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Abstract

Cigarette smoking and obesity are the leading causes of premature morbidity and mortality 

and increase the risk of all-cause mortality four-fold when comorbid. Individuals with these 

conditions demonstrate neurobiological and behavioral differences regarding how they respond 

to rewarding stimuli or engage in inhibitory control. This narrative review examines the role 

of reward and inhibition in cigarette smoking and obesity independently, as well as recent 

research demonstrating an effect of increased body mass index (BMI) on neurocognitive 

function in individuals who smoke. It is possible that chronic smoking and overeating of highly 

palatable food, contributing to obesity, dysregulates reward neurocircuitry, subsequently leading 

to hypofunction of brain networks associated with inhibitory control. These brain changes do 

not appear to be specific to food or nicotine and, as a result, can potentiate continued cross-use. 

Changes to reward and inhibitory function due to increased BMI may also make cessation more 

difficult for those comorbid for obesity and smoking.
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1. Introduction

Cigarette smoking and obesity are the two leading causes of premature morbidity and 

mortality worldwide [1–3]. Individuals who smoke cigarettes and have obesity incur four 

times the risk of all-cause mortality compared to lean individuals who have never smoked 

and eleven times the risk of cardiovascular diseases [4]. The negative health effects of 

cigarette smoking and obesity can shorten life by more than 10 years [5,6] and substantially 

impact productivity and public health costs [1,3]. Given the substantial health burden, it is 

critically important to characterize this comorbid population to best tailor treatments and 

develop interventions to prevent the co-occurrence of obesity and smoking.
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Nicotine addiction and diet-induced overweight are both conditions resulting from 

overconsumption of rewarding substances associated with disregard of long-term adverse 

outcomes, hallmarks of impulsivity, yet little is known about the overlap of these conditions. 

Studies have documented obesity-related differences in rate of smoking [7], quit success 

[8,9], and risk of negative health outcomes [4]. Obesity appears to have a complicating 

influence on smoking behavior and cessation. However, there is minimal speculation on 

why this might be so, and until recently, no demonstration of a potential brain-based 

mechanism. Alterations in evaluation of reward and ability to control prepotent responses 

are evident in both obesity and smoking; [10–13] it is possible that overlapping dysfunction 

in neurocircuits coding for reward and inhibitory processes may contribute to the unique 

presentation of the comorbid population. We hypothesize that obesity in individuals who 

smoke may be associated with unique alterations in response to reward, inhibitory control, 

and decision-making processes, thereby hindering smoking cessation in this population.

Recent reviews have comprehensively described the relationships between smoking, eating 

behavior, and bodyweight, as well as the similarities in neurobiology [11,12,14,15]. In 

particular, the literature has highlighted the impact of smoking behavior or cessation 

on intake and bodyweight. In contrast, this narrative review aims to examine the 

influence of intake and bodyweight on smoking behavior. In particular, this review will 

examine differences in neurobiologically-based cognitive processes (described herein as 

neurocognitive function) that are evident with increased body mass index (BMI) in people 

who smoke, emphasizing the constructs of reward and inhibition. Lastly, we hypothesize 

how obesity may lead to difficulty quitting smoking. Patients with higher BMIs make 

up 70% of those seeking treatment for smoking [16], and weight concerns increase risk 

of relapse [8]. Given the public health significance, understanding how BMI influences 

neurocognition in smoking can inform treatment to promote smoking cessation among 

individuals with excess body weight.

2. Reward and inhibition in smoking

Nicotine derives its rewarding properties through its effect on the dopaminergic (DA) 

system, both directly [17]and indirectly via action on nicotinic acetylcholine receptors 

(nAChRs) [18], leading to sharp increases in striatal DA [13]. Striatal DA receptor-

expressing neurons project to a range of brain regions, including the nucleus accumbens 

(NAc), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), dorsolateral prefrontal 

cortex (DLPFC), amygdala, dorsal striatum, ventral pallidum and substantia nigra [19,20]. 

Smoking-related disturbance of this system has far-reaching implications for neurocognitive 

function, as this network plays an important role in reward identification and valuation [21–

23], integration with motivational and affective drives [24–26], as well as executive function 

and regulation [27–29].

In human positron emission tomography (PET) studies, reductions in DA receptor 

availability are associated with decreased activity of the dorsolateral prefrontal cortex 

(DLPFC) and ACC, areas linked with inhibitory control and decision-making in substance 

use [30,31]. Individuals who smoke demonstrate lower striatal DA receptor availability 

or binding potential than nonsmokers [32–34], suggesting down-regulation and reduced 
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activation of prefrontal brain regions [35, 36]. In turn, this hypoactivation is associated with 

craving and smoking behavior [37]. Cue-reactivity studies have demonstrated that blunted 

activation in dopamine-rich brain regions in response to pleasant, non-smoking rewards 

(e.g., money, food, romantic/sexual), relative to activation in response to smoking cues, 

predicts abstinence in smoking cessation treatment [38–40]. As bodyweight influences brain 

response to reward (discussed below), it is possible that this balance may differ with BMI, 

subsequently shaping treatment outcomes.

Connectivity between brain regions may also be altered with smoking, specifically in 

and amongst the executive control networks (comprising regions of the dorsolateral 

prefrontal cortex and the lateral posterior parietal cortex), default mode network (including 

the posterior cingulate cortex, prefrontal cortex, angular gyri and parahippocampus) and 

salience network (comprised of the insula and anterior cingulate). Severity of nicotine 

dependence [41], craving [42–44] and reward response to smoking cues [45] are all 

associated with connectivity both within the salience network and coupled with broader 

brain networks. However, there are conflicting findings in the extant literature as to whether 

salience or default mode network resting-state connectivity is reduced [46–48] or elevated 

in participants who smoke as compared to nonsmokers (however see [49,50]). Given that 

none of these studies controlled for the potential influence of bodyweight, it is possible 

that differences in body mass index (BMI) may underlie the disparate findings. Similar 

to cue-reactivity research, studies have shown that functional connectivity may predict 

treatment outcomes in smoking cessation [39]. If BMI idiosyncratically changes brain 

network function in those who smoke, this may partially explain differences in quit success 

in individuals comorbid for obesity and smoking.

In the short term, nicotine improves attention and memory, and brief abstinence is 

associated with impairments in cognitive control and executive function [51], reinforcing 

smoking behavior. With chronic use, however, individuals who smoke are shown to have 

poorer performance on inhibitory control tasks [36,52] and hypoactivation in prefrontal 

areas during inhibitory control tasks [35,36,52]. Further, long-term smoking cessation 

may promote improvements in executive control [53,54], potentially attributable to the 

normalization of DA receptor availability [33,34]. Targeting these improvements in 

executive control may both promote and extend abstinence through neuroplastic return to 

function.

Through the desensitization of the nAChR and DA systems, chronic nicotine exposure 

dysregulates responses to reward, both smoking-related and not. Evidence suggests that 

diminished ability to experience reward, or hedonic capacity, is predictive of smoking uptake 

and progression [55], and participants who smoke report reduced reward globally than 

nonsmokers or those with a history of smoking [56]. With consumption, cigarettes become 

heavily overvalued as rewards compared to alternative reinforcers [57,58], but neuroimaging 

research suggests the neurobiology of smoking is linked to more global reward responsivity. 

For example, nicotine affects the response to secondary rewards: the anterior insula, anterior 

cingulate, and striatum show enhanced activation to monetary reward following acute 

administration [59]. Greater responsivity to monetary reward has also been linked to caudate 
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response to visual smoking cues [60]. As global reward response is dysregulated, cognitive 

processes such as decision-making may suffer as a result.

Individuals who smoke have more difficulty delaying monetary and consumable rewards 

than never-smokers and those who have successfully quit [61–65], and greater difficulty 

delaying is correlated with cigarette self-administration [66] though not with dependence 

[67]. Compared to those who do not, individuals who smoke show reduced ventral striatal 

activation in response to delayed reward, suggesting delayed reinforcers are more devalued 

in people who smoke [68]. Delay discounting, or the extent to which delayed reinforcers are 

devalued, is associated with lower activation in middle and superior frontal regions in those 

who smoke when presented with immediate rewards [64]. Nonsmokers will show a negative 

correlation between delay discounting and frontal connectivity with reward-related regions 

[69,70] – in other words, reduced connectivity in fronto-striatal networks, or disinhibition 

of reward responsivity, is linked to greater delay discounting. However, in individuals 

who smoke, greater frontal connectivity with the insula is linked with greater discounting 

[71]. Insular connectivity is heavily implicated in cue-induced craving in cigarette smoking 

[43,45,72,73] and nicotine dependence [72]suggesting that dysfunction in this circuit may 

elevate vulnerability to immediate rewards and subsequent motivation to smoke, without 

the inhibitory influence of the frontal executive control network. Additional research has 

demonstrated that fronto-insular connectivity, highlighting the influence of reward valuation 

and subsequent motivation on smoking-associated neurobiology.

3. Reward and inhibition in obesity

Caloric intake sets off a complicated cascade of neurotransmitter release, both central and 

peripheral, and is modulated by hedonic and homeostatic systems. Diet-induced obesity, 

by definition, is related to chronic consumption beyond nutritional needs and may be 

due as much to a failure of the homeostatic system as to hedonic over-control. Largely, 

however, dopamine (DA) is the primary transmitter indicated in eating behavior. Food 

intake potentiates the release of DA in the dorsal striatum, with greater release associated 

with both higher palatability [74] and higher fat content, independent of flavor [75]. Bello 

and colleagues [76] determined that chronic highly palatable food consumption leads to 

downregulation and reduced sensitivity in D2 receptors. Neuroimaging in humans has shown 

that obese individuals have lower striatopallidal receptor availability of DA than individuals 

with normal weight [77]. There is somewhat conflicting evidence of a relationship between 

D2 and BMI [78], which may be linked to a parabolic pattern of reward sensitivity as 

BMI increases, with those at very low or very high weights exhibiting reduced reward 

sensitivity while levels in those in the overweight or mildly obese range are elevated [79,80]. 

Increased striatal DA release seen in mild or early obesity may lead to decreased D2 receptor 

availability when an individual is more severely obese but not at earlier stages of weight gain 

[81]. BMI may have a dynamic relationship with reward such that responses to rewards and 

the relationship of that response with behavior change as bodyweight increases.

Greater sensitivity to rewards, in general, may be a preexisting characteristic that drives 

overeating and, thereby, weight gain [82]. However, some studies suggest that while greater 

reward sensitivity predicts consumption, it is not necessarily correlated with overweight 
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[83]. Individuals with obesity are willing to work harder for food reward, demonstrating 

a higher relative reinforcing value of food [84], and additionally find alternatives less 

reinforcing [84,85]. High food reinforcement is also associated with future weight gain 

[86]. Notably, regular consumption may lead to reduced rewarding value of food over time 

[87,88], and this reduction is also associated with future weight gain [87]. Beyond food, 

individuals with overweight [89] and obesity [90,91] show increased neural response to 

monetary reward in the ventral striatum, amygdala, and medial frontal cortex. This research 

suggests bodyweight, similar to smoking influences neural responses to non-natural rewards, 

pointing to a more global effect of chronic overeating on reward processing.

While there are robust findings of worse performance on inhibitory motor tasks in 

individuals with obesity (see reviews [92,93]), others only show a difference on food-related 

inhibitory tasks [94–96], or fail to show a link to BMI at all [97–99]. Over time, inhibition 

does seem to predict weight change, however. In obesity treatment, those who demonstrate 

worse inhibitory control have been shown to lose less weight, both among children [100] 

and adults [101]. Further, brain response related to inhibitory control is altered with obesity. 

Women with obesity demonstrate reduced activation when inhibiting behavioral responses 

in the insula, inferior parietal cortex, cuneus, and supplementary motor area [97] and when 

practicing ‘appetite control’ in the medial frontal cortex, caudate, and ACC [102]. Poorer 

performance during inhibitory tasks has been associated with hypoactivation and reduced 

glucose metabolism of the prefrontal cortex in obesity as well [36,93,103,104]. Reduced 

response in frontal inhibitory regions has also been linked to greater delay discounting 

in individuals with obesity [104,105], as well as inhibitory control dysfunction, and is 

shown to predict weight change [106,107]. Like individuals who smoke, those with higher 

BMIs or obesity tend to have higher delay discounting rates than their lean counterparts 

[98,105,108,109]. Delay discounting may also predict diet success and weight change 

over time [106,110], as well as intake in both lean and overweight samples [111,112]. 

The particular effects of increasing BMI on inhibitory control are not restricted to eating 

behavior but may impair responding more generally in such a way as to dysregulate 

response to other rewards.

4. Influence of eating and bodyweight on reward & inhibition in people 

who smoke

Dysregulation of reward-related networks has been posited to impact inhibition, such that 

prolonged consumption of appetitive rewards will lead to dysfunction in the prefrontal 

neurocircuitry involved in executive control and decision-making [113]. It follows that 

regular overconsumption of highly-palatable food or nicotine would lead to more general 

difficulty in inhibitory control. Subsequently, it is hypothesized that neurobiological 

dysfunction in inhibitory control-related regions would be compounded by effects from 

regular nicotine use and highly palatable food consumption, creating exponentially greater 

disturbance to executive function in individuals with obesity who smoke. However, despite 

the considerable overlap in the pathophysiology of smoking and obesity and the high health 

risks associated with comorbidity, we know comparatively little about how comorbid obesity 

and smoking influence neurocognitive function.
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Behaviorally, only one study has examined delay discounting in the comorbid population, 

showing that adolescents with comorbid obesity and smoking have significantly greater 

delay discounting than those without, suggesting that obesity may confer risk of 

dysfunctional reward-related decision-making above and beyond smoking alone [114]. 

Blendy and colleagues demonstrated reduced nicotine reward from smoking in humans 

and mice with obesity, suggesting that the drivers of smoking behavior in individuals with 

obesity may be related to behavioral rather than chemical reinforcement [115]. These studies 

suggest that conditioned cues that predict rewards like smoking or eating may be particularly 

salient in this population and make cessation more difficult.

To examine this, we explored the influence of BMI on brain response to evocative smoking 

cues and found that increasing BMI was negatively associated with activation of the right 

dlPFC during smoking cue exposure [116]. Further, individuals with overweight and obesity 

who smoke showed significantly reduced response in the dlPFC compared to lean. Notably, 

greater commission errors on a Go/NoGo inhibitory control task were correlated with 

blunted right dlPFC response to smoking cues amongst smoking participants with obesity 

but not those who were overweight or lean. It is possible that reduced activation in the 

right dlPFC with obesity may thus lead to difficulty regulating cue-potentiated craving 

and smoking motivation. Extending this research to functional connectivity also showed an 

influence of BMI in chronic cigarette smoking, particularly in the salience and default 

mode networks [117]. Differences between weight groups in the relationship between 

connectivity in the salience network and smoking behavior were also evident. Sutherland 

and colleagues hypothesize that dysregulated connectivity amongst these networks may 

underlie the maintenance of nicotine addiction through hypersensitivity to drug cues, 

somatic symptoms of withdrawal, and the cognitive impairments associated with acute 

abstinence [44]. That this varies with BMI suggests that vulnerability to relapse may also 

differ depending on bodyweight.

Self-reported motivation to smoke may also be differentially related to smoking behavior 

depending on BMI. While adults seeking treatment for smoking endorsed similar automatic 

or addictive motivation to smoke regardless of weight status, automatic and addictive 

motivations did not uniformly predict past or current smoking behavior [117]. Collectively, 

these findings suggest that BMI may influence reward valuation, motivation, and inhibitory 

control in those who smoke in such a way that could result in less success quitting smoking 

in individuals with obesity or greater need for supplemental therapies [118, 119]. However, 

future research is necessary to determine if this is above and beyond the effects of BMI in 

nonsmokers.

5. Obesity may lead to difficulty quitting smoking

Comorbid smoking and obesity likely share neurobehavioral underpinnings, identifying 

which could inform interventions for comorbid behavior change. Individuals with 

overweight or obesity comprise 70% of treatment-seeking smoking patients, gain the most 

weight after quitting, are the least accepting of that weight gain [16,120–122] and are more 

likely to relapse back to smoking as a result [8,9]. Interventions targeting smoking and 

overweight have modest success at best [123–125]. Behavior change interventions treat each 
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behavior independently, ignoring potential reward-related mechanisms shared by smoking 

and excess food intake [16,120–124]. Individuals comorbid for smoking and obesity may 

require different treatments for smoking cessation than those who are lean or overweight or 

may find it more difficult to quit smoking. Evidence suggests that individuals with obesity 

who smoke are less likely to achieve smoking abstinence using transdermal nicotine [126] 

and may be more likely to use medication [119]. People comorbid for smoking and obesity 

are more likely to smoke heavily as well [7], which may contribute to difficulty quitting, but 

it is unclear why they are more likely to smoke more.

Alterations in the neurobiology of reward and inhibition may contribute to the development 

of diet-induced obesity and smoking uptake. At the same time, overconsumption of food 

and nicotine may interactively perpetuate the neurobehavioral dysfunction that drives both 

issues. Regular reward stimulation through overconsumption may dysregulate this circuitry 

both through a combination of overvaluation or sensitization of reinforcers [55,57,127–129] 

and habituation to reward receipt [87,85]. This dysregulation leads to disturbed modulation 

of prefrontal inhibitory regions [30], resulting in difficulty inhibiting prepotent behavioral 

responses and continued compulsive intake. Given this feedback loop, chronic consumption 

of multiple rewarding substances (e.g., nicotine and highly-palatable food) would arguably 

interact to impair neurobiological inhibition to a greater extent than overconsumption of 

just one. Difficulty of quitting smoking among patients with obesity is thus unsurprising. 

Treatments specifically focused on improving inhibitory control ((e.g., mindfulness [130]) 

or modulating frontal activation ((e.g., transcranial magnetic stimulation [131, 132]) could 

target the unique neurocognitive presentation of individuals with obesity with greater 

efficacy. In addition, Episodic Future Thinking (EFT) treatment targets delay discounting 

and has shown promise in reducing demand and craving for both nicotine and fast food 

when combined with health goal-setting [133]. Specifically designing treatment to elevate 

reward response to non-cigarette and non-food cues, improve function in frontal inhibitory 

control regions, and reduce the influence of time delay on reward valuation may provide 

supplemental support for obese patients making a quit attempt.

6. Conclusions

Between 30% - 40% of people with obesity in the U.S. smoke cigarettes [134], compared 

with less than 15% of the general population [135]. Individuals comorbid for obesity 

and smoking also have a higher daily smoking rate and smoke for more years [7]. 

Those who both smoke cigarettes and have obesity incur four times the risk of all-cause 

mortality compared to lean individuals who have never smoked and eleven times the risk 

of cardiovascular diseases [4]. The negative health effects of cigarette smoking and obesity 

can shorten life expectancy [5,6] and substantially impact productivity and public health 

costs [1]. Despite public health impact, little research has focused on understanding this 

comorbidity, particularly the neurobehavioral function of those who smoke and have obesity. 

Advances in our understanding of neurocognition in smoking and obesity independently 

and extensive behavioral and epidemiological literature on the comorbidity highlight the 

possibility that chronic administration of one reward may directly influence the brain 

response to the other, thereby maintaining both behaviors. However, less is known about 

whether obesity and smoking are additive, interactive, or neither in their influence on 
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reward-related decision-making. Exploring neurobiological function as it relates to food and 

bodyweight in individuals who smoke may allow for a greater understanding of nicotine use 

[136]. If comorbidity is associated with unique patterns of brain function and behavior, as 

we hypothesize, it is vital to tailor treatments to this population to increase effectiveness and 

improve outcomes.
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