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Abstract

Structure-based methods that employ principles of de novo design can be used to construct 

small organic molecules from-scratch, using pre-existing fragment libraries to sample chemical 

space, and are an important class of computational algorithms for drug-lead discovery. Here, 

we present a powerful new design method for DOCK6 that employs a Descriptor Driven 

De Novo strategy (termed D3N) in which user-defined cheminformatics descriptors (and their 

target ranges) are calculated at each layer of growth using the open-source toolkit RDKit. The 

objective is to tailor ligand growth towards desirable regions of chemical space. The approach was 

extensively validated through: (1) comparison of cheminformatics descriptors computed using the 

new DOCK6/RDKit interface versus the standard Python/RDKit installation, (2) examination of 

descriptor distributions generated using D3N growth under different conditions (target ranges and 

environments), and (3) construction of ligands with very tight (pinpoint) descriptor ranges using 

clinically-relevant compounds as a reference. Our testing confirms that the new DOCK6/RDKit 
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integration is robust, showcases how the new D3N routines can be used to direct sampling around 

user-defined chemical spaces, and highlights the utility of on-the-fly descriptor calculations for 

ligand design to important drug targets.

Graphical Abstract

Consideration of cheminformatics descriptors when developing and refining small molecule 

candidates is a critical component of modern drug discovery. In this study, a new interface for 

the program DOCK6 is presented which enables descriptors computed using the open-source 

package RDKit to bias de novo design of new ligands during the layer-by-layer growth process. 

The interface can be used to enrich ensembles towards a specific range for a single property or 

multiple properties simultaneously.

Introduction

Virtual screening methods are a commonly used and well-validated class of computational 

tools to help screen libraries of pre-existing purchasable (or likely synthesizable) small 

organic molecules to a drug target (usually a protein) prior to experimental testing.1 Virtual 

screening protocols typically involve generation and evaluation of hundreds to thousands of 

conformations (poses) for every ligand that is docked to the target and identifies those that 

are most compatible according to physical interactions within the binding site and/or other 

user-specified criteria. Despite its effectiveness, exhaustive docking of large libraries such as 

ZINC,2–4 which continue to grow at an astounding rate, can be prohibitive for many users 

who lack the infrastructures to screen libraries on the order of 107 to 109 molecules. Further, 

given that the chemical space covered by current vendor catalogs are only a fraction of the 

available chemical space, standard virtual screening approaches may not always identify 

molecules optimal for the specific protein binding site being targeted.

Alternative methods, such as de novo design (hereafter abbreviated as DN), provide 

complementary ways to navigate and search chemical space using algorithms that enable 

molecules to be constructed from-scratch, directly in the context of the binding site,5–11 

thereby eliminating the need to start from libraries of pre-existing compounds. In theory, DN 

approaches should allow users to identify target-compatible compounds more quickly, and 

with less computational effort, than with virtual screens. In practice, molecules constructed 

using DN may have shortcomings that need to be addressed. For example, although DN 
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molecules may have been constructed to interact favorably with the drug target, they 

may also be difficult to synthesize chemically,12 or have unfavorable cheminformatic 

properties typically required of drug-like candidates. Recently, several studies have 

employed artificial intelligence and/or machine learning in an attempt address some of 

these known shortcomings.13–18 In our own work, we employed data mining to develop an 

“allowable torsion type” table to enforce chemically reasonable growth during DN, based 

on deconstruction of 13M drug-like molecules, so that only previously observed torsion 

types would be allowed. A conceptually similar strategy, presented in the paper outlining 

the program OpenGrowth,19 employed functional group pairwise probabilities (termed FOG 

probabilities) to help promote physically reasonable molecules.

In the present work, we describe a significant new addition to the DOCK6 de novo design 

engine (DOCK_DN) that builds upon prior work described in Allen et al.20 As shown 

in Figure 1a, ligand assembly in DOCK_DN begins with the orientation of a molecular 

fragment (termed anchor) selected from a user definable fragment library (see Methods). 

Candidate fragments are then attached to each anchor, in a layer-by-layer fashion, similar to 

the standard DOCK6 anchor-and-grow algorithm,21 until a complete molecule is obtained. 

We hypothesized we could improve upon the current DOCK algorithms by checking 

whether partially grown molecules have reasonable drug-like properties at each layer of DN 

growth (Figure 1, horizontal arrows) using cheminformatics descriptors such as lipophilicity, 

solubility, topological polar surface area, or ease of synthesis, among others. The objective 

is to construct more pharmacologically favored ensembles, directly in the protein binding 

site, without the need for post-processing or filtering. We call our methodology “Descriptor 

Driven De Novo” (abbreviated D3N) because the decision to promote partially grown 

molecules to the next layer of growth is contingent on user-defined ranges for the descriptor 

being employed. The primary objective of the present study is three-fold: (1) implement 

and validate a robust interface enabling DOCK6 to communicate with the open-source 

cheminformatics package RDKit,22 (2) confirm that the use of DOCK_D3N protocols leads 

to ligand ensembles that conform to the desired target values for the descriptors under 

different conditions and environments, and (3) examine ligand growth behavior using very 

narrow ranges for descriptors derived from clinically-relevant compounds.

Computational Methods and Details

Software interface and infrastructure.

The DOCK623–25 program is written primarily in C++ and the most recent version 

(DOCK6.10) has three main engines for ligand sampling and chemical searching: (1) 

virtual screening using an anchor-and-grow algorithm,21 (2) from-scratch construction 

using a DN design algorithm (DOCK_DN),20 and (3) molecular evolution using a genetic 

algorithm (DOCK_GA).26 The primary objective of the present work was development and 

testing of a DOCK6/RDKit interface to allow cheminformatics descriptors to be used in 

conjunction with DOCK_DN.20 This required adapting the DOCK6 object DOCKMol to 

communicate with RDKit objects ROMol and RWMol. The names of relevant functions 

and input parameters in this manuscript are highlighted in italics. Briefly, the new DOCK6/

RDKit interface, named DOCKMol_to_ROMol, assigns DOCKMol object atom types, bond 

Matos et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2024 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



orders, formal charges, and other molecular properties to ROMol that is ultimately used 

to calculate the RDKit descriptors. DOCKMol_to_ROMol is only used in circumstances 

when descriptors are required otherwise the standard DOCKMol object is employed. 

The DOCKMol_to_ROMol interface was largely inspired by the Mol2FileParser routine 

provided with the standard RDKit distribution.

The RDKit interface for DOCK in this work was developed on top of DOCK6.9 

(dock.compbio.ucsf.edu) using the 2019.09.01 release of RDKit (rdkit.org) and Boost 

1.71.0 (boost.org). The RDKit compilation process also requires Boost 1.71.0 (boost.org) 

in addition to Eigen 3.3.9 (eigen.tuxfamily.org) and Anaconda3 (anaconda.com). All code 

was compiled with GNU compilers (gcc/g++ 7). DOCK6 users have a choice if they 

want to compile DOCK6 with RDKit. If so, they will need to add the path for RDKit 

and Boost to their bashrc (or equivalent) file. In principle, the interface will allow any of 

the > 50 RDKit descriptors (2D, 3D, fingerprints, and combinations thereof) to be used 

by DOCK6. This current work has focused on interfacing a relatively small subset of 

key descriptors including QED (quantitative estimate of druglikeness),27 SynthA (synthetic 

accessibility),28 TPSA (topological polar surface area),29 LogP (octanol/water partition 

coefficient),30 LogS (aqueous solubility),31 #Aromatic (number of aromatic rings), #Stereo 

(number of stereocenters), #Spiro (number of spirocenters), #PAINS (number and identity of 

pan-assay interference compounds),32–34 #Aliphatic (number of aliphatic rings), #Saturated 

(number of saturated rings), MACCS fingerprint keys,35 and SMILES strings. While most 

of these 13 descriptors could be interfaced immediately, QED, SynthA, and LogS required 

conversion of Python scripts in the RDKit Github repository to C++. A new DOCK6 class, 

termed RDTyper, was written to retrieve RDKit descriptors, and perform calculations using 

“combinations of descriptors” as needed. RDtyper can be called from the DOCK6 database 

filter/utilities class23 or the DOCK_DN engine.20 Readers should note that current D3N 

protocols allow 7 of the aforementioned 13 descriptors to be used during on-the-fly growth. 

Future work will evaluate use of other descriptors for D3N, as well as develop an RDKit 

interface for the DOCK6 genetic algorithm (DOCK_GA) recently reported by Prentis et 

al.26

D3N fragment library, algorithm, and implementation.

As illustrated in Figure 1, docked (oriented) ligand fragments (termed anchors) are used 

to seed DN growth followed by the attachment of compatible fragments (i.e. allowable 

newly-formed torsion types), one-by-one, over the course of a user-defined number of steps 

(typically 8–9). Figure 2a visually illustrates how fragment libraries are constructed using 

DOCK6 starting from a collection of input molecules, in this example epinephrine and 

DANA. Figure 2b shows 3D representations for 19 fragments, ordered by frequency of 

occurrence, derived from deconstructing 13,195,579 drug-like molecules downloaded from 

ZINC.2–4 As in prior work,20,26 for tractability, we choose to retain molecular fragments 

only if they appeared 13,000 times or greater (roughly ~0.1% of the total) resulting in a final 

curated set of 382 fragments and 10,844 allowable torsions (bond types). For consistency 

with prior work all allowable torsion types were retained. The library is arranged into 

sidechains (1 attachment point, N=217), linkers (2 attachment points, N=146), and scaffolds 

(3+ attachment points, N=19). It is important to note that the DOCK6 infrastructure allows 
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users to easily customize their own fragment libraries and retain as many entries (fragments 

or torsion types) as desired.

At each stage of DN growth, multiple 3D geometries are generated (sampling), the 

fitness of the partially grown molecule is evaluated (scoring), and a small number 

of molecular properties are computed including molecular weight, number of rotatable 

bonds, formal charge, number of potential H-bond acceptors, and number of potential 

H-bond donors. The new D3N algorithm adds to these features by allowing up to 7 

additional descriptors to influence ligand growth including QED (dn_drive_qed), SynthA 

(dn_drive_sa), TPSA (dn_drive_tpsa), LogP (dn_drive_clogp), LogS (dn_drive_esol), 
#Stereo (dn_drive_stereocenters), and #PAINS (dn_drive_pains). Each descriptor can be 

turned on or off with the user having full control over the target ranges (discussed below). 

As each partially grown molecule is passed to the next layer of growth (Figure 1), if the 

values for computed descriptors fall within the target ranges defined in the input file, the 

molecule is automatically stored in a separate vector to be sent to the next layer. If any 

descriptor falls outside of the target range, the acceptance of the molecule is determined 

by a Metropolis-like procedure (termed soft-cutoff scheme) as shown in Figure 3. Here, 

probability of acceptance p1 is calculated assuming a normal distribution of descriptor values 

where is the descriptor x value, is the nearest interval limit, σxis the descriptor standard 

deviation (see next section), and p2 is a random number between 0 and 1. Ifp1 > p2, the 

molecule is accepted and sent to the next layer. If p1 ≤ p2the molecule is rejected. Readers 

should note that #Stereo and #PAINS have a slightly different criterion that takes into 

consideration their discrete (integer) values according to Eq. 1 where N is an integer that 

should always be greater than 1 during application of the soft-cutoff scheme.

p1 = e−(random(0, 1)/(N − 1))2 (EQ. 1)

Simulation types (simple-build, protein-standard, protein-pinpoint).

The primary simulation types employed in this work, shown in Table 1, can be organized 

into three broad categories: (1) growth in the absence of a protein site termed “simple-

build”, (2) growth in protein sites using standard parameter ranges termed “protein-

standard”, and (3) growth in protein sites with very specific parameters termed “protein-

pinpoint”. While the different simulation types employed different numbers of anchors as 

seeds for growth, in subsequent layers, all 382 fragments were employed. Readers should 

note that as used here, anchors are subset of the total number of fragments. Table 1 also lists 

the pdb codes for each protein or protein family and the main scoring function(s) employed 

in each case.

Growth under the simple-build infrastructure is guided by a ligand-only energy function 

comprised solely of an intramolecular van der Waals (VDW) repulsive term (Lennard 

Jones coefficient of 12). Given that simple-build results are not influenced by binding 

site characteristics, this helps to isolate behavior of the algorithm. Simple-build is also 

significantly faster than protein-based simulations thus we employed nearly all of the 
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fragments in the library as anchors to seed growth (N=380) which increases chemical 

searching.

Growth under the protein-standard infrastructure (N=57, eight protein families) is guided 

by the standard dock single grid energy (SGE) function comprise of non-bonded VDW 

plus electrostatic (ES) interactions. However, given the increased computational expense and 

the large number of protein systems involved, only the first 10 most commonly occurring 

fragments in Figure 2 were used as anchors (#1–10) augmented by 5 less frequently 

occurring fragments chosen at random to explore different chemistries: triazole (#100), 

adamantyl (#250), thiazole (#300), sub-chlorobenzene (#350), and sub-oxazole (#380).

Growth under the protein-pinpoint infrastructure (N=6 systems) used an enhanced scoring 

function comprised of multi-grid (MGE) plus footprint similarity (FPS) terms (FPS weights 

= 1). The addition of FPS36,37 scoring helps bias growth towards the interaction signatures 

made by a reference. In this work, the ligand bound to each of the 6 crystal structure 

targets served as the reference and are referred to in the remainder of the manuscript as the 

“reference ligand”. To facilitate energetic comparisons between the reference ligands and 

outcomes from de novo design, the references were assigned hydrogen atoms, Gasteiger-

Marsili charges,38 and minimized in the same multi-grids employed during D3N growth. 

Here, given the smaller number of pinpoint systems examined, the larger group of anchors 

(N=380) was used.

System setup details for protein-based simulations.

Protein simulations in this work employed setups taken from our SB2012 dataset, the 

construction of which has been previously described.23,39 20 Briefly, for each system, 

coordinates files were downloaded from the PDB40 and saved as separate protein and 

ligand entries. Ligands were protonated, visually examined for correctness, and assigned 

partial atomic charges (AM1-BCC method)41,42 and force-field parameters (GAFF)43 using 

the program antechamber44 distributed with the Amber45 suite of programs (AmberTools). 

Amber-ready protein-ligand complexes were then assembled with the program tLEaP 

(AmberTools) which protonates the protein and assigns ff99SB46 parameters. After 

preparation, each complex was energy minimized using Amber1647 (using heavy atom 

restraints) to relax the system with the force field and alleviate any potential clashes 

that might have arisen from the addition of hydrogen atoms. The minimized protein was 

extracted, saved in MOL2 format, and used as input for the program DMS48 (1.4 Å radius 

probe) to generate a molecular surface. In turn, the DMS surface is used as input to the 

program sphgen49 to generate a set of docking spheres used to orient anchors (or ligands) 

in the binding site. Finally, the DOCK accessory program GRID50 was used to create 

a set of docking grids, which speed up the calculations, by pre-computing VDW (6–9 

attractive-repulsive Lennard-Jones exponents) and ES (Coulombic interactions scaled by a 

distance-dependent dielectric = 4r) contributions from the protein.

DOCK_DN simulation parameters.

The key DOCK_DN parameters employed in this work are listed in Table 2. For 

additional information, readers should consult Allen et al20 and the DOCK6 manual 

Matos et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2024 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(dock.compbio.ucsf.edu). Briefly, all simulations employed the random sampling method 

(dn_sampling_method) for which up to 20 or 50 (protein-pinpoint simulations only, 

see discussion above) fragment selections (picks) were allowed (dn_num_random_picks). 
In addition to the D3N-specific parameters discussed above, additional constraints (see 

Table 2 for values) evaluated during growth included filters for molecular weight 

(dn_mol_wt_cutoff_type, dn_upper_constraint_mol_wt, dn_lower_constraint_mol_wt, 
dn_mol_wt_std_dev), number of rotatable bonds (dn_constraint_rot_bon), and formal 

charge (dn_constraint_formal_charge). The maximum number of growth layers per 

molecule (dn_max_grow_layers) was set to 9, the maximum number of molecules that can 

be derived from any single partially grown molecule or “root” (dn_max_root_size) was set 

to 25 or 50 (protein-pinpoint only), and the maximum ensemble size of partially grown 

molecules that can be passed to the next layer (dn_max_layer_size) was set to 25 or 50 

(protein-pinpoint only). The maximum number of scaffold fragments that could be added to 

any molecule at each layer of growth (dn_max_scaffolds_per_layer) was capped at 1 and the 

maximum number unsatisfied attachment points per molecule (dn_max_current_aps) at any 

point was set to 5 which helps control branching.20

As noted previously,20,26 chemical searching in DOCK_DN can lead to molecules with 

identical topology but different conformations and/or binding poses. In the present work, 

to simplify interpretation of D3N outcomes, “duplicate” molecules were removed by (1) 

grouping all molecules for a given experiment into single MOL2 file, (2) clustering the 

molecules based on topological identity using SMILES strings, and (3) retaining only those 

molecules with the best score depending on the experiment (internal energy, single grid 

energy, or multi-grid energy).

Default descriptor ranges derived from approved small molecule drugs and active 
pharmaceutical agents.

For testing D3N, we wanted a reasonable set of input parameter ranges (DOCK6 defaults) 

for the 7 different descriptors. Table 3 shows values derived from a curated set of approved 

small molecule drugs and active pharmaceutical agents contained in the DrugCentral 

database,51,52 termed here the “D3N-drugc” parameter set (see Supporting Information 

for curation details), based on values computed using DOCK6/RDKit (Table S1). The 

parameter ranges for TPSA, LogP, and LogS reflect the mean ± the standard deviation from 

corresponding entries in Table S1 (Supporting Information). For QED, SynthA, #Stereo, 

and #PAINS, one-sided boundary ranges were employed given that the “best” scores have 

direction. For example, QED scores range from 0 to 1 with 1 being best.27 Conversely, 

SynthA scores range from 1 to 10 with 1 being best. For these two descriptors, D3N-drugc 

default values were set to their respective DrugC means of 0.61 (QED, lower bound only) 

and 3.34 (SynthA, upper bound only).28 For #Stereo and #PAINS, given that scores near 1 or 

0 would likely be desirable, upper bound values for pruning were set to 2 and 1, respectively. 

Table 3 also contains values for a protocol termed “D3N-loose”, meant to mimic standard 

DN behavior (little to no RDKit-based pruning), which provides a control.
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Descriptor correlations.

Although the DOCK6/RDKit interface allows multiple descriptors to be employed 

simultaneously during ligand growth, it is important to assess the extent with which different 

descriptors may be correlated. D3N simulations employing non-orthogonal descriptor 

combinations may suffer from sampling issues and inefficient navigation of chemical space. 

Figure 4 shows a Pearson matrix correlation heatmap from pairwise combinations of the five 

“non-integer” D3N descriptors using molecules from ZINC13M. As shown by the heatmap, 

the descriptors show relatively weak correlation with the exception of LogP and LogS which 

yielded a R value of −0.96 (strong inverse correlation). To avoid multicollinearity, we opted 

not to drive LogP and LogS simultaneously.

Results & Discussion

Code and infrastructure validation.

To establish that the DOCK6/RDKit integration was implemented correctly, we computed 

9 descriptors for the 13M molecules in the ZINC13M dataset and compared the numerical 

results with those obtained using the standard Python3 RDKit distribution (Python/RDKit). 

To establish a computationally consistent environment, the SMILES strings generated 

internally using DOCK6/RDKit were also used as the input for Python/RDKit. As shown in 

Figure 5, the numerical results from both platforms are identical, for all practical purposes, 

which confirms the integrity of the implementation. Some minor exceptions are observed in 

plots of QED, SynthA, and LogS which are numerically insignificant. Readers should note 

that the heatmap colors in Figure 5 are a complementary way to visualize the descriptor 

populations shown in Figure S1 which compare the underlying descriptor distributions for 

the DrugC and ZINC13M datasets.

It should be emphasized that the numerically equivalent results in Figure 5 comparing 

DOCK6/RDKit to Python/RDKit are a direct result of using the identical SMILES strings 

as inputs for both sets of calculations. Importantly, they establish that the underlying 

calculations methods are the same. However, DOCK6/RDKit requires MOL2 files as input, 

for which SMILES strings are generated internally prior to the calculations, and Python/

RDKit users typically employ SMILES as input. To help gauge the accuracy of the MOL2 

to SMILES conversion routine we performed additional testing using a large curated set 

of compounds derived from ZINC15 (N=11,292,054) for which both a MOL2 file and a 

SMILES string were available for each ZINCID. Compounds were downloaded via the 

ZINC15 tranche browser subject to the following criteria: MW = 300 to 500, LogP = 0 to 5, 

formal charge = 0, and pH = Ref. In an attempt to mitigate any obvious changes that could 

lead to numerical differences arising from different protomers or tautomers we eliminated 

entries from the downloaded tranches if: (1) a given ZINC IDs had multiple SMILES 

strings, (2) a SMILES string and its associated MOL2 file contained a different number of 

hydrogen atoms, or (3) uncommon elements were present (e.g. silicon and metals).

Reassuringly, as shown in Figure 6, for nearly 100% of the 11M molecules evaluated, 

the identical numerical results were obtained across all 9 descriptors independent of 

whether a MOL2 file (DOCK6_RDK_mol2) or SMILES file (Python_RDK_smi) was 
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used as the input. This confirms the reliability of the DOCK6/RDKit MOL2 to SMILES 

conversions. Interestingly, despite our best efforts at pre- and post-filtering ZINC15, a 

cursory examination using the ZINC15 web browser showed that for several outliers the 

MOL2 and SMILES forms labeled as pH = Ref and charge = 0 had different tautomeric 

states. In some cases, there also appeared to be differences in resonance state or number of 

implicit bonds. In a practical sense, this suggests that users should be careful to ensure that 

the correct tautomeric states are represented as desired when computing descriptors using 

either input format (MOL2 or SMILES).

Descriptor driven de novo design (D3N) of ligands in the absence of a protein.

Single descriptor design (D3N-lateral protocol) dramatically shifts 
distributions.—Having validated that the DOCK6/RDKit implementation is robust, we 

next assessed the ability of our descriptor driven de novo design (D3N) algorithm to 

generate new ligands using the “simple-build” infrastructure (absence of protein) which 

speeds up calculations. Figure 7 shows the distributions for three descriptors (SynthA, 

TPSA, LogP) derived from molecules grown using a protocol in which only a single 

descriptor at a time was employed for pruning at every layer of growth. Growth here 

was based on setting the target D3N ranges for each descriptor aggressively (Figure 7, 

target ranges in red font) in that they were laterally shifted left or right (termed D3N-

lateral, red) relative to those obtained with the D3N-loose (gray) protocol (little to no 

pruning control). The accompanying values in parenthesis in Figure 7 specify how many 

molecules were generated in each case. Results are separated into those (a) employing 

the “standard” fragment library supplied with DOCK6 (382 fragments, 10,844 torsions) or 

(b) an alternative “focused” fragment library (389 fragments, 603 torsions) derived from 

molecules with negative LogP values.

Importantly, in each case, use of the D3N-lateral protocol (red) yield distributions that are 

shifted towards their intended target range (Figure 7 red labels) and they are more tightly 

focused which provides evidence that the D3N infrastructure is working as intended. As 

expected, in all cases, on-the-fly D3N pruning leads to fewer molecules being produced. For 

SynthA (Figure 7a left), which employs a one-sided boundary, the initially broad D3N-loose 

distribution (gray, 2 to 6) becomes tightly focused with the D3N-lateral protocol (red, 1 to 

4) and the resulting left-shifted peak (~3) is close to the intended target (upper range 2). 

For TPSA (Figure 7a middle), which employs a two-sided boundary, good agreement is also 

obtained. Here, D3N-lateral (red) results shift right, which nicely spans the intended TPSA 

target range (150–250), and the distribution peak (~170) is near the center (200). For LogP 

however (Figure 7a right), although the D3N-lateral (red) results are significantly more 

focused, and correctly shift left towards the target range (−10 to 0), the ensemble contained 

very few molecules that extended below −2.5 and the peak was not near the range center 

(−5).

The absence of designed molecules with negative LogP was somewhat surprising, which 

prompted us to more closely examine molecules in the DrugC dataset. De novo design 

outcomes depend on many factors, including fragment libraries, and many molecules in 

the DrugC dataset with negative LogP contained functionality not present in our standard 
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DOCK6 fragment library, for example, phosphates, tetracycline rings, or beta-lactam fused 

rings. We hypothesized that an alternative library, containing such fragments, would lead to 

assemble of compounds enriched for negative LogP. Figure 7b plots D3N-lateral results 

using an alternative “focused” library comprised of 398 fragments and 603 allowable 

torsions which was derived from the disassembly of 494 molecules in the DrugC dataset 

with negative LogP values. Reassuringly, the experiment showed a large increase in the 

number of molecules with negative LogP (Figure 7b vs 7a) for both the D3N-lateral protocol 

(57.05 vs 20.21%, red) and the D3N-loose control protocol (33.46 vs 5.30%, gray). The test 

also provides context for any given computational protocol being able to achieve a desired 

descriptor “range” given the sensitivity of de novo design to the composition of the fragment 

libraries. They also establish that D3N protocols can be used to shift descriptor distributions 

regardless of the libraries employed. Notwithstanding the importance of including specific 

fragment types that may lead to more negative LogP values (or other ranges for other 

properties), for the remainder of the tests in this manuscript, the standard DOCK6 fragment 

library was employed.

Multi-descriptor design (D3N-drugc protocol) focuses multiple descriptors 
simultaneously.—In a second group of “simple-build” experiments (absence of protein), 

we evaluated the ability to drive multiple descriptors simultaneously employing ranges 

derived from molecules in DrugCentral (D3N-drugc protocol, Table 3). Here, although 

DOCK6 can currently compute 13 RDKit descriptors, of which 7 are available for 

on-the-fly de novo design, we opted not to drive LogS (to avoid multicollinearity, see 

Figure 4) or #PAINS (initial tests showed we rarely generate PAINS molecules using the 

standard fragment library). Thus, the final group of 5 descriptors employed included QED, 

SynthA, TPSA, LogP, and #Stereo. Figure 8 compares distributions obtained using the 

multi-descriptor D3N-drugc protocol (solid red, pruning at every layer) with D3N-loose 

(gray, little to no pruning) and the DrugC dataset (dashed red). As before, accompanying 

values in parenthesis specify how many molecules were generated using each protocol.

As shown in Figure 8, compared to using the D3N-loose (gray) protocol, the multi-

descriptor D3N-drugc protocol (solid red) yields molecules with distributions that are in 

general more focused (tighter) and shift left or right in the direction of their intended target 

ranges (DrugCentral distributions, dashed red). This demonstrates that descriptor-based 

pruning can be used to drive multiple descriptors simultaneously. For QED, TPSA, and 

to a lesser extent LogP, the peaks for D3N-drugc (solid red) land in-between those of 

D3N-loose (gray) and the DrugCentral dataset (dashed red). QED shows a large shift from 

a single peak at around 0.25 (D3N-loose, gray, poor druglikeness) to a bimodal shape with 

two peaks between 0.5 and 0.7 (D3N-drugc, solid red, higher druglikeness). Although not 

explicitly driven, the D3N-drugc distributions (solid red) for LogS and #Aromatic rings also 

show significant shifts towards DrugCentral (dashed red) likely as a result of descriptors 

coupling arising from the strong anti-correlation between LogS and LogP (−0.96, Figure 4) 

and #Aromatic being a key component of the QED scoring function (additional discussion 

below).
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Single descriptor design can influence multiple descriptors.—Of the nine 

descriptors in Figure 8, the distributions for QED standout as having the overall poorest 

agreement between D3N-loose results and the DrugCentral dataset (Figure 8 gray vs dashed 

red). QED is a combination of multiple descriptors including TPSA, LogP, and #Aromatic 

in conjunction with MW, #H-bond donors, #H-bond acceptors, number of rotatable bonds, 

and number of structural alerts.27 In a third set of “simple-build” experiments (Figure 9), 

we wanted the extent with which driving QED alone would show a concomitant change in 

some of the underlying descriptors that make up the total score. We also wanted to examine 

the behavior of applying the D3N algorithm at different layers of growth. We hypothesized 

that initiating D3N in early layers would lead to a cumulative effect in term of more closely 

matching the intended target range. Figure 9 plots results from driving QED alone (starting 

at layer 1, 5, or 9) versus driving QED, SynthA, TPSA, LogP, and #Stereo simultaneously 

(starting at layer 1).

As shown in Figure 9a, driving QED alone starting at layer 1 (D3N-drugc 1 single, 

red) yields a QED distribution which largely mimics the shape from the multi-descriptor 

distribution (red vs pink shade). And, the distributions for some of the individual terms 

that make up QED (there are eight terms total), including TPSA (Figure 9b), LogP (Figure 

9c) and #Aromatic (Figure 9d) show a concomitant change, even though they were not 

specifically pruned to do so, that also approaches the multi-descriptor distributions (Figure 

9b-d, red vs pink). Importantly, as the D3N algorithm becomes initiated earlier in the 

process the distributions become progressively focused in a relatively smooth manner (layer 

9 blue to layer 5 purple to layer 1 red). Overall, the data in Figure 9 provide additional 

evidence that the D3N algorithm is well-behaved, demonstrate that changes in a given 

descriptor distribution can be coupled to driving other descriptors, and show that driving 

QED alone with a single-descriptor protocol leads to outcomes approaching that of a multi-

descriptor protocol.

Descriptor driven de novo design (D3N) of ligands in protein binding sites.

Multi-descriptor design in proteins yields focused distributions.—The three 

different D3N simple-build experiments, described above, demonstrate that it is possible 

to bias chemical searching to regions defined by the user in the absence of a protein. 

This is to be expected, given that the pruning is primarily driven by the descriptors 

themselves, although other properties are also at play (i.e. newly formed bonds must 

be allowable and other properties including MW, number of rotatable bonds, and formal 

charge, among others in Table 2, must be met). In this section, we evaluate the ability to 

generate drug-like candidates in clinically-relevant protein targets taken from our SB2012 

docking database.23,39 In contrast to simple build, D3N growth in a protein will be heavily 

influenced by the protein-ligand interaction energy. Growth here was seeded in 57 individual 

binding sites structures (see Table 1 for individual pdb codes) comprised of 8 protein 

families: acetylcholinesterase (5 systems), cyclooxygenase (6 systems), EGFR (5 systems), 

HIV protease (12 systems), HIV reverse transcriptase (10 systems), IGF1R (4 systems), 

neuraminidase (10 systems), and streptavidin (5 systems). The protein environment 

simulations take significantly longer than the previous simple-build experiments thus only 

15 fragments (see Methods) were used to seed ligand growth in each of the 57 systems.
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Figures 10 and 11 show descriptor distributions for QED, SynthA, TPSA, LogP (Figure 10 

top) and #Stereo (Figure 11) driving all five descriptors simultaneously using the same D3N-

drugc (red) or D3N-loose (gray) ranges employed in the earlier simple-build experiments 

(Table 3). Results for a third protocol, termed D3N-narrow (purple), are shown in Figure 

10 to highlight the ability of the algorithm to generate narrow distributions (target ranges 

shown above each plot). As expected, in every case, the distributions from D3N-drugc (red) 

and D3N-narrow (purple) are more focused relative to D3N-loose (gray). The D3N-narrow 

results (purple) in particular show extreme focusing (Figure 10 top, purple) and yield peak 

locations in close agreement with the intended target ranges listed above each plot. As 

shown in Figure 11, use of a #Stereo upper target range of 2 with the D3N-drugc protocol 

(0.93%, red) leads to very few molecules with more than two stereocenters compared to the 

D3N-loose protocol (14.1%, gray).

To further probe the algorithm, Figure 10 (bottom) plots descriptor distributions using the 

D3N-drugc protocol based on the rejected (dashed red) or accepted (solid red) molecules 

which confirms the Metropolis-like criteria is being obeyed with regards to enforcing soft-

cutoff boundaries (see Figure 3). For TPSA and LogP, which have two-sided boundaries, the 

rejected molecule profiles show clear bimodal distributions (dashed red) spanning opposite 

sides of the accepted molecule profiles (solid red). Table 4 shows the number of unique 

molecules generated via the three different protocols. As expected, the construction trend in 

terms of number of molecules follows D3N-loose (282,989) > D3N-drugc (184,118) > D3N-

narrow (11,903) and the trend for rejection is in the opposite order with D3N-loose (724) 

< D3N-drugc (565,823) < D3N-narrow (651,423). Taken together, these results confirm the 

ability of the algorithm to successfully create and prune molecules, based on user-defined 

ranges for descriptors computed using the DOCK6/RDKit interface, for de novo design 

performed in the context of a protein binding site.

On-the-fly pruning leads to molecules enriched for favorable properties.—
As shown thus far, the DOCK6/RDKit implementation allows users to prune unwanted 

molecules during the de novo design process but it can also be used as a post-processing 

filtering tool. To help gauge the added value for using on-the-fly pruning, versus post-

simulation filtering, the ensembles created using D3N-loose and D3N-drugc protocols 

were both processed by applying hard-cut filtering to remove molecules at the boundaries 

arising from use of the soft-cutoff algorithm. The two datasets were filtered using the 

same five property cutoffs (D3N-drugc ranges in Table 3) resulting in 39,159 molecules 

for D3N-loose (from 282,989 raw) and 44,419 molecules for D3N-drugc (from 184,118 

raw) as shown in Table 5. From an enrichment standpoint, the filtered D3N-drugc protocol 

yielded an additional 5,260 molecules which is a 13.43% increase across all 57 systems. 

Encouragingly, enrichments for all the protein families with the D3N-drugc protocol 

generated more molecules ranging from 4.87% to 25.56% (Table 5, far right column). Figure 

12 also highlights that the filtered ensembles from D3N-drugc (red) contain more molecules 

than the filtered ensembles from D3N-loose (gray) in terms of favorable QED and SynthA 

scores, and within the target ranges specified for TPSA and LogP.

As an additional point of comparison, for how most users would likely employ de 

novo design in a practical setting, we compared the results obtained using the “on-the-
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fly pruning” approach which yields smooth-tailed distributions (D3N-drugc) versus a 

brute-force “build-all-then-filter” approach which yields hard-cut distributions (D3N-loose 

filtered). Figure S2 visually highlights the differences between the two approaches in terms 

of cheminformatic scores across the eight protein families. From an energetic standpoint, 

Figure 13 plots DOCK6 grid scores (non-bonded protein-ligand VDW + ES energy) along 

with the number of top-scoring molecules for the range −50 kcal/mol and below (left 

of vertical black dotted line). As expected, across all protein families (57 systems), the 

aggressive pruning strategy in conjunction with Metropolis-like smoothing (a desirable 

attribute of the D3N-drugc method) yields significant enrichment compared to the brute-

force filtered approach (Figure 13, bottom right plot 23,308 red vs 1,556 gray molecules). 

Across each individual protein family, the enrichment was varied. For example, growth 

in acetylcholinesterase yielded 2,786 additional molecules (2,999 red vs 213 gray) while 

growth in cyclooxygenase yielded a smaller increase (655 red vs 49 gray). For HIVPR, the 

increase was particularly large (10,700 red vs 427 gray).

The analysis above emphasizes the key differences likely to occur as a result of using 

either modeling approach out of the box. From an academic standpoint however, it is 

noteworthy that there is also enrichment when the underlying smoothed-tail D3N-drugc 

results are hard-cut filtered and only the molecules with DOCK6 grid scores < −50 kcal/mol 

are retained. Although, in practice, users would have no need to filter out the D3N-drugc 

outcomes since by design the method already biases the descriptor distributions thus the 

analysis here is largely theoretical. Nevertheless, with both datasets hard-filtered, as shown 

in Figure 14, use of D3N-drugc yields enrichment in the number of top scoring molecules 

versus D3N-loose (red vs gray bars) in 7 out of 8 cases. While the numerical improvements 

(indicated above each red bar) are not as large as the analysis shown in Figure 13, they 

do establish a desirable outcome. For example, many research groups (especially smaller 

academic labs) may only have resources to synthesize and/or purchase a limited number of 

molecules for biological testing for any given lead-discovery project. Thus, any enrichment 

in the number of “quality” molecules, in terms of their cheminformatics properties and 

protein-ligand scores, is likely to be beneficial, especially for those in the top-ranked range 

(DOCK6 scores −50 kcal/mol and below). While additional testing is necessary to determine 

if these are general trends, the results in this section provides strong evidence that on-the-fly 

layer-by-layer pruning adds quantitative value relative to a build-all and filter approach.

Apparent influence of the protein environment on druglikeness.: Interestingly, a 

comparison between molecules constructed using the D3N-loose protocol in protein binding 

sites (D3N-loose_protein=yes) and those constructed in the absence of protein (D3N-

loose_protein=no) brings to light an implicit bias towards the construction of compounds 

with more favorable QED scores prior to use of any RDKit descriptors. As shown 

in Figure 15, D3N-loose_protein=no simulations generate compounds with QED scores 

closer to 0 (less drug like) which show a strong well-defined peak at about 0.25 (gray 

shade). Conversely, the same D3N-loose protocols, but executed in protein binding sites 

(D3N-loose_protein=yes, green), yield a right-shifted QED distribution with population 

peak at about 0.7 (more drug like). Further, this D3N-loose_protein=yes profile for QED 

shows remarkable agreement with the distribution generated from approved drugs and 
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active pharmaceutical agents in the DrugC dataset (Figure 15, red). This interesting result 

suggests that the protein environment alone inherently biases de novo growth towards the 

generation of more drug-like molecules. It is likely that this observation is multi-faceted, but 

attributable in part to the physics-based scoring functions used during growth for ranking 

and pruning. In the absence of protein, (simple-build protocol) the primary energy function 

employed is a simple non-bonded intramolecular energy of the ligand (VDW repulsive term) 

which primarily enforces linear conformations. In contrast, in protein environments, the 

primary energy function is the standard DOCK grid score comprised of the pairwise sum of 

all non-bonded intermolecular interactions between the protein and ligand (VDW plus ES 

energies, see Methods).

An examination of the underlying terms that make up the QED score reveals that the 

D3N-loose_protein=yes simulations (green) yield smaller and more compact molecules, 

compared to D3N-loose_protein=no simulations (gray), as highlighted by the shifts in MW 

and TPSA subplots (Figure 15 green vs gray). Here, D3N-loose_protein=no yield molecules 

with MW that shift towards the user-defined upper limit, in this case, 550 g/mol. In contrast, 

D3N-loose_protein=yes, yields a MW distribution peaking around ~250). Since the terms 

are not being explicitly driven it is likely that the trend towards smaller MW is a result of 

binding sites having finite volume. The other descriptors in Figure 15, with the exception 

of LogP and #Alerts, would also be expected to be correlated with molecular size, in 

particular, smaller numbers of ligand #Rotatable bonds, smaller TPSA, and fewer aromatic 

rings. As pointed out by a reviewer, our observations also likely reflect the choice of proteins 

employed in the study, for which all are drug targets with the exception of streptavidin. And 

for binding pockets with different character (i.e. larger or more polar), it can be speculated 

that the ligand properties would change accordingly. In any event, the data in Figure 15 

suggests that simulations in proteins (green), of similar character as studied here, will have 

an inherent advantage in terms of generating more “drug-like” molecules using metrics such 

as QED with property distributions similar to compounds in the DrugC dataset (red). Use of 

additional biasing, via the new DOCK6/RDKit interface, in some sense, makes an already 

reasonable situation even better. In contrast, if using the current DOCK6 protocols to design 

compounds in the absence of protein, it would be recommended to apply D3N-drugc ranges 

in Table 3, or other equivalent user-defined ranges, as these boundary conditions help bias 

construction towards drug-like space.

D3N protocols can yield “pinpoint” descriptor ranges.—The results in Figure 10 

confirm that DOCK_D3N can be used to grow molecules from scratch in a protein binding 

site that fall within a user-defined set of ranges for descriptors. In this section, we explore 

the ability of the algorithm to generate molecules with enhanced protein interactions while 

simultaneously matching descriptor values of a given reference ligand (termed D3N-pinpoint 

protocol). For these experiments, six clinically-relevant protein-ligand systems from our 

SB201223,39 test set were selected: (1) SB203580 with MAP kinase (pdb 1A9U),53 (2) SU2 

with FGR1 kinase domain (pdb 1AGW),54 (3) flurbiprofen with COX-1 (pdb 1EQH),55 

(4) simvastatin with HMG-CoA reductase (pdb 1HW9),56 (5) efavirenz with HIV reverse 

transcriptase (pdb 1IKW),57 and (6) oseltamivir with neuraminidase (pdb 3CL0).58 Table 

6 shows descriptor values for each reference ligand (computed using DOCK6/RDKit) 
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along with the D3N-pinpoint target ranges derived from each reference for the five D3N 

descriptors being driven.

Preliminary tests showed that the very extreme pinpoint ranges in Table 6 led to excessive 

pruning. To bolster sampling under these conditions, we increased the values for three key 

de novo design parameters: dn_num_random_picks (20 to 50), dn_max_root_size (25 to 

50), and dn_max_layer_size (25 to 50). We also increased the number of anchors used 

to seed ligand growth (15 to 380). As noted in methods, the pinpoint simulations also 

included footprint similarity (FPS) terms20,36 in the primary scoring function which helps 

bias growth towards per-residue VDW and ES patterns made by the reference ligand. The 

overall objective was to generate topologically different molecules but with characteristics 

similar to the reference. For each system, the ensembles resulting from different anchors 

were pooled together, rank ordered, and the top 500 molecules were retained for analysis.

Figure 16 plots D3N-pinpoint results with subplots ordered based on the scores for the 

six reference ligands (ref ligand rank in bold font, plots arranged from low to high). 

Readers should note that the order of systems for the three descriptors are different. For 

example, QED values for the six references go from 0.51 (1HW9) to 0.83 (1EQH), TPSA 

goes from 38.3 (1IKW) to 106.9 (1HW9), and LogP goes from −1.24 (3CL0) to 4.68 

(1A9U). Notably, the associated distributions from the D3N-pinpoint simulations appear to 

be well-correlated in terms of the reference ligand rank trends. For example, the QED score 

for the reference ligand in 1HW9 (0.51) is the lowest among the six systems examined 

and the resultant QED profile from D3N-point simulations in 1HW9 is shifted farthest 

left. Conversely, the reference ligand in 1EQH has the highest QED score (0.83) and the 

D3N-pinpoint distribution is shifted furthest right. The recognizable left to right progression, 

while traveling down each row, for the three descriptors plotted, provides evidence the D3N 

algorithm can be used to tune molecular outcomes about a desired descriptor value.

D3N searching yields enhanced interactions.—An examination of top-scoring 

molecule from the D3N-pinpoint simulations shows there is significant chemical searching 

about each binding site which can be visualized by plotting H-bond patterns. Figure 17 

shows specific H-bond interactions (discussions employ pdb numbering) made by the six 

reference ligands (top panels, green ligand, magenta labeled residues) with those made by 

the 500 top-scoring molecules constructed during each D3N simulation (bottom panels, 

magenta and orange labeled residues). To emphasize trends, molecules grown using D3N 

are hidden and only a subset of binding site residues are shown. Reassuringly, in each 

case, newly constructed molecules recapitulate key ES interactions made by each reference 

(magenta labeled residues) as well explore additional regions in the binding site (orange 

labeled residues). For example, D3N simulations in Map kinase (Figure 17a) yield ligand 

ensembles with highly populated H-bonds at residues Lys53 and Met109 (bottom panel, 

magenta residues) which correspond to the two H-bonds made by the reference ligand 

(top panel, magenta residues). And, the algorithm explores additional H-bonding which is 

observed at positions Ala51, Leu104, Gly110, and Asp168 (bottom panel, orange residues). 

Likewise, for the FGR1 kinase domain (Figure 17b), the D3N ensembles yield significant 

H-bond populations at Gly562 and Ala564 (bottom panel, magenta residues), corresponding 

to those made by the reference ligand (top panel, magenta residues), and there are additional 
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interaction patterns seen with Lys514, Asn568, and Tyr563 (bottom panel, orange residues). 

An examination of the remaining four protein systems in Figure 17 (c-f) show similar trends.

In terms of specific molecules, Figure 18 compares the pose of each reference ligand (green) 

with the top scoring pose from each D3N simulation (orange) along with their respective 

MGE energies (VDW + ES terms) and RDKit descriptor scores for QED, SynthA, TPSA, 

and LogP. As expected, the descriptor values from the D3N-pinpoint simulations mirror 

their respective references (Figure 18 tables, reference ligand versus D3N top score). As an 

example, for 1A9U, both TPSA scores (58.64, 72.28) and both LogP scores (4.68, 5.53) 

are similar in terms of numerical value. And for 3CL0, the D3N scores shift accordingly 

to mimic the larger TPSA (106.10, 121.70) and negative LogP (−1.24, −0.18) values of 

the reference. The molecules also show reasonable 3D overlap in the binding site which 

occurs in part because the MGS+FPS scoring function helps keep growth from expanding 

too far outside of the binding pocket. Descriptor comparisons for the four other systems 

in Figure 18 follow similar trends. Of particular interest, in four out of six cases (1A9U, 

1AGW, 1IKW, 3CL0), the top scoring D3N molecules in Figure 18 yield a more favorable 

MGE score relative to its reference. This favorable outcome suggests that the D3N pinpoint 

protocol will be useful to explore generation of new compounds, with enhanced binding 

site interactions, while conforming to an underling descriptor space defined by a known 

compound or reference.

Conclusions.

In conclusion, this work presents development and testing of a new de novo design (DN) 

approach for the program DOCK6 termed Descriptor Driven De Novo (D3N) which aims 

to bias the construction of new small organic molecules to conform to a set of user-defined 

properties. The new D3N method makes use of descriptors computed through integration 

of DOCK6 with the open-source cheminformatics package RDKit. At each stage (layer) 

of ligand growth, if values for given descriptor (or descriptors) fall outside of the target 

range(s) defined by the user, the molecule is likely pruned (Figure 1). Layer-by-layer growth 

requires fragment libraries, which for the present work, were derived from deconstruction of 

13M drug-like molecules (Figure 2). D3N pruning makes use of a Metropolis-like scheme, 

permitting some molecules at the descriptor boundaries to propagate, which yields smooth-

tailed distributions (Figure 3). Pruning is also executed in coordination with existing routines 

which control, for example, molecular and conformational diversity, size, formal charge, 

and interaction energy. The DOCK6/RDKit method can be used to bias growth based on 

a single descriptor at a time, a single descriptor that includes multiple underlying terms in 

the function, or multiple descriptors simultaneously. The current implementation allows for 

13 RDKit descriptors to be computed (see Introduction) of which 7 can be used for D3N 

growth. The simulations discussed in this work employed up to 5 descriptors simultaneously 

(QED, SynthA, TPSA, LogP, #Stereo). The new DOCK6/RDKit implementation yielded 

results essentially identical to the standard Python/RDKit distribution, for 13 million 

molecules and 9 descriptors, thereby confirming the integrity of the RDKit integration 

(Figure 5). The validation process also confirmed the reliability of MOL2 to SMILES 

conversions (Figure 6). The DOCK6/RDKit implementation can also be used to process 

large ligand libraries (via the database filter/utilities class) to help prioritize compounds for 
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standard virtual screening, either before or after docking has occurred. As an example, users 

can easily explore different rank ordering options using DOCK6 MOL2 files containing 

descriptors values and other scoring terms in conjunction with the UCSF Chimera program 

(ViewDock utility).

In comprehensive testing, five different D3N protocols were evaluated, including those that 

specified loose ranges with little to no pruning (D3N-loose), ranges based on approved small 

molecule drugs and active pharmaceutical agents (D3N-drugc), ranges designed to laterally 

shift D3N-drugc distributions left or right (D3N-lateral), ranges that were narrower than the 

D3N-drugc targets (D3N-narrow), and ranges designed to give tight pinpoint distributions 

(D3N-pinpoint). Notably, in all cases, use of these different protocols, relative to using D3N-

loose as a control, led to descriptor populations that shift left or right, or are narrower, which 

indicates that the DOCK6/RDKit D3N infrastructure is working as intended. Particularly 

striking changes were observed using the D3N-lateral protocol in the absence of protein 

(Figures 7 red vs gray), the D3N-narrow protocol in 57 protein systems (Figure 10 purple 

vs gray), and the D3N-pinpoint protocol in 6 protein binding sites (Figure 16, Table 6). 

Layer-by-layer growth experiments confirmed that the D3N protocol can be initiated at 

any point during a DOCK_DN simulation, and descriptor ranges approach their targets 

more completely when the algorithm is applied in earlier layers (Figure 9). Our studies 

also highlight that for functions such as QED, comprised of multiple descriptors, driving 

the primary function alone will show concomitant changes in the underlying descriptors 

themselves (Figure 9). Outcomes for LogP calculations were also observed to be influenced 

by the underlying composition of the fragment libraries used during ligand growth (Figure 

7).

For the D3N-drugc simulations in 57 proteins, relative to the D3N-loose control, a 

comparison of results hard-filtered to the same cutoffs showed that there was added 

value in terms of an increase in the number of designed molecules (13.4%) with more 

favorable QED, SynthA, TPSA, and LogP scores (Figure 12 red vs gray area, Table 5). 

By protein family, the increases ranged from 4.87% to 25.56% (Table 5). And for the 

top-scoring range, grid scores of −50 kcal/mol and below, the D3N-drugc filtered protocol 

yielded more molecules than D3N-loose filtered for 7 out 8 protein families (Figure 14). 

A particularly interesting observation was the apparent influence on increased druglikeness 

(QED) when growth was initiated in binding sites, compared to the absence of protein, 

before additional D3N biasing (Figure 15). An examination of the underlying QED terms 

showed that molecules constructed in binding sites were smaller which is likely due to 

differences in scoring function (internal energy only versus non-bonded protein interactions) 

and the sites being of finite volume. Simulations using the D3N-pinpoint protocol, for 

6 clinically relevant drug targets, showed that the algorithm was effective at generating 

descriptor distributions which tracked the descriptor trends made by the cognate reference 

ligand (Figure 16). An examination of H-bond patterns, for the 500 top-scoring molecules in 

each of the 6 sites, showed high density with residues known to be engaged by the reference, 

and at other sites, which indicates robust chemical searching and sampling (Figure 17). And 

in 4 out of 6 cases, the top-scoring D3N molecule yielded a DOCK energy score more 

favorable than the reference while retaining similar descriptor values (Figure 18).
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In summary, the new D3N approach is an important building block of our long-term strategy 

to develop an extensive de novo design platform for which the whole is greater than the sum 

of the individual parts. The comprehensive experiments outlined in this manuscript indicate 

that the DOCK_D3N algorithm will aggressively prune molecules when descriptors fall 

outside of the target ranges leading to descriptor populations enriched for specific properties. 

Planned future work includes implementation of additional RDKit descriptors and adopting 

the interface for use with the DOCK6 genetic algorithm (GA) recently reported by Prentis 

et al.26 As with all our prior development efforts, the D3N method will be included in a 

forthcoming public release of DOCK for use by the community. We hypothesize that the 

GA interface may show enhanced convergence because the limitation that molecules must 

be correctly built to “spec” in only nine layers of de novo growth will be lifted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data And Software Availability

The RDKit interface for DOCK6 described in this work will be made available for use 

by the community to coincide with publication of the manuscript, or shortly thereafter. 

Until the official release date, interested users with a valid DOCK6 license can obtain the 

software directly from the corresponding author. DOCK6 is free for academics, including 

all source code, and is available at https://dock.compbio.ucsf.edu/DOCK_6/index.htm. 

RDKit is open-source and available at https://www.rdkit.org. Compilation will require 

the 2019.09.01 release of RDKit (www.rdkit.org), Boost 1.71.0 (www.boost.org), Eigen 

3.3.9 (www.eigen.tuxfamily.org), and Anaconda3 (www.anaconda.com). Protein simulations 

employed systems in the SB2012 protein data set available at ringo.ams.stonybrook.edu/

index.php/Rizzo_Lab_Downloads. Data analysis and plotting was performed with pandas 

v1.1.4 (www.pandas.pydata.org) and matplotlib v3.6.0 (www.matplotlib.org) in conjunction 

with python v3.9 (www.python.org). The program UCSF Chimera (www.cgl.ucsf.edu/

chimera) was also used for data analysis and visualization.
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Figure 1. 
Schematic outlining showing the D3N algorithm. (1a) An anchor (initial layer, orange 

square) is selected from the fragment library (colored fragments) and oriented/scored in 

the protein binding site (green). (1b) As candidate fragments are added to the anchor, the 

partially grown molecules must conform to the user-defined descriptor ranges (intermediate 

layer, orange + colored fragment) or the fragment is rejected. The process continues until the 

desired number of layers is reached (the present work employed up to 9 layers of growth). 

(1c) The final ensemble will be enriched with fully grown molecules (multi-colored and 

connected fragments) that conform to the user-defined descriptor ranges.
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Figure 2. 
Schematic illustrating (a) how DOCK6 fragment libraries are derived by deconstructing 

molecules along rotatable bonds and (b) the top 19 fragments ordered by frequency (out 

of 382 retained) for a library derived from 13M drug-like molecules downloaded from 

ZINC.2–4 Based on the number of dummy atoms (magenta attachment points) the fragments 

are classified into sidechains (1 attachment point, N=217), linkers (2 attachment points, 

N=146), or scaffolds (3+ attachment points, N=19).
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Figure 3. 
Schematic showing D3N procedure for accepting new fragments. For every molecule at 

each layer of growth, multiple descriptors are calculated. If all descriptors fall within the 

user-defined ranges, the partially-grown molecule is accepted and sent to the next layer 

of growth. If one or more descriptors are outside the target range, a soft-cutoff (Metropolis-

like) scheme is applied in which there is a finite probability that the molecule could be sent 

to the next layer.
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Figure 4. 
Pearsons correlation matrix between descriptors computed for molecules in the ZINC13M 

dataset color-coded as a heatmap.
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Figure 5. 
Scatter plots for descriptors calculated using DOCK6/RDKit (DOCK6_RDK) vs Python/

RDKit (Python_RDK) using 13M molecules downloaded from ZINC (ZINC13M dataset). 

Both sets of calculations employed the identical SMILES strings generated using DOCK6/

RDKit from MOL2 files. Heatmap colors correspond to the number of molecules 

(population) across each descriptor range. TPSA values in angstroms squared.
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Figure 6. 
Scatter plots for descriptors calculated using DOCK6/RDKit with SMILES generated from 

MOL2 files (DOCK6_RDK_mol2) vs Python/RDKit with SMILES directly from ZINC 

(Python_RDK_smi). Heatmap colors correspond to the number of molecules (population) 

across each descriptor range. TPSA values in angstroms squared.
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Figure 7. 
Normalized descriptor populations using (a) the standard DOCK6 fragment library or (b) 

a focused fragment library derived from molecules with negative LogP values. In each 

case, a single descriptor with laterally shifted target ranges (D3N-lateral, red) were used 

to drive de novo growth in the absence of protein. Results obtained using the D3N-loose 

protocols (gray) are shown as a control. Legends indicate the specific target ranges (labeled 

in red font) and the number of molecules obtained (in parenthesis). Readers should note 

this data was derived from four independent experiments. The standard deviations employed 

for D3N-lateral protocols are the same as listed in Table 3 for D3N-drugc. TPSA results in 

angstroms squared.
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Figure 8. 
Outcomes from multi-descriptor de novo design using D3N-drugc (solid red) protocols 

driving QED, SynthA, TPSA, LogP, and #Stereo simultaneously compared to D3N-loose 

(gray) as a control. The distributions for molecules in the DrugCentral data set (dashed 

red) are shown for comparison. Multi-descriptor target ranges listed in Table 3. Values in 

parenthesis specify how many molecules were generated with each protocol. TPSA values in 

angstroms squared.
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Figure 9. 
De novo design outcomes in the absence of protein (simple-build protocol) using single 

descriptor D3N-drugc protocols to only drive QED as a function of which growth layer the 

pruning algorithm takes effect (layer 1 red, layer 5 purple, layer 9 blue). Results from the 

multi-descriptor D3N-drugc protocol are plotted for comparison (pink shaded areas). TPSA 

values in angstroms squared.
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Figure 10. 
QED, SynthA, TPSA and LogP distributions obtained using D3N-drugc (red), D3N-loose 

(gray shade) and D3N-narrrow (purple) in 57 protein binding sites starting from 15 

fragments as anchors. D3N-drugc and D3N-loose target ranges listed in Table 3. D3N-

narrow target ranges shown in purple above each plot. Bottom panels compare distributions 

for the D3N-drugc rejected (dashed red) and accepted (solid red) molecules. Distributions 

obtained by kernel density estimation. TPSA values in angstroms squared.
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Figure 11. 
Histogram populations for #Stereo (number of ligand stereocenters) using D3N-drugc (red) 

or D3N-loose (gray) simulation protocols in 57 protein binding sites.
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Figure 12. 
Added value for on-the-fly pruning versus hard-cut filtering. Panels compare D3N-loose 

(gray, 39,159 molecules) and D3N-drugc (red, 44,419 molecules) from ensembles filtered to 

remove molecules with descriptor values outside the D3N-drugc target ranges.
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Figure 13. 
DOCK6 energy scores from molecules in the D3N-drugc ensemble (red line) versus 

molecules in the D3N-loose ensemble filtered afterward by the D3N-drugc target ranges 

(gray area) by protein family. Energies in kcal/mol.
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Figure 14. 
Number of top-scoring molecules from D3N-drugc filtered and D3N-loose filtered protocols 

for the DOCK6 grid score range −50 kcal/mol and below arranged by protein family. Values 

above each red bar indicate increases arising from use of the D3N-drugc filtered versus 

D3N-loose filtered protocol.
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Figure 15. 
Comparison of QED scores, and the eight underlying descriptors that make up QED, derived 

from ensembles generated in the absence of a proton (gray, D3N-loose_protein=no) and in 

protein binding sites (green, D3N-loose_protein=yes). For comparison, distributions from 

molecules in the DrugC dataset are also plotted (red, DrugC). MW in g/mol, TPSA in 

angstroms squared.
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Figure 16. 
Descriptor distributions for the top 500 molecules, constructed using D3N-pinpoint 

protocols (Table 6), with subplots arranged in increasing order based on the QED, TPSA, or 

LogP values for the six reference ligands.
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Figure 17. 
H-bond patterns (dashed magenta lines) made by six reference ligands (top panels, ref 

ligand pose in green) and top-scoring ensembles (N=500 molecules) from D3N-pinpoint 

simulations (bottom panels, D3N molecules hidden for clarity) for (a) SB203580 with 

Map kinase (1A9U), SU2 with FGR1 kinase domain (1AGW), flurbiprofen with COX-1 

(1EQH), simvastatin HMG-CoA reductase (1HW9), efavirenz with HIV-1RT (1IKW), and 

oseltamivir with neuraminidase (3CL0). H-bonds calculated using the Chimera59 program 

with default settings. Select binding site residues shown in gray.
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Figure 18. 
Comparison between the top-scoring D3N-pinpoint pose (orange), and its respective 

reference ligand pose (green), along with MGE energy, QED, SynthA, TPSA, and LogP 

scores. Protein residues hidden for clarity. MGE in kcal/mol. TPSA in angstroms squared.
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Table 1.

Primary simulation types employed for D3N growth.

Simulation Type N Anchors, N Fragments Main Scoring Function Employed

(1) Simple-build (absence of protein) 380, 382 Ligand only VDW repulsive term

(2) Protein-standard (57 systems) a 15, 382 Single Grid Energy (SGE)

(3) Protein-pinpoint (6 systems) b 380, 382 Multi Grid Energy (MGE) + Footprint Similarity (FPS)

a
acetylcholinesterase (1EVE, 1H22, 1J07, 1Q84, 1ZGC), cyclooxygenase (1EQG, 1EQH, 1HT5, 1HT8, 1Q4G, 4COX), EGFR (2ITP, 2ITT, 2ITY, 

2RGP, 3BEL), HIV protease (1AJV, 1DMP, 1HVR, 1MER, 1MES, 1MET, 1QBS, 2F80, 2F81, 2IDW, 2IEN, 2IEO), HIV reverse transcriptase 
(1C1B, 1C1C, 1VRU, 2BE2, 2RKI, 2ZD1, 3BGR, 3DLE, 3DLG, 3DOL), IGF1R (2ZM3, 3NW5, 3NW6, 3NW7), neuraminidase (1BJI, 1F8B, 
1F8C, 1F8D, 1F8E, 1MWE, 1NNB, 1NNC, 1XOE, 1XOG), streptavidin (1DF8, 1SRG, 1SRI, 1SRJ, 2IZL).

b
MAP kinase (1A9U), FGR1 kinase domain (1AGW), COX-1 (1EQH), HMG-CoA reductase (1HW9), HIV reverse transcriptase (1IKW), 

neuraminidase (3CL0).
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Table 2.

Key DOCK_DN parameter values used in this work.

Parameter Description Value

dn_sampling method Method employed for picking fragments (exhaustive, random, graph) random

dn_num_random_picks N fragments randomly selected 20, 50

dn_mol_wt_cutoff_type Molecular weight filtering method (hard, soft) soft

dn_upper_constraint_mol_wt The upper limit for MW filter 550

dn_lower_constraint_mol_wt The lower limit for MW filter 0

dn_mol_wt_std_dev The standard deviation for MW filter 35

dn_constraint_rot_bon The max rotatable bonds allowed 15

dn_constraint_formal_charge Largest absolute charge of molecule 2

dn_max_grow_layers Max number of layers for growth starting from an anchor 9

dn_max_root_size Max number of new molecules allowed from any given growing molecule 25, 50

dn_max_layer_size Max number of partially grown molecules that advanced to the next layer 25, 50

dn_max_current_aps Max number of unsatisfied attachment points at any given time 5

dn_max_scaffolds_per_layer Max number of scaffolds added per layer per molecule 1
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Table 3.

Input parameters ranges for D3N-drugc and D3N-loose protocols.

Descriptor name D3N-drugc a range D3N-drugc std dev D3N-loose b range

QED 0.61 lower bound 0.19 0.0 lower bound

SynthA 3.34 upper bound 0.90 10 upper bound

TPSAc 28.53 to 113.20 42.33 0 to 9999

LogP −0.30 to 3.75 2.02 −20 to 20

LogS −5.23 to −1.35 1.94 N/A

#Stereo 2 upper bound N/A 100 upper bound

#PAINS 1 upper bound N/A N/A

a
D3N-drugc parameter ranges mimic DrugC dataset distributions (± one std dev from mean).

b
D3N-loose parameter ranges mimic standard DOCK_DN behavior (little to no pruning).

c
TPSA values in angstroms squared.
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Table 4.

Number of unique molecules constructed using different D3N protocols in 57 proteins starting from 15 

different fragments each as anchors for growth over 9 layers.

D3N-loose D3N-drugc D3N-narrow

Constructed a 282,989 184,118 11,903

D3N-rejected 724 565,823 651,423

a
Values reflect the number of unique molecules created for each anchor simulation with duplicates entries removed (see Methods).
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Table 5.

Number of molecules from simulations using D3N-loose and D3N-drugc protocols.

protein family (No.)
D3N-loose 

rawa
D3N-drugc 

rawa
D3N-loose 
filteredb

D3N-drugc 
filteredb

Relative increase for filtered 
(drugc vs loose)c

acetylcholinesterase (5) 26,079 16,310 2,954 3,699 745 25.22%

cyclooxygenase (6) 19,237 13,823 4,004 4,425 421 10.51%

EGFR (5) 25,910 15,956 3,571 3,745 174 4.87%

HIV protease (12) 71,480 45,069 7,484 8,637 1,153 15.41%

HIV reverse transcriptase (10) 44,793 30,161 8,440 8,985 545 6.46%

IGF1R (4) 22,325 14,227 2,903 3,165 262 9.02%

neuraminidase (10) 49,987 33,671 6,111 7,673 1,562 25.56%

streptavidin (5) 23,178 14,901 3,692 4,090 398 10.78%

total (57) 282,989 184,118 39,159 44,419 5,260 13.43%

a
Raw number of molecules obtained using each method.

b
Filtered number of molecules using D3N-drugc target ranges.

c
Relative increase in filtered molecules (D3N-drugc vs D3N-loose) protocols (# molecules and %).
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Table 6.

Descriptor values for reference ligands and derived target ranges for D3N-pinpoint simulations.

pdb 
code

QED SynthA TPSA LogP #Stereo

ref 
liganda

D3N-
pinpointb

ref 
ligand

D3N-
pinpoint

ref 
ligand

D3N-
pinpoint

ref 
ligand

D3N-
pinpoint

ref 
ligand

D3N-
pinpoint

1A9U 0.56 0.46 2.84 3.84 58.6 48 to 68 4.68 3.68 to 5.68 1 2

1AGW 0.69 0.59 2.34 3.34 52.7 42 to 62 2.46 1.46 to 3.46 0 1

1EQH 0.83 0.72 2.65 3.65 40.1 30 to 50 2.35 1.34 to 3.34 1 2

1HW9 0.51 0.41 4.89 5.88 106.9 96 to 116 2.77 1.77 to 3.77 7 8

1IKW 0.73 0.63 3.57 4.56 38.3 28 to 48 4.07 3.07 to 5.07 1 2

3CL0 0.64 0.53 4.82 5.81 106.1 96 to 116 −1.24 −2.20 to 
−0.20

3 4

a
Descriptor values for reference ligands.

b
Target ranges for D3N-pinpoint calculations (std dev: QED = 0.05, SynthA = 0.10, TPSA = 5.0, LogP = 0.10). TPSA values in angstroms squared.
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