 101281, November 21, 2023
natures in plasma match variations in the composition of active

immune cell fractions within tumors, as revealed in a previous

study.31 Considering the differential immunotherapy responses

of patients with cancer,37 these pathways and signatures merit

careful investigation across cancer subtypes.

Multi-omics perspectives in liquid biopsy
Similar to recent cfRNA studies,38,39 we did not perform extracel-

lular vesicle enrichment during cfRNA-seq because the full range

of cfRNAs in plasma included extracellular vesicle-associated

cfRNAs and cfRNAs that originated outside of extracellular ves-

icles (e.g., ribonucleoproteins). A more thorough exploration of

cfRNAs in various extracellular vehicles and ribonucleoproteins
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is needed.Moreover, the human circulatory system conveys bio-

logical signals through vesicular mechanisms and alternative

modalities. It is important to recognize that cfDNA and cfRNA

constitute a fraction of this substantial biological flux. The inter-

pretation of these complex biological processes in the circula-

tory system requires greater effort to fully investigate diverse

macromolecular components, including proteins and lipids. A

full understanding of cell-free molecules also requires a

multifaceted approach that incorporates various technological

modalities and experimental paradigms, such as chromatin

immunoprecipitation sequencing of cell-free nucleosomes

carrying active chromatin modifications (cfChIP-seq).40

Limitations of the study
In this study, state-of-the-art technologies enabled simulta-

neous investigation of cfDNAs, cfDNA methylation patterns,

small cfRNAs, and total cfRNAs using a limited amount of plasma

(2–3 mL). It is important to acknowledge that some conclusions

could have been biased by the specific technology used in this

study. For example, cfMeDIP was performed because of its

reduced plasma requirement (1–1.5 mL) compared with the

bisulfite sequencing method (5–8 mL).41 A bisulfite-based

method, such as single-cell whole-genome bisulfite sequencing

(scWGBS) would provide more detailed insights regarding DNA

methylation compared with cfMeDIP, although it would require

considerably greater sequencing depth (>303).42 The scope of

the present study was confined to a subset of patients with

gastrointestinal cancer. Consequently, it is important to gain a

comprehensive understanding of the cell-free molecule land-

scape across various cancer types and subtypes. A large cohort

study involving multiple clinical centers is also needed to estab-

lish a robust predictive model for clinical practice.
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Zhi John Lu

(zhilu@tsinghua.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All FASTQ files generated in this study have been deposited at the Gene Expression Omnibus and are publicly available as of the date

of publication. Accession numbers are listed in the key resources table. All original code has been deposited at Github and is publicly

available at https://github.com/tyh-19/Pipeline-for-multiomics. All software being used in this study was summarized with versions

and references in Table S6. Any additional information required to reanalyze the data reported in this work paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We sequenced 360 cell-free omics datasets (86 cfWGS, 98 cfMeDIP-seq, 127 total cfRNA-seq, and 49 small cfRNA-seq) from 161

individuals (44 colorectal cancer patients, 36 stomach adenocarcinoma patients, and 81 healthy donors). The individuals were re-

cruited fromPekingUniversity First Hospital (PKU, Beijing). Informed consent was obtained for all patients. Cell-free genome (cfWGS:

individual number = 125), epigenome (cfMeDIP: individual number = 150), and transcriptome (total cfRNA-seq: individual number =

152; small cfRNA-seq: individual number = 73) were profiled. Patients’ age was distributed between 42 and 87 years (median age =

64 years), and most patients (51 out of 80) were diagnosed with stage I/II (Figure S1A). Different subtypes of colorectal cancer and

stomach adenocarcinoma were included in the cohort (Figure S1B). More detailed information on age, gender, health status is pro-

vided in Table S1. For each person, 2–3mLplasma samplewas divided into 2–4 parts for 2 to 4-omics sequencing. For some samples

(mostly from healthy donors), the plasma volumeswere limited (less than 2mL). Wemixed these samples from personswith the same

gender and similar age, then divided them into 2 to 4 parts (Figure S1C).

Among all participants, 95 were matched in 2-omics data, 84 were matched in 3-omics data, and 42 were matched in 4-omic data

(Figure 1A). By requiring enough coverage ratio and total mapped reads (see the detailed analyzing Methods below, Table S2), we

kept most datasets (352 out of 360) for the downstream analyses.

This study was approved by the institutional review board of Peking University First Hospital (2018-15). Informed consent was ob-

tained from all participants.

METHOD DETAILS

Sample processing
Peripheral whole blood samples were collected using EDTA-coated vacutainer tubes before any treatment of the patients. Plasma

was separated within 2 h after collection. All plasma samples were aliquoted and stored at �80�C before cfDNA and cfRNA extrac-

tion. Each sample was divided into 2–4 parts for sequencing different molecular types.
e2 Cell Reports Medicine 4, 101281, November 21, 2023

mailto:zhilu@tsinghua.edu.cn
https://github.com/tyh-19/Pipeline-for-multiomics
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://github.com/GuangchuangYu/clusterProfiler/
https://cibersortx.stanford.edu/index.php
https://github.com/GfellerLab/EPIC
https://github.com/foreverdream2/dysfunction_interaction_test/releases
https://github.com/foreverdream2/dysfunction_interaction_test/releases
https://cran.r-project.org/web/packages/ActivePathways/index.html
https://cran.r-project.org/web/packages/ActivePathways/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html


Article
ll

OPEN ACCESS
Peripheral bloodmononuclear cells (PBMCs) were separated fromwhole blood by Ficoll. All PBMC samples were stored at�80�C.
Tissue samples were collected during surgery and transferred to liquid nitrogen within 30 min. Normal tissue adjacent tumor (NAT)

was collected at least 2 cm away from the primary tumor.

Isolation and sequencing of cfDNA (cfWGS) and cfDNA methylation (cfMeDIP)
cfDNAwas extracted from plasma using QIAampMinElute ccfDNA Kit. DNA concentration was quantified by Qubit dsDNAHS Assay

kit. Up to 5 ng plasma cfDNA (�0.5 mL plasma) was used for cfWGS library with Kapa HiFi Hotstart ReadyMix in 11–13 cycles. Li-

braries were sequenced on Illumina HiSeq X-ten (�60.7 million paired-end reads per library) with paired-end read length of 150

bases.

cfDNAmethylation (cfMeDIP-seq) library was prepared following a previous protocol.67 Up to 15 ng plasma cfDNA (�1mL plasma)

were used as input, followed by end repair and A-tailing using KapaHyper Prep Kit. Next, adaptors were ligated using NEBNextMulti-

plex Oligos index. Phage lambda DNA was added to fill the low input to 100 ng. After heat-denature and snap-cool, single-stranded

DNA mixture was incubated with 5-mC antibody provided by MagMeDIP-seq Package, followed by 14–16 cycles of library amplifi-

cation, bead purification, and size selection. Libraries were sequenced on Illumina HiSeq X-ten (�42.9 million paired-end reads per

library) with paired-end read length of 150 bases.

cfWGS data processing and quality control
Raw fastq files were trimmed with trim_galore68 (All software being used in this study were summarized with versions and references

in Table S6.), then aligned to hg3869 genome with default parameters using bwa-mem2.43 Reads were further filtered by proper

template length (20 bp to 1000 bp) using samtools44 and de-duplicated usingGATKMarkDuplicates.45 Base quality was recalibrated

using GATK BaseRecalibrator.45

We developed a set of quality control criteria to filter out poor libraries (Table S2). 6 quality control stepswere included: 1) relH score

(the relative frequency of CpGs) < 1.5; 2) saturation score (300 bp bins correlation) > 0.9; 3) genome depth >0.2; 4) coverage ratio >0.1;

5) mapped ratio >0.9; 6) unique read pairs >2 million. Finally, 2 samples were filtered out.

cfMeDIP-seq data processing and quality control
Methylation data were trimmed by fastp.70 Clean reads were firstly subjected to lambda genome alignment and then hg3869 genome

using bowtie271 with ‘‘end-to-end’’ mode.Mapped readswere then de-duplicated byGATKMarkDuplicates.45 For the quality control

procedure, we employedMEDIPS58 package to get CpG enrichment metrics and saturation estimation in 300 bp genome-wide bins.

featureCounts48 were used to assign reads to each gene.

In data processing, we included 6 quality control steps (Table S2): 1) saturation score >0.9; 2) GoGe score (the observed/

expected ratio of CpGs) > 1.2; 3) relH score >1.5; 4) coverage ratio >0.05; 5) mapped ratio> 0.9; 6) unique read pairs >2 million.

In total, 3 samples were filtered out.

Isolation and sequencing of cfRNAs (total cfRNA-seq and small cfRNA-seq)
Total cfRNAs were extracted from�1mL of plasma using the Plasma/Serum Circulating RNA and Exosomal Purification kit. Recom-

binant DNase I was used to digest DNAs. One set of ERCC RNA Spike-In Control Mixes was added. Next, the RNA Clean and

Concentrator-5 kit was used to obtain pure total RNA. The total cfRNA library was prepared by SMARTer Stranded Total

RNA-Seq Kit – Pico. Libraries were sequenced on Illumina HiSeq X-ten (�37.5 million paired-end reads per library) with a length

of 150 bases.

Small cfRNAs were extracted from�1mL of plasma using the miRNeasy Serum/Plasma Kit. 1 ml ExiSEQNGS Spike-in was added

to the extracted RNA. The small cfRNA library was preparedwith theQIAseqmiRNA Library Kit. Libraries were sequenced on Illumina

HiSeq X-ten (�40.1 million reads per library), where adaptors linked to the short reads were later removed.

Total cfRNA-seq data processing and quality control
For total cfRNA-seq data, adaptors and low-quality sequences were trimmed using cutadapt.68 Reads shorter than 16 nt were dis-

carded. For template-switch-based RNA-seq data, GC oligos introduced in reverse transcription were trimmed off, after which reads

shorter than 30 nt were discarded. The remaining reads were mapped to ERCC’s spike-in sequences, NCBI’s UniVec sequences

(vector contamination), and human rRNA sequences sequentially using STAR.50 Then, all reads unmapped in previous steps were

mapped to the hg3869 genome index built with the GENCODE72 v27 annotation. Reads unaligned to hg38 were aligned to circRNA

junctions.73 For circRNA, only fragments spanning back-splicing junctions were taken into consideration. Duplicates in the aligned

reads were removed usingGATKMarkDuplicates.45 To avoid the impact of potential DNA contamination, only intron-spanning reads

were considered for gene expression quantification.36 Intron-spanning readswere defined as a read pair with a CIGAR string in which

at least one mate contains ‘N’ in the BAM files. Reads on exons were counted and aggerated to gene by featureCounts.48

We filtered total cfRNA-seq samples usingmultiple quality control steps (Table S2): 1) raw read pairs >10million; 2) clean read pairs

(reads remained after trimming low quality and adaptor sequences) > 5 million; 3) aligned read pairs after duplicate removal (aligned

to the hg3869 human genome, and circRNA junctions) > 0.5 million; 4) fraction of spike-in read pairs <0.5; 5) ratio of rRNA read
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pairs <0.55; 6) ratio of mRNA and lncRNA read pairs >0.2; 7) ratio of unclassified read pairs <0.6; 8) number of intron-spanning read

pairs >100,000, 9) exonic/intronic reads ratio >1. In total, 3 samples were filtered out.

Small cfRNA-seq data processing and quality control
For small cfRNA-seq data, reads quality lower than 30 or length less than 15 were filtered by trim_galore. The remaining reads were

sequentially mapped to ExiSEQ NGS Spike-in (a mix of 52 synthetic 50 phosphorylated microRNAs), NCBI’s UniVec sequences, and

human rRNA sequences, miRNA recorded in miRbase,74 lncRNA, mRNA, piRNA, snoRNA, snRNA, srpRNA, tRNA, transcripts of un-

known potential (TUCPs) annotated in MiTranscriptome,75 Y_RNA by bowtie2.71 Mapped reads were sorted and indexed by sam-

tools.44 Duplicates were removed by umi_tools.52

We filtered small cfRNA-seq samples using 2 quality control steps (Table S2): (1) datasets are required to have at least 100,000

reads that overlap with any annotated RNA transcript in the host genome, and (2) over 50%of the reads that map to the host genome

also align to any RNA annotation. All small cfRNA-seq samples have enough reads for quantification, and most of the reads are

aligned to RNA.

Isolation and sequencing of RNAs in tissue cells and PBMCs
Tissue RNA was extracted by Trizol. The tissue RNA library was prepared with the NEBNext Ultra II RNA Library Prep Kit for Illumina.

PBMC was seprated by Ficoll from whole blood. The PBMC RNA library was prepared by SMARTer Stranded Total RNA-Seq Kit –

Pico. All libraries were sequenced on Illumina HiSeq X-ten (�38.8 million per library) with paired-end read length of 150 bases, where

adaptors being sequenced were later removed.

Genome annotations
Human gene-centric genome regions and RNA biotypes were extracted from GENCODE v27 gtf file using bedtools.76 Human

genome blacklist regions77 were downloaded from ENCODE (https://www.encodeproject.org/). CpG island regions were down-

loaded from UCSC genome browser (http://genome.ucsc.edu/). CpG shore and shelf were defined as 2 kb and 4 kb flank regions,

respectively. Repeated regions were downloaded fromRepeatMasker (rmsk) database in UCSC genome browser. Promoter regions

were defined as �2000 bp to +500 bp relative to TSS (transcription start site), according to a recent study.78

cfDNA and cfRNA length estimation
The length of cfDNA was summarized using BAMmetric ‘‘TLEN’’ (Figure S2B). Insert length of total cfRNA-seq (Figure S2H) was esti-

mated by MISO,54 using long constitutive exons as references.

Correlation calculation among samples and omics
For correlation among samples, experiment reproducibility was checked using high throughput data correlation. Sample-based (i.e.,

sample A correlated with B by all genes abundances) Pearson correlations and corresponding p-values were calculated by rcorr

function in R package Hmisc.79 Inter- or inner-omics correlations among different cancer types were averaged from multiple

samples.

For gene correlation among omics, gene-based correlations (e.g., a gene’s DNA copy number and its RNA expression in the

matched samples) were calculated. To compare omics correlation in cell lines and tissues, we downloaded RNA expression, DNA

copy number, and DNA methylation data from the Cancer Cell Line Encyclopedia (CCLE)20 and the Cancer Genome Atlas

(TCGA)21 from UCSC Xena (https://gdc.xenahubs.net/) and the Cancer Dependency Map portal (https://depmap.org/), respectively.

Matched 3-omics data (33 stomach and 49 large intestine cell lines; 337 STAD, 307 COAD tissues) were selected for further analysis.

For TCGA data, the gene-level copy number data were calculated by taking the segmental mean of the corresponding gene; the DNA

methylation data were analyzed by calculating the CpG average beta value in the promoter region (2000 bp upstream and 500 bp

downstream of TSS) of each gene; the gene expression data were converted to TPM (transcripts per million) data. Genes with

NAs were removed.

Calculation of multiple cfDNA variations
DNA copy number, windowed protection score (WPS), end-motif frequency, and fragment size were calculated based on the cfDNA-

seq data. And DNA methylation of the promoter and CpG island was calculated based on cfMeDIP-seq data.

DNA copy number: Copy number was calculated as a gene-centric CPM (counts per million mapped regions) using cfWGS data,

where hg38 blacklist regions77 were masked. It was standardized as Z score using HDs’ distribution.

WPS: Windowed protection score (WPS) was calculated as the originally described study with minor modifications to estimate

nucleosome occupancy in cfDNA.80 In brief, we used similar parameters as previously described: a minimum fragment size of

120 bp, a maximum fragment size of 180 bp, and a window of 120 bp. To account for variations in sequencing depth between sam-

ples, we performed a normalization step by dividing the WPS by the mean depth of randomly selected 1000 background sites in the

genome. And then, for each gene, we quantify the nucleosome occupancy in TSS by computing the mean WPS from �150bp

to +50bp around TSS.
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End-motif frequency: End-motif was calculated following Jiang et al.81 In short, the occurrence of all 50 end 4-mer sequences (256

in total) of each valid template were counted and normalized as a ratio for each sample. Shannon entropy was calculated from the

frequency of motif as motif diversity score (MDS) for each sample (theoretical scale: [0,1]).

Fragment size: The fragment size ratio matrix was calculated following Cristiano et al.82 In short, 100–150 bp and 151–220 bp

cfDNA templates were defined as short and long fragments respectively, 504 filtered bins mentioned in the original paper were con-

verted to 469 bins in GRCh38 genome version, the read counts of each fragments type were also adjusted by LOESS-based GC

content correction model.

DNA methylation: For each sample, raw counts of cfMeDIP-seq in promoter regions were normalized to CPM for cfDNA methyl-

ation level. We also computed counts per 300bp non-overlapping windows, normalized to CPM, and reduced to windows encom-

passing CpG islands, shores, and shelves.

Calculation of multiple cfRNA variations
All the RNA variations, except for miRNA abundance, were calculated based on the total cfRNA-seq data.

RNA expression/cfRNA abundance: raw counts of miRNAs were normalized to CPM using small cfRNA-seq data; raw counts of

the other genes were normalized to TPM using total cfRNA-seq data.

cfRNA alternative promoter: transcript isoform abundance was quantified by salmon55 and normalized to TPM. TPMs of isoforms

with transcript start sites within 10 bp (sharing the same promoter) were aggregated as one promoter activity. TPM <1 promoter is

defined as an inactive promoter. The promoter with the highest relative promoter activity is defined as the major promoter. The re-

maining promoters are defined as minor promoters.14

cfRNA single nucleotide variant (SNV): intron-spanning reads were split by GATK SplitNCigarReads45 for confident SNP calling at

RNA level. Then, alterations were identified by GATK HaplotypeCaller45 and filtered by GATK VariantFilteration45 with the following

4 criteria: strand bias defined by fisher exact test phred-scaled p-value (FS) < 20, variant confidence (QUAL) divided by the unfiltered

depth (QD) > 2, total number of reads at the variant site (DP) > 10, SNP quality (QUAL) > 20. Allele fraction was defined as allele count

divided by total count (reference count and allele count).

cfRNA editing:GATK ASEReadCounter45 was used to identify editing sites based on REDIportal.83 The editing ratio was defined as

allele count divided by total count.

cfRNA allele specific expression: GATK ASEReadCounter45 were used to identify allele specific expression gene site based on

SNP sites. For each individual, Allelic expression (AE, AE = |0.5 � Reference ratio |, Reference ratio = Reference reads/Total reads)

was calculated for all sites with R16 reads.84

cfRNA splicing: The percent spliced-in (PSI) score of each alternative splicing event was calculated using rMATs-turbo.56

Chimeric cfRNA: Reads unaligned to genome were remapped to chimeric junctions by STAR-fusion50 to identify chimeric RNA.

Chimera references were based on GTex85 and ChimerDB-v3.86

Microbial cfRNA abundance: Reads unaligned to genome were classified using kraken257 with its standard database to identify

microbial cfRNA at genus level. Potential contaminations were filtered according to previous study.12 Counts at the genus level

were also normalized by total genera counts.

Calculation of differential alteration between cancer and healthy control
cfDNA copy number, promoter methylation, and CpG island methylation: exactTest implemented in edgeR60 were used between

cancer patients and HDs. |log2FC| > 0.59 and p-value <0.05 was used as the cutoff for defining significant differential alteration.

cfDNA endmotif and fragment size: each differentially usedmotif or differential size fragment were identified by theWilcoxon rank-

sum test for relatively end motif usage or fragment size. p-value <0.05 was used as the cutoff.

cfDNA windowed protection score: each differentially protected gene was identified by the Wilcoxon rank-sum test for windowed

protection score. |delta windowed protection score| > 0.5, and p-value <0.05 was used as cutoff.

RNA expression/cfRNA abundance and cf-miRNA abundance: differentially expressed genes were identified using the exactTest

method in edgeR.60 |log2FC| > 0.59 and p-value <0.05 was used as cutoff.

cfRNA alternative promoter usage, editing, and SNV: each differentially used promoter or the differentially mutated allelic site

or editing site was defined by the Wilcoxon rank-sum test for promoter usage or allele fraction. |delta allele fraction| > 0.2 and

p-value <0.05 was used as cutoff.

cfRNA allele specific expression: each differentially expressed allelic site was defined by the Wilcoxon rank-sum test for AE. |delta

AE| > 0.1 and p-value <0.05 was used as cutoff.

cfRNA splicing: differential splicing events were identified by the likelihood ratio test implemented in rMATs. |delta PSI|R 0.05 and

p-value <0.05 was used as cutoff.

Chimeric cfRNA: differential chimeric RNA events were defined by the fisher exact test between cancer patients and healthy do-

nors. |delta frequency| > 0.1 and p-value <0.05 was used as cutoff.

Microbial cfRNA abundance: each differential genus abundance was defined by the Wilcoxon rank-sum test. |delta AE| > 0.1 and

p-value <0.05 was used as cutoff.
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Pathway enrichment analysis
For the above differential alterations, up-regulated and down-regulated genes in cancer were annotated by Kyoto Encyclopedia of

Genes and Genomes (KEGG).87 For cfRNA SNP, allele specific expression, and editing, the dysregulated sites’ coordinates were

assigned to the gene using an R package, biomaRt.61 KEGG enrichment was calculated using clusterProfiler.62

Integrative pathway analysis of multi-omics
Integrative pathway analysis of multi-omics data (i.e., RNA expression, CNA, DNA methylation) was performed using ActivePath-

ways.65 p-values were corrected for multiple testing using the Holm procedure, and 0.05 was set as the cutoff value for significance.

And then, the enrichment map was visualized using the plugin enhancedGraphics in Cytoscape.88

Cell type signature score calculation
Cell type signature scores were deconvoluted from the plasma/tissue total RNA-seq data, using CIBERSORTx63 with 1000 permu-

tations. CIBERSORTx uses a reference panel of signature genes of different cell types and implements a support vector regression

model to estimate the compositions of a mixture of different cell types’ RNAs. We used panels of tumor microenvironment (TME)

cells89 and LM22 panels of immune cells.30 We also used TIDE64 and EPIC29 methods to calculate scores of TME cells. The input

to CIBERSORTx, TIDE, and EPIC is the TPM read count matrix of cfRNA abundance. When calculating the score of EPIC:CAFs

for the TCGA cohort, the CAF gene list was re-defined using our cfRNA-seq data (significantly correlated with the stage), and the

input gene abundance values were derived from the tissue RNA-seq data of TCGA.

QUANTIFICATION AND STATISTICAL ANALYSIS

The multi-omics integrated p-value was merged by Browns’ Method in the ActivePathways. The Wilcoxon rank-sum test was used

for the quantitative data comparisons in Figures 4, 5, and 6. The Kaplan-Meier survival curve was generated to assess the survival

rate. The log rank test was used to test for significant differences. All reported p-values were two-sided, unless otherwise specified.

Statistical power of differential alteration was calculated through different methods, which has been described inCalculation of dif-

ferential alteration between cancer and healthy control. The area under the receiver operating characteristic curve was used to

assess the ability to distinguish between CRC, STAD and HD in Figure S4.
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