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Targeting NHE6 gene expression identifies lysosome and
neurodevelopmental mechanisms in a haploid in vitro cell model
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ABSTRACT
Christianson syndrome (CS) is an X-linked disorder resulting from
loss-of-function (LoF) mutations in SLC9A6 encoding the endosomal
Na+/H+ exchanger 6 (NHE6). CS presents with developmental
delay, seizures, intellectual disability, nonverbal status, postnatal
microcephaly, and ataxia. To define transcriptome signatures of
NHE6 LoF, we conducted in-depth RNA-sequencing (RNA-seq)
analysis on a haploid NHE6 null cell model. CRIPSR/Cas9 genome
editing introduced multiple LoF mutations into SLC9A6 in the near
haploid human cell line Hap1. Isogenic, paired parental controls were
also studied. NHE6 mutant cell lines were confirmed to have intra-
endosomal over-acidification as was seen in other NHE6 null cells.
RNA-seq analysis was performed by two widely used pipelines:
HISAT2-StringTie-DEseq2 and STAR-HTseq-DEseq2. We identified
1056 differentially expressed genes in mutant NHE6 lines, including
genes associatedwith neurodevelopment, synapse function, voltage-
dependent calcium channels, and neuronal signaling.Weighted gene
co-expression network analysis was then applied and identified a
critical module enriched for genes governing lysosome function. By
identifying significantly changed gene expression that is associated
with lysosomal mechanisms in NHE6-null cells, our analyses suggest
that loss of NHE6 function may converge on mechanisms implicated
in lysosome-related neurologic disease. Further, this haploid cell
model will serve as an important tool for translational science in CS.
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INTRODUCTION
Christianson syndrome (CS; OMIM 300243) is an X-linked
neurodevelopmental disorder. Males with CS present with early
developmental delay, nonverbal status, intellectual disability,
epilepsy, progressive ataxia, postnatal microcephaly and

hyperkinesis as core clinical features (Christianson et al., 1999;
Pescosolido et al., 2014; EM and MF, 2018). Systematic sequence
analysis of X-chromosome genes provides estimates of the
frequency of CS at 1 in 16,000 to 1 in 100,000, making it among
the more common X-linked intellectual disabilities (Tarpey et al.,
2009). Currently, there are no treatments known that target the
specific cellular causes of CS.

CS results from loss-of-function (LoF) mutations in the SLC9A6
gene which encodes the endosomal Na+/H+ exchanger 6 (NHE6)
protein. To date, most of CS cases are caused by a spectrum of
mutations, de novo or inherited, leading to a LoF in NHE6
(Pescosolido et al., 2014). NHE6 localizes primarily on the
membrane of early, recycling, and late endosomes, and
contributes to regulation of the luminal pH by moving H+ out of
organelle in exchange for Na+ or K+ (Ouyang et al., 2013). NHE6
functions in trafficking intracellular cargo, as endosomes carry
cargo either to plasma membrane or to lysosome for degradation.

Critical steps in a translational research pipeline often require a
simple cellular model. Among the most prominent examples is the
development of small molecule therapies using a simple cell-based
in vitro assay for CFTR deficiency to develop therapeutics for cystic
fibrosis (Langron et al., 2017; Phuan et al., 2018; Bacalhau et al.,
2023). In addition, haploid cell models offer a powerful tool
for genetic screening of phenotypic modifiers, such as suppressors
and enhancers. Of course, a classic model in this regard is the
application of yeast genetics, in particularly Saccharomyces
cerevisiae, including application to neurological disease (Narayan
et al., 2014). In mammalian cells, haploid cell models have recently
emerged as a powerful tool for CRISPR/Cas9-based screens (Yin
and Chen, 2017; Yilmaz et al., 2018; Bar et al., 2021; Brown et al.,
2021; Llargues-Sistac et al., 2023).

In the current manuscript, we have established a haploid
cell model with LoF mutations in the CS gene SLC9A6, encoding
the endosomal Na+/H+ Exchanger 6 (NHE6). Here we present
the validation of this model, and we have conducted in depth
transcriptome studies. Gene expression profiling permits
characterization of changes in gene expression in response to a
perturbation which may serve as signature of gene mutation. High
throughput RNA sequencing (RNA-seq) technologies help to
provide an opportunity for an overview of the entire transcriptome.
Using CRISPR/Cas9 genome-editing, LoF mutations were
introduced into the SLC9A6 gene, inactivating the protein, in the
near haploid Hap1 cell line.We have confirmed some of the predicted
cellular phenotypes that may occur with loss of NHE6, such as over-
acidification of intra-endosomal pH. The haploid cell model may
easily permit genome-wide screens in a human cell.

In this study, even though our simple cell model represents a
cancer cell line, we found that the expression of genes involved in
neuronal processes, including axonogenesis, neuron differentiation,
neuron projection morphogenesis, and neuron development, variedReceived 2 December 2022; Accepted 6 September 2023
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significantly in response to NHE6 mutations. Further and
importantly, by constructing gene co-expression networks using
the weighted gene-co-expression network analysis (WGCNA)
approach, we identified dysregulated lysosome-related genes,
significantly co-expressed in NHE6 null lines. There is some
prior evidence of lysosome mechanisms implicated in CS
pathogenesis (Stromme et al., 2011; Pescosolido et al., 2021;
Fernandez et al., 2022). Therefore, in this study, we present a
comprehensive and well-controlled analysis of the transcriptome
architecture of NHE6 mutations in a new, human haploid NHE6
null cell line, which potentially provides insight into disease
mechanisms in CS. In addition, this study provides a full analysis of
a new cellular platform that may have utility in high-throughput
drug screening, CRISPR-Cas9 screens or other translational
experiments.

RESULTS
Establishment of NHE6 null near haploid human cell lines
with paired, isogenic controls
To develop a relatively homogenous, isogenic in vitro cell line
with NHE6 null mutations, LoFmutations were induced in SLC9A6
in Hap1 cells using genome-editing commercially by Horizon
Discovery (Vienna, Austria). Hap1 is a near haploid human cell line
derived from the male, chronic myelogenous leukemia (CML) cell
line KBM-7 (Carette et al., 2011). We reasoned that the haploid
nature of this line would potentially reduce the variability in cell line
models, and thereby, enhance opportunity to see strong biological
signals. In addition, future CRISPR/Cas9-based screens will be
simplified by the haploid nature of the cells. SLC9A6 mutations
were generated in Hap1 cell lines by Horizon Discovery (Vienna,
Austria) using CRISPR/Cas9-based genome editing. Three distinct
mutant lines were established with paired controls (Table 1). This
design with multiple lines and paired controls will help contend
with variability across lines and to build a robust model with
reproducible effects. Sanger sequencing from genomic DNA were
performed to confirm mutations as shown in Fig. S1A. The mutant
lines are MUT1, a single base pair deletion in exon 2 leading to a
frameshift and premature stop codon in predicted transmembrane
domain (TM) 3 (c.351delG, p.Tyr118Met fs*9); MUT4, a four
base pair deletion in exon 2 leading to a frameshift and premature
stop codon in predicted transmembrane domain (TM) 3
(c.351_354delGTAT, p.Tyr118 Ala fs*8); and MUT6, a single
base pair insertion in exon 2 leading to a frameshift and premature
stop codon in predicted transmembrane domain (TM) 3
(c.351_352insG, p.Tyr118Val fs*8) (Table 1). HAP1 parental
control lines are commercially available together with the mutant
lines from Horizon Discovery which enhances availability of these
lines. As the vast majority of mutations in CS reflect numerous,
distinct premature stop codons early in open-reading frame that lead

to loss of mRNA, likely due to nonsense-mediated mRNA decay
(NMD) (Lizarraga et al., 2021), these mutations have strong genetic
construct validity with patient mutations.

We confirmed successful gene-targeting initially by loss of
NHE6 protein. We have generated effective anti-NHE6 polyclonal
antibodies to epitopes in the cytoplasmic tail of NHE6 (Ouyang
et al., 2013). Immunoprecipitation of NHE6 followed by western
blotting analysis reveals specific NHE6 protein products. Using
these methods, we confirmed loss of NHE6 bands in all mutant lines
(Fig. 1). Another closely related NHE family member, SLC9A9,
coding NHE9, which is also localized in endosomes (Ohgaki et al.,
2011; Donowitz et al., 2013), was detected to clearly show these
knockouts were specific for NHE6 but not for NHE9, and notably,
levels of NHE9 were not upregulated with NHE6 mutation (Fig. 1).
While our antibody would not recognize potential N-terminal
protein fragments, we believe that these truncated proteins are
unlikely to be detected.

NHE6 mutant cell lines demonstrate endosome lumen over-
acidification
The Na+/H+ exchanger NHE6 is expressed on early, late and
recycling endosomes, and provides a leak pathway for protons
pumped in by the V-ATPase. We have previously shown in mouse
primary neurons and human iPSC cells that loss of NHE6 is
associated with over-acidification of the endosome lumen (Ouyang
et al., 2013; Lizarraga et al., 2021). We then test if the endosomal
lumen pH in Hap1 NHE6 mutant cell lines was also over-acidified.
NHE6 WT and mutant cells were incubated with fluorescein-
conjugated (pH sensitive) transferrin and Alexa-Fluor-546-
conjugated (pH non-sensitive) transferrin for 10mins before
sorting with Flow cytometry (FACS). Intra-endosomal pH was
measured using mean fluorescence intensity ratio analyzed by
FlowJo software (Sipe and Murphy, 1987; Xinhan et al., 2011; Ma
et al., 2017). Standard calibration curves were prepared and
equations for calculating endosomal pH were determined
(Fig. 2A,B). The intra-endosomal pH was measured to be pH of
6.4907±0.0996 in WT6 and pH of 6.0639±0.0617 (P=0.0019) for
MUT6 (Fig. 2C); and pH of 6.4094±0.0564 in WT4 as compared to
pH of 6.2071±0.0816 in MUT1 (P=0.0565) and pH of 6.1460
±0.0877 in MUT4 (P=0.0211) (Fig. 2D). Therefore, all three NHE6
mutant lines showed loss of NHE6 protein, and over-acidic
endosomal lumen pH. Among all three mutant lines, MUT6
showed the strongest effect, MUT4, to a lesser extent, then MUT1
showed an effect on over-acidification of endosomal environment,
which is based on average pH points change and statistically
significant from three independent experiments (Table S1). These
data further support the important function of NHE6 in maintaining
intra-endosomal pH (Ouyang et al., 2013), also provide further
validation of these cell lines as a model of NHE6 function and CS.

Table 1. Summary of HAP1 CRISPR/CAS9 NHE6 mutation cell lines genotypes, mutations, gRNA sequence and number of replicates in different
round of RNA-seq analysis

Number of replicates in RNA-seq

IDs Genotype SLC9A6 mutation
Experiment
1

Experiment 2
(replication)

Combined
analysis

WT4 HAP1 parental line Paired with MUT1 and MUT4 6 6 12
MUT1 CRISPR-CAS9 SLC9A6 knockout lines c.351delG, p.Tyr118Met fs*9 6 0 0
MUT4 CRISPR-CAS9 SLC9A6 knockout lines c.351_354delGTAT, p.Tyr118 Ala fs*8 6 6 12
WT6 HAP1 parental line Paired with MUT6 6 6 12
MUT6 CRISPR-CAS9 SLC9A6 knockout lines c.351_352insG, p.Tyr118Val fs*8 6 6 12
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Pathway analysis of differentially expressed genes (DEGs):
NHE6 mutant lines reveal strong signature for
neurodevelopmental mechanisms
In this study, we sought to identify genes that function with NHE6 in
critical cellular mechanisms and/or to identify compensatory
pathways resulting from NHE6 mutation. Therefore, we conducted
an in-depth RNA-seq transcriptome analysis on NHE6 mutant cell

lines to detect DEGs. Additionally, to enhance rigor further, we
conducted a full biological replication of the RNA-sequencing, i.e.
experiment 1 and replication experiment (Table 1). The samples were
also analyzed in two separate pipelines, HISAT2-StringTie-DEseq2
and STAR-HTseq-DESeq2 (Fig. 3). Given the high level of
replication across two experiments, we combined samples across
two replications, i.e. the Combined Analysis, for the final analyses.

Fig. 1. Validated the mutation of NHE6
by immunoprecipitation of NHE6 and
western blotting. (A) Western blotting for
NHE6 immunoprecipitates in the control
HAP1 line (WT4), 1 bp deletion (MUT1)
and 4 bp deletion (MUT4). (B) Western
blotting for NHE6 in the control HAP1 line
(WT6) and 1 bp insertion (MUT6).

Fig. 2. Overacidification of endosomal pH observed in Hap1 mutant cells. Endosomal pH with pH-sensitive (FITC) and pH-insensitive (Alexa 546)
conjugates of transferrin were measured using flow cytometry. pH was calculated by measuring the mean intensity of Alexa-546 to mean intensity of FITC
after generating pH standard curve. (A) Calibration standard curve and equation used to calculate the endosomal pH for MUT6 and control WT6. (B) Graph
depicting endosomal pH for MUT6 and control WT6. n=3, unpaired t-test, P=0.0019. (C) Calibration standard curve and equation used to calculate the
endosomal pH for MUT1, MUT4 and control WT4. (D) Graph depicting endosomal pH for MUT1, MUT4 and control WT4. n=3, unpaired t-test, P=0.0565 for
WT4 versus MUT1, P=0.0211 for WT4 versus MUT4.
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Experiment 1
In the first experiment, DEG analysis was conducted on MUT1,
MUT4 and paired controls (WT4) with six biological replicates per
line, as well as MUT6 and WT6 with six biological replicates per
line. Alignment rates were 94.51% and 91.74% obtained from
HISAT2 and STAR, respectively (Table S2). Mapping of sequence
read depth on UCSC genome browser showed that SLC9A6
gene was drastically reduced across all three transcripts as described
(Fig. S2).
As part of the quality control, principal component analysis

(PCA) was performed on a total of 14951 RNA-seq detected genes
across 30 sequenced libraries of MUT1, MUT4, MUT6, WT4 and
WT6 with six replicates. The first principal component clearly
separates 4 bp deletion mutant group (MUT4) from the two wild-
type groups (WT4, WT6), and the second principal component
separates 1 bp insertion mutant group (MUT6) from the two wild-
type groups (WT4, WT6) (Fig. 4A). However, the 1 bp insertion
mutant group (MUT1) did not show separation with two control
groups (WT4 and WT6). These results validate a distinct gene
expression profile for twomutant lines (MUT4 andMUT6) from the
control samples; however, it raises some concern that the third
mutation line, MUT1, may have undergone additional changes in
vitro, which normalized gene expression toward control.
603 DEGs, including 311 upregulated genes and 292

downregulated genes were identified using HISAT2 pipeline
(Table S3). Using STAR pipeline, 586 DEGs were identified,
including 272 upregulated genes and 314 downregulated genes
(Table S4). (DEGs were defined as P.adj<0.01 and absolute log2
fold change>1.)
To confirm true differential gene expression in our pipeline, we

conducted an independent gene expression assay, using a
Nanostring methodology, on a large panel of select genes. We
validated the RNA-seq DEGs using a custom-made panel of 44
genes and six housekeeping genes from Nanostring technologies.

44 genes include vATPase subunit, cathepsin and lysosome related
genes (Table S5). The gene expression comparison between RNA-
seq and Nanostring data are significantly correlated for mutant and
wild-type lines (P<10−7) (Fig. S3). 12 out of 15 significantly DEGs
(P.adj<0.05) identified in Nanostring were also identified as DEGs
in RNA-seq and significantly correlated (P.adj<0.05). Therefore,
this extensive independent validation of gene expression changes
lends confidence to the RNA-seq DEG results.

Replication experiment
To augment the rigor of our studies, we set out to conduct a full
replication of the RNA-seq experiments in MUT6 and MUT4 with
paired controls. (MUT1 was dropped given the findings described
above on the PCA.) The same analysis pipelines used in experiment
1 were run for this experiment. Alignment rates were 93.92% and
92.96% in HISAT and STAR, respectively (Table S2). PCA on a
total of 15,203 RNA-seq detected genes across 24 sequenced
libraries of MUT4, MUT6, WT4 and WT6 with six replicates
validate a distinct gene expression profile for two mutant lines
(MUT4 andMUT6) from the control samples (Fig. 4B). 1047 DEGs
were identified in HISAT2 pipeline. Of these genes, 582 were
upregulated, 465 were downregulated (Table S6). By comparison,
using STAR pipeline, 1150 DEGs were identified. Of these genes,
624 were upregulated, 526 were downregulated (Table S7). (DEGs
were defined as P.adj<0.01 and absolute log2 fold change>1.)

By sorting DEGs based on their P adjustment value, we found
a concordance of DEG across experiment 1 and the replication
experiment with a linear regression P-value less than 2.2e-16.
Approximately 65% of DEGs identified in experiment 1 overlapped
with those identified in replication experiment when HISAT2-
StringTie-DESeq2 pipeline was used (Fig. S4A,C). The number of
overlapping DEGs in experiment 1 and replication experiment was
ten times as many as the number of overlapping genes if two gene
sets were chosen randomly. Approximately 60% of the DEGs

Fig. 3. RNA-seq data analysis workflow including two separate pipelines.
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identified in both experiments overlapped when the STAR-HTSeq-
DESeq2 pipeline was used. (Fig. S4B,D). The number of
overlapped DEGs was also ten times as many as the number of
overlapped genes when gene sets were chosen randomly.

Pathway analysis on the combined dataset
Given the high level of concordance across replications, we
embarked on pathway analysis on the combined dataset,
excluding MUT1. For the combined dataset, there were six
biological replicates per line across two distinct rounds of
sequencing (MUT6 and MUT4 with paired controls, WT6 and
WT4), thereby reflecting a total of 12 sequenced libraries per
sample. PCAwas performed on a total of 14,171 RNA-seq detected
genes across 48 sequenced libraries of MUT4, MUT6, WT4 and
WT6 and confirmed two groups of MUTs were separate with two
groups of WTs (Fig. 4C). The same analysis pipelines used in
experiment 1 and replication experiment were run for the combined
dataset. In total, 1056 genes were identified as DEGs by both
HISAT2 pipeline (1132 DEGs, Table S8) and STAR pipeline (1148
DEGs, Table S9). Among them, 586 genes are upregulated, and 470
genes are downregulated in both pipelines. To reduce the bias and
false positive data, we used the DEGs in agreement across both
pipelines in the following pathway analysis.
1056 DEGs were analyzed in the Database for Annotation,

Visualization, and Integrated Discovery (DAVID) and Ingenuity
Pathway Analysis (IPA). We found neuron related processes, such
as neuron differentiation (fold enrichment =2.33, P.adj=4.45E-05),
neuron development (fold enrichment=2.25, P.adj=0.007), neuron
projection morphogenesis (fold enrichment=2.77, P.adj=0.002)
and axonogenesis (fold enrichment =2.85, P.adj =0.003) among
the top gene sets in DAVID analysis. Enrichment of cell-adhesion
related pathways such as biological adhesion, cell adhesion was
also found in the top gene sets in DAVID analysis. Plasma
membrane and synapse were the highly enriched gene sets among
cellular component Gene Ontology (GO) terms. Most of these

DEGs were shown to be involved in channel activity as the enriched
molecular function GO term (Fig. S5A, Table 2). Neuron
differentiation was the top enriched GO term in upregulated
DEGs (fold enrichment=2.64, P.adj=0.0012) (Fig. S5B,
Table S10). Plasma membrane part and synapse are the top GO
terms for downregulated genes. (Fig. S5C, Table S11). We also
tested the enriched GO terms in detectable genes list, the result is
similar to the enriched terms above (Tables S12, S13, S14). Thus,
pathways associated with these 1056 DEGs suggest neuron
developmental pathways changes due to LoF mutation of NHE6.

We also analyzed 1056 significantly DEGs in IPA®. The top
enriched pathway is axon guidance signaling pathway (P=3.1E-06).
Axon guidance is a subfield of neural development, which
is consistent with the findings from DAVID analysis. The following
two overrepresented pathways are human embryonic stem cell
pluripotency (P=4.15E-05) and GABA receptor signaling
(P=7.42E-04), which is one of the main inhibitory
neurotransmitters in a human’s central nervous system. Several
other overrepresented neurotransmitters related pathways are synaptic
long-term depression (P=7.55E-04) and Reelin signaling in neurons
(P=6.00E-03). (Table 3). Synaptogenesis signaling pathway is
significantly enriched among downregulated DEGs (P=5.37E-05)
and neurovascular coupling signaling pathway is significantly
enriched among upregulated DEGs (P=3.47E-08) (Tables S15, S16).

Therefore, even though the Hap1 line represents a cancerous cell,
GO term enrichment analysis by DAVID, and canonical pathway
enrichment analysis by IPA showed strong concordance for DEGs
to be involved in mechanisms of neuronal development, particularly
axonal and synaptic processes, secondary to mutation of NHE6, a
gene mutated in the intellectual disability disorder, CS.

WGCNA analysis: NHE6 mutant lines reveal strong changes
in gene networks involving lysosome mechanisms
To study the co-expression relationships between genes at a system
level, we performedWGCNA.WGCNA is a robust systems biology

Fig. 4. PCA of (A) experiment 1, (B) replication experiment and (C) combined library experiment. Each group has six replicates. X- and Y-axes
represent first principal component and second principal component, respectively.
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analysis method to obtain gene co-expression patterns based on a
large dataset. It divided the whole gene set into modules based on
the correlation between genes. The construction of a weighted gene
correlation network was performed using the WGCNA R package

(Zhang and Horvath, 2005; Langfelder and Horvath, 2008). 48
samples from combined dataset above, including MUT4, MUT6
and paired controlWT4 andWT6 each with 12 replicates, were used
in the network construction.

Hierarchical clustering was performed on all 48 samples to detect
sample outliers. Although experiment 1 and replication experiment
were not clustered together, MUTs and WTs were separated well in
each experiment (Fig. S6). The result is in high concordance with
the PCA plot. Genes with extremely low read counts, no variance in
expression and below the noise threshold (normalized read
count<10) across all 48 samples were excluded before the
network construction. In total, 14,171 genes in 48 samples were
used to create the weighted gene correlation network.

With WGCNA, the whole gene set was divided into 11 modules
(Fig. 5A). SLC9A6 was clustered in purple module. Red module
showed highly negative correlation with purple module with a
correlation coefficient of −0.81 on a scale from −1 to 1, where 0
indicates low correlation and 1/-1 indicates high positive/negative
correlation. Green, pink and magenta module with a correlation
coefficient around 0.66 showed the highest positive correlation with
purple module compared to others. Purple, red and green module
among all modules showed the highest average gene significance
value among all modules (Fig. 5B). 454 DEGs were selected after
the noise threshold was applied. Only red, purple and green modules
have DEGs percentage over 10% among all genes (Fig. 5C). Of

Table 2. Significantly enriched DAVID GO terms based on common DEGs identified using HISAT2-StringTie-DESeq2 and STAR-HTSeq-DESeq2
pipelines (FDR<0.01)

Biological process Fold enrichment P-value FDR

Biological adhesion 2.101 1.30E-09 2.32E-06
Cell adhesion 2.076 2.97E-09 5.31E-06
Neuron differentiation 2.331 2.49E-08 4.45E-05
Regulation of system process 2.478 3.97E-07 7.10E-04
Cell-cell adhesion 2.561 5.53E-07 9.89E-04
Cell-cell signaling 1.963 7.95E-07 1.42E-03
Neuron projection morphogenesis 2.765 1.21E-06 2.16E-03
Regulation of cell proliferation 1.796 1.44E-06 2.58E-03
Axonogenesis 2.848 1.65E-06 2.96E-03
Pattern specification process 2.500 2.07E-06 3.69E-03
Neuron development 2.259 3.93E-06 7.03E-03
Cellular component Fold enrichment P-value FDR
Plasma membrane part 1.804 1.92E-18 2.65E-15
Intrinsic to plasma membrane 1.997 1.27E-13 1.75E-10
Integral to plasma membrane 1.991 3.52E-13 4.86E-10
Plasma membrane 1.452 3.53E-13 4.87E-10
Extracellular region 1.653 1.44E-11 1.99E-08
Extracellular region part 2.039 1.71E-11 2.36E-08
Extracellular matrix 2.541 4.36E-08 6.01E-05
Synapse 2.412 2.70E-07 3.73E-04
Proteinaceous extracellular matrix 2.485 3.68E-07 5.07E-04
Intrinsic to membrane 1.227 4.10E-07 5.66E-04
Ion channel complex 2.884 8.10E-07 1.12E-03
Synapse part 2.652 1.26E-06 1.73E-03
Neuron projection 2.325 1.93E-06 2.67E-03
Cation channel complex 3.243 6.24E-06 8.62E-03
Molecular function Fold enrichment P-value FDR
Gated channel activity 2.493 2.27E-07 3.48E-04
Ion channel activity 2.302 2.51E-07 3.84E-04
Sequence-specific DNA binding 1.973 3.97E-07 6.08E-04
Substrate specific channel activity 2.233 5.98E-07 9.16E-04
Channel activity 2.204 6.42E-07 9.83E-04
Passive transmembrane transporter activity 2.199 6.88E-07 1.05E-03
Cation channel activity 2.529 7.22E-07 1.10E-03
Voltage-gated cation channel activity 3.023 6.38E-06 9.76E-03

Table 3. Significantly enriched IPA pathway from common DEGs
identified using HISAT2-StringTie-DESeq2 and STAR-HTSeq-DESeq2
pipelines (P<0.01)

Ingenuity canonical pathways P-value

Axonal guidance signaling 3.09E-06
Human embryonic stem cell pluripotency 4.17E-05
GABA receptor signaling 7.41E-04
Synaptic long term depression 7.59E-04
Neuropathic pain signaling in dorsal horn neurons 1.32E-03
Adrenomedullin signaling pathway 2.51E-03
Hepatic fibrosis/hepatic stellate cell activation 2.88E-03
Retinoate biosynthesis I 2.95E-03
Calcium signaling 3.39E-03
Antigen presentation pathway 5.25E-03
Reelin signaling in neurons 6.03E-03
Gap junction signaling 6.03E-03
LPS/IL-1-mediated Inhibition of RXR function 7.41E-03
BMP signaling pathway 8.32E-03
Hepatic cholestasis 9.12E-03
The visual cycle 9.33E-03
cAMP-mediated signaling 9.55E-03
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these 454 DEGs, 107 DEGs were clustered in red module (13.6% of
787 genes in red module), 164 DEGs were in green module (17.52%
of 936 genes in green module) and 55 DEGs were left to purple
module (22.54% of 244 genes in purple module).
GO enrichment analysis was run on genes in each module to

identify the over-represented functional annotation of modules
(Table S17). Three processes were identified at an P.adj significant
level (P.adj<0.05) in red module (Table 4). Among them, two out of
these three processes involve a cellular component at lysosome,
indicating some changes in lysosome, especially in lysosome
membrane. A circle plot was made using genes enriched in
‘lysosome’ (Fig. 6A) and ‘lysosome membrane’ (Fig. 6B).
Compared to the wild-type circle, the overall connectivity among

lysosome genes and lysosome membrane genes have increased
in mutant circle. However, two major connections between
LAMP1 and PLA2G15 and the connection between LAMP1 and
RAB7A have decreased in mutant samples. Besides, two strong
co-expression connections between 1) ATP6V0D1 and LAMP1
and 2) LAMP1 and RAB7A also decreased in mutant.

DISCUSSION
In this study, we provide in-depth molecular profiling using RNA-
seq, and functional studies in a haploid cell line with LoF mutations
in NHE6. This cell model may be used for large-scale screens
related to cellular mechanisms or treatments in CS. CS is caused by
a large number of distinct LoF mutations in the NHE6 gene
(Gilfillan et al., 2008; Pescosolido et al., 2014). While the mutations
that we have established do not mimic specific nucleotide changes
seen in CS, they do lead to LoF and thereby create strong genetic
construct validity for the cellular effects seen in CS. Specifically,
LoF mutations in CS appear to lead generally to loss of mRNA and
protein by nonsense-mediated mRNA decay (NMD) (Lizarraga
et al., 2021). In the current study, we see a complete absence of
mRNA by RNA-sequencing (again reflecting likely NMD

Fig. 5. Weighted gene correlation network analysis (WGCNA). Each module is represented by its concordance color name. (A) Hierarchical clustering
dendrogram showing the co-expression modules constructed by WGCNA. (B) The relative module significance (average gene significance) across modules.
The Y axis is the relative module significance value. (C) Bar plot of percentage of DEGs across modules. The Y axis is the percentage of DEGs in each
module. (D) Scatterplot of gene connectivity in red module. The X axis is the gene connectivity in red module and Y axis is the absolute gene significance
value. Genes with higher connectivity shows a higher gene significance in the red module.

Table 4. Significantly enriched DAVID GO terms from genes in red
module (FDR<0.05)

Cellular component Fold enrichment FDR

Lysosomal membrane 2.872 0.0101
Lysosome 1.347 0.0244
Cytosol 2.842 0.0012
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mechanisms), and loss-of-protein by western blotting. Since the
antibody that we use to identify NHE6 in western blots recognizes
the carboxy-terminal of the protein, we cannot formally rule out the
possibility that a truncated protein is made in our cell models;
however, given that we see a complete or near complete loss of
mRNA, we believe that the possibility of translation of truncated
protein is unlikely.
Several aspects of this new cell model are notable. First, this new

NHE6-null cell model demonstrates a hallmark of NHE6 null cells,
namely over-acidification of the early endosome compartment.
NHE6 is localized to early and recycling endosomes and to lesser
extent late endosomes (Ouyang et al., 2013). The acidification of
endosomes is driven down by the vacuolar ATPase, and one model
is that NHE6 opposes this acidification by permitting proton efflux.
In a number of studies, loss of NHE6 function has been shown to

cause relative acidification of the endosome (Ouyang et al., 2013;
Lizarraga et al., 2021; Pescosolido et al., 2021). In the current study,
across all three independent mutations of NHE6 in Hap1 cells, we
observe over-acidification of the endosome. A second aspect of this
new cell model is a robust resource is that we have established
multiple independent mutations with paired control lines. When
working with cell line models, one important consideration is the
likelihood that the lines will compensate by subsequent mutations in
vitro, even in early passages. To obviate this situation, good practice
involves generation of multiple mutations and subclonal lines
with isogenic paired controls. Of note here, while three distinct
lines have been generated, one such line (the MUT1 line) appears to
have potentially shown some reversion towards controls based on
the PCA studies of the transcriptomes. MUT1 transcriptionally
appeared closer to the controls as compared to mutants in our

Fig. 6. Circle plot showed changes
for enriched (A) lysosome genes
and (B) lysosome membrane genes
in mutant samples (MUT, right)
compared to wild-type samples(WT,
left). In the circle plot, each dot
represents a gene. The size of a dot
represents a gene’s connectivity within
its module. A bigger gene dot
represents a higher gene connectivity
compared to a smaller gene dot. Red
lines indicate the connection between
two genes. A thicker and brighter color
line between two genes indicates a
higher correlation compared to a thin
and saturated line. Both circle plot
indicates big changes of lysosome and
lysosome membrane genes in
SLC9A6 mutant lines compared to that
of wild type. The drawing of this circle
plot was followed the circleplot.R
provided by WGCNA.
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studies, which is why we excluded this line from our subsequent
transcriptome analyses. Third, with regard to this resource, we have
conducted an in-depth RNA-sequencing analysis, and these data
have been deposited for wide sharing. While NHE6 is an endosomal
protein, transcriptional changes reflect gene expression changes that
result from the gene mutation and compensatory changes. This
transcriptome dataset will now serve the research community to
generate and test hypothesis related to NHE6 and endosome
function in cells. While CS is most prominently a neurologic
disorder, this simple cell line model may reveal important cellular
signatures of NHE6 dysfunction, such as discovered here with
regard to lysosome mechanisms. Interestingly, as described
below, while our results clearly do reflect changes intrinsic to
the context of a cancer cell line in culture, other changes
pinpoint pathways reflecting neurodevelopmental processes.
Finally, another potential strength of this model is the haploid
nature of the cell line. It is possible that the transcriptional response
to NHE6 mutation is simplified, and therefore, with a more
prominent signal, by virtue of the fact that Hap1 cells are near
haploid. At present, the extent to which this is true is difficult to
know; however, the haploid feature of the line is important, and may
facilitate subsequent CRISPR/Cas9 genome-wide enhancer or
suppressor screens.
We have conducted two analyses of the transcriptome data:

pathway analysis and co-expression network analysis by WGCNA.
Importantly, we consider the changes in the gene expression to
reflect molecular profiling, or cellular signatures of mutation of
NHE6. We do not contend that NHE6 plays a direct functional role
in gene transcription. From our analysis of DEGs, we identified a
number of pathways involved in neuronal development and
neurologic disease. Despite the fact that the cell context of the
study is the Hap1 cell line, a cancer cell line, these results appear to
indicate the NHE6-mediated transcriptional changes are
prominently recognized as neuronal. We identified presynaptic
proteins, such as neurexin (NRXN3), which is significantly
increased (log2FC=5.72). DLG2, an important component of the
postsynaptic density complex associated with postsynaptic
membrane of excitatory synapse, is significantly decreased
(Log2FC=−3.23). The expression of genes highly relevant to
voltage-gated calcium channel activity, CACNA1B, CACNA1H,
changed significantly. Calcium channel activity is associated with
excitatory synapse function, secretion, neurotransmission
physiological responses and highly associated with learning and
memory (Nanou and Catterall, 2018). Mutations on CACNA1Hwas
previously reported in epilepsy patients by influencing neuronal
excitatory (Eckle et al., 2014). In neurons, EPHAs and EPHBs are
reported associated with many neuronal processes including
neuronal guidance events and synaptogenesis (Egea and Klein,
2007). The expression of EPHA3, EPHA7, EPHA8, and EPHB1
changed significantly in our CS cell model. Interestingly, the levels
of RAB39B, which distributes on the secretary network at with ER/
cis-Golgi interface and are colocalized with early endosome
markers, decreased significantly in our mutant sample. Decreased
function of RAB39B has been found to cause X-linked intellectual
disability and early-onset Parkinson’s disease through alpha-
synuclein pathology (Wilson et al., 2014). We found the GO
terms of neuron differentiation, neuron development, neuron
projection, axonogenesis, synaptic function and gated channel
activity was significantly enriched among DEGs. Canonical
pathway by IPA showed the consistent result. Axon guidance
signaling, GABA signaling, calcium signaling, synaptic long-term
depression pathways are significantly enriched.

To explore the gene co-expression pattern, we created a network
using WGCNA and identified modules that are highly co-expressed
with NHE6. We found that genes in yellow module is associated
with regulation of actin cytoskeleton, axon guidance events and
growth cone. Pink module has genes associated with synapse
formation and function. Brown module is significantly enriched
with fatty acid biosynthesis process on endoplasmic reticulum
and mitochondrion. Black module is identified associated with
chromatin remodeling. Turquoise module is also highly associated
with chromatin remodeling, chromatin modifications and negative
regulation of transcription. Notably, there is growing evidence that
chromatin regulation mechanisms crucially affect various stages of
neural development, neuroplasticity, learning and memory (Ronan
et al., 2013). Changes in translation process was found associated
with autism (Santini et al., 2013). Genes involved with translation,
including EIF4G1, EIF3G, SFPQ, TRA2B, are also identified in the
turquoise module. Moreover, we found red module in our network
contained genes that are responsible for lysosome functions, with a
significant enrichment (P.adj<0.05) in ‘lysosome’ and ‘lysosome
membrane’ GO terms. The level of lysosomal genes within red
module are also significantly increased in the NHE6 mutant lines
(absolute log2 FC<1, P.adj<0.01). Several vATPase genes are
involved, including ATP6V0D1, ATP6V1A, ATP6V1C1. Genes
for lysosomal proteases are increased, including CTSB, CTSC and
CTSD, which is mutated in neuronal ceroid lipofuscinosis (NCL)
type 10. In this network, we also noted upregulation of multiple
lysosome disease genes, genes for related neurologic disease and
other endolysosome genes: TPP1, the causation for NCL type 2;
CLN3, the causation for NCL type 3; GDAP2, associated with
spinocerebellar ataxia; CD63, RAB7A, LAMP1, M6PR, or
PLA2G15. These associations with lysosome mechanisms and
lysosome disease are in strong concordance with prior biological
studies in CS mouse studies both in vitro (Pescosolido et al., 2021)
and in vivo (Stromme et al., 2011). Therefore, these studies here, in a
simple cell model, now provide valuable data supporting the idea that
disruption of NHE6 leads to primary and fundamental defects in
lysosome function, which is consistent with the argument from prior
investigators who have argued that CSmay be a lysosomal disorder or
on a continuum with these disorders. While this prior data on
lysosome dysfunction in neural tissue supports the relevance of
the findings here, of course, other findings in this non-neural
model will need to be investigated in neural models to explore further
their relevance to brain and CS. By revealing the gene expression
changes in a new NHE6-null cell model, our study provides a
comprehensive resource for the study of NHE6 function. We also
found transcriptional responses to NHE6 mutations implicate
neurodevelopmental functions and lysosome-related mechanisms.
We provide the data to public as a resource for the community of
researchers studying NHE6, and for drug development.

Finally, this simple cell model of NHE6 mutation may serve as a
valuable tool in high throughput screening for disease mechanism
and therapeutic development studies. This study provides a full
analysis of a new cellular platform which may have utility in
high-throughput drug screening, CRISPR-Cas9 screens or other
translational experiments. A translational science pipeline often
requires a simple cellular model. A highly successful example is the
development of small molecule therapies using a simple cell-based
in vitro assay for CFTR deficiency to develop therapeutics for cystic
fibrosis (Langron et al., 2017; Phuan et al., 2018; Bacalhau et al.,
2023). In addition, haploid cell models offer a powerful tool for
genetic screening of phenotypic modifiers, such as suppressors and
enhancers. In mammalian cells, haploid cell models have emerged
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as a powerful tool for CRISPR/Cas9-based screens (Yin and Chen,
2017; Yilmaz et al., 2018; Bar et al., 2021; Brown et al., 2021;
Llargues-Sistac et al., 2023). Here, we have provided an in-depth
molecular profiling of an easy-to-use cell line that may serve in
these important, high-throughput screens.

MATERIALS AND METHODS
Hap1 CRISPR/Cas9-edited SLC9A6 knockout cell lines
Three Human Hap1 CRISPR/Cas9-edited SLC9A6 knockout and two control
lines were purchased from Horizon Discovery, Vienna, Austria. Cells were
grown in Iscove’sModified Dulbecco’sMedium (IMDM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. Cell cultures
were maintained at 37°C in a humidified atmosphere of 95% air and 5% CO2.
Cells were passaged every 2-3 days and split at 70-75% confluency at the ratio
of 1:10-1:15. Cell culture medium and reagents used for Hap1 cells were
obtained from Thermo Fisher Scientific.

gRNA (5′- GTGGGCCTTGTGCTTCGGTA-3′) was used for generating
three knockout lines: HZGHC004524c003 (with 4 bp deletion in
exon2, c.351_354delGTAT, P.Tyr118 Ala fs*8, named as MUT4),
HZGHC004524c011 (with 1 bp deletion in exon2, c.351delG,
p.Tyr118Met fs*9, named as MUT1) and HZGHC004524c006 (with 1 bp
insertion in exon2, c.351_352insG, p.Tyr118Val fs*8, named as MUT6).
MUT1 and MUT4 share one control line, human Hap1 parental control
c631, named as WT4, MUT6 has its own control line, human Hap1 parental
control c631, named as WT6 (Table 1). We named two control lines
differently according to different shipments.

Sanger sequencing
Genomic DNA was extracted from Hap1 SLC9A6 knockout cells (MUT1,
MUT4, MUT6) and control cells (WT4 andWT6) using quick extract DNA
extraction solution (Epicentre QE09050) and amplified by polymerase
chain reaction (PCR). It was sequenced using Sanger methods. Primers for
PCR amplification of exon 2 of SLC9A6 followed our previous study
(Pescosolido et al., 2014) (Exon2: forward 5′-atccatagttatgcgtgggg-3′ and
reverse 5′-ctcctggatcattttgctgc-3′). Mutations were verified by the
chromatogram using Chromas Lite software. The sequence was compared
to SLC9A6 sequence from UCSC/hg19.

Western-blotting and immunoprecipitation
Human HAP1 SLC9A6 knockout cells and two control cells were harvested.
It was lysed in IP lysis buffer [50 mM Tris-HCl, pH 7.8, 137 mM NaCl,
1 mM NaF, 1 mM NaVO3, 1% Triton X-100, 0.2% Sarkosyl, 1 mM
dithiothreitol (DTT), and 10% glycerol] supplemented with protease
inhibitor cocktail and phosphatase inhibitor for 30 min on ice. Cell lysates
were generated by centrifugation at 13, 200 rpm for 15 min at 4°C. Protein
concentration was measured by BCA assay using the Pierce BCA Kit
(Thermo Fisher Scientific 23225). For immunoprecipitation, 4 ug of
custom-made rabbit anti-NHE6 antibody (C-terminal epitope:
GDHELVIRGTRLVLPMDDSE, Covance 048) (Ouyang et al., 2013)
were conjugated with 0.5 mg Dynabeads® Protein G (Thermo Fisher
Scientific) at room temperature (RT) for 2 h. After washing the beads,
500 µg of protein lysate was incubated with beads overnight at 4°C and
followed by three times of washing with PBST buffer. The Dynabeads
precipitates were then boiled in sample buffer for 95°C 5 min before loading
onto 4-12% SDS-PAGE gels (Novex NP0321Box) for separation and
nitrocellulose membrane (Novex LC2000) transfer for western blotting.
Proteins were detected with Rabbit anti-NHE6 antibody (Covance 048).
30ug protein were loaded as input to detect NHE6 with above mentioned
antibody, NHE9 with Rabbit anti-NHE9 (Covance 050, C-terminal epitope:
SPSPSSPTTKLALDQKSSGKC) and α-tubulin with Mouse anti-α-tubulin
(Sigma T6074).Western blots were analyzed with Li-CoROdyssey Imaging
System or film development.

Endosomal acidification analysis in Hap1 SLC9A6 knockout cells
Human Hap1 SLC9A6 knockout cells and two control cells were loaded
with Fluorescein isothiocyanate (FITC)-conjugated transferrin (FITC-Tfn)
(Thermo Fisher Scientific T2871) and Alexa Fluor® 546-conjugated

transferrin (Alexa Fluor® 546-Tfn) (Thermo Fisher Scientific T23364) as
previously described (Xinhan et al., 2011; Ouyang et al., 2013; Ma et al.,
2017). In brief, cells were incubated with 66 µg/ml FITC-Tfn and 33 µg/ml
Alexa 546-Tfn at 37°C for 10 min, washed twice with PBS, trypsinized,
harvested and resuspended in 400ul of Phenol Red-free cell culture medium.
Cells were then processed through a cell strainer to generate single-cell
populations for flow cytometry/FACS. Standard curve was generated by
resuspending cells incubated with FITC-Tfn and Alexa 546-Tfn at 37°C for
30 min in standard buffer solutions containing: 125 mMKCl, 25 mMNaCl,
10 μM Monensin, and 25 mM HEPES (for standards pH 7.0) or 25 MES
(for standards pH 6.5, 6.0, 5.5, 5.0) and adjusted to a final pH using 1 N
NaOH or 1 N HCl. The mean fluorescence intensity of FITC-Tfn and Alexa
546-Tfn was measured by flow cytometry using BD Influx™ cell sorter (BD
Biosciences) and calculated by FlowJo software (Ma et al., 2017). Using the
equation generated from standard curve mean intensity, endosomal pH for
each experimental sample was calculated.

RNA Prep and bioanalyzer analysis
Total RNAwas isolated fromHap1 CRISPR/Cas9-edited SLC9A6 knockout
cell lines and their control lines using RNeasy Mini Kit (Qiagen 74104)
according to the suppliers’ instructions. Six replicates each cell line per
experiment. rRNA Ratio [28 s/18 s] and RNA integrity number (RIN) of
RNA samples were then analyzed by Thermo Scientific™ NanoDrop™
One Microvolume UV-Vis Spectrophotometer and Agilent 2100 Bioanalyzer
withAgilent RNA 6000NanoKit according to the manufacturer’s instruction.
All replicas showed rRNA Ratio [28 s/18 s] >=2.0 and RIN is >=9.2
indicating the high quality of RNA extracted (Fig. S7, Table S18). RNA-seq
was then performed with poly-(A) enriched RNA.

RNA-seq data analysis
RNA-seq raw reads for 48 samples were received in Fastq format and
analyzed by using two separate pipelines. Illumina universal adapters were
detected and removed using ‘Trim Galore’ (version 0.4.0, https://github.
com/FelixKrueger/TrimGalore). A representative FastQC report generated
from ‘Trim Galore’ to confirm a good quality of reads.

UCSC hg38 was used as a human reference genome for RNA-seq reads
alignment and assembly. Both HISAT2-StringTie-DESeq2 pipeline and
STAR-HTSeq-DESeq2 pipelines were conducted on High Performance
Computing provided by Center for Computation and Visualization (CCV) at
Brown University.

HISAT2 →StringTie→DESeq2 (HISAT2 pipeline)
The pipeline followed a similar process from Pertea’s study (Pertea et al.,
2016) (Fig. 3). Alignment and the splice junction detection was performed
by HISAT2 (version 2.1.0) (Kim et al., 2015). The average coverage was 52
million reads per sample and the average alignment rate was 94.51% per
sample (Table S2). Gene and transcript expression levels were estimated by
StringTie (version 1.3.3b) (Pertea et al., 2015). The gene expression data
were normalized using ‘counts’ function in DESeq2 package. DEGs were
identified (P.adj<0.01, absolute log2 fold change>1) by using DESeq2
R package (version 1.20.0) (Love et al., 2014).

STAR→HTSeq→DESeq2 (STAR pipeline)
Alignment and splice junction detection were performed using STAR
(version 2.5.3a) (Dobin et al., 2013). Average coverage was 52 million
reads per sample, with an average alignment rate of 92% per sample.
Gene expression levels were calculated using the ‘htseq-count’ function in
HTSeq (version 0.9.1) (Anders et al., 2015). The gene expression data was
normalized using ‘counts’ function in DESeq2 package. DEGs were
identified (P.adj<0.01, absolute log2 fold change>1) by using DESeq2
R package (version 1.20.0) (Love et al., 2014).

MUT4,MUT6 and their pairedWT samples were showed in experiment 1
as well as replication experiment. To validate the consistency of DEGs in our
model, a Chi-square test was performed on DEGs identified in experiment 1
and the DEGs in replication experiment. In total, 14,951 genes expressed in
CS cell model. A contingency table was created. We compared the number
of overlapped DEGs from bins of top 50 to top 1000 DEGs in experiment 1
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and replication experiment, and the number of overlapped genes if two gene
sets were chosen randomly from the total gene list. An extremely high level
of concordance of the DEGs was observed between experiment 1 and the
replication experiment. The number of overlapped DEGs were significantly
enriched in each bin size (P<0.001) (Fig. S4C,D).

WGCNA
WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath, 2008) R
package was used to identify the gene co-expression pattern at a system
level. The similarity across genes was represented by Pearson’s correlation
of coefficient. The similarity matrix was then transformed to an adjacency
matrix with a power value. Power value was used as a soft threshold, which
helped to enlarge the distance between values on a 0-1 scale. The power of
28 was selected.

Unlike unweighted network in which each gene is allowed to collect to
one or few other genes and the connection between genes is set to be either 1
or 0 indicating a connection or not, WGCNA allows much more connection
across genes. WGCNA sets a small number of highly correlated genes as
hub genes if they have a correlation value close to 1 after the power function
applied, whereas the correlation value of other non-hub genes will get closer
to 0, indicating a weak connection.

Dissimilarity measurement (dissTOM) was then applied on power-
transformed adjacency matrix. The dynamic tree cut algorithm was then
applied with tree cut at 0.75 and a minimum number restriction of at least
100 genes within each module. Each qualified tree branches formed a
module which labelled by color bands as indicated in WGCNA underneath
the tree (Fig. 5A).

Gene significance is represented by a Pearson’s correlation of the gene
expression with sample status, and the corresponding statistical significance
measure (P-value). The sample status is encoded as binary value for wild
type (as 1) or mutant (as −1).

The gene connectivity circle plot was made using the circleplot.R
provided by WGCNA. While each module is represented by its first
principal component, also called eigengene, the gene connectivity within a
module is represented by the Pearson’s correlation between the expression
of a gene and the eigengene of the module. The higher Pearson’s coefficient
of correlation, the higher connectivity a gene gets. The circle plot in Fig. 6
shows the connectivity across genes mapped to GO terms of ‘lysosome’ and
‘lysosome membrane’.

GO enrichment analysis of the genes in each module was performed by
using DAVID (Huang da et al., 2009a,b) and a false discovery rate (P.adj) q
value was shown for each enriched GO term.

Nanostring Custom Panel to validate RNA-seq data
RNA samples were prepared according to Nanostring protocol. In brief, total
RNA was extracted from Hap1 NHE6 mutant cell lines and paired control
lines. Seven replicates each cell line. 1000 ng of RNA for each sample was
prepared for Nanostring.

A pre-designed Nanostring nCounter panel was designed to include 44
genes of interest and six housekeeping genes. Gene expression data were
analyzed using nSolver and GeNorm advanced analysis modules provided
by Nanostring Technology. Gene expression data was normalized with
background subtraction, positive control normalization and the expression
of housekeeping genes. The DEGs was identified by comparing the
expression of MUT to WT.
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