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Abstract

Background: Obesity is known to stimulate the mammalian target of rapamycin (nTOR)
signaling pathway and both obesity and the mTOR signaling pathway are implicated in breast
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carcinogenesis. We investigated potential gene-environment interactions between mTOR pathway
genes and obesity in relation to breast cancer risk among Black women.

Methods: The study included 1655 Black women (821 incident breast cancer cases and 834
controls) from the Women'’s Circle of Health Study (WCHS). Obesity measures including body
mass index (BMI); central obesity i.e., waist circumference (WC) and waist/hip ratio (WHR); and
body fat distribution (fat mass, fat mass index and percent body fat) were obtained by trained
research staff. We examined the associations of 43 candidate single-nucleotide polymorphisms
(SNPs) in 20 mTOR pathway genes with breast cancer risk using multivariable logistic regression.
We next examined interactions between these SNPs and measures of obesity using Wald test with
2-way interaction term.

Results: The variant allele of BRAF (rs114729114 C>T) was associated with an increase in
overall breast cancer risk [odds ratio (OR) = 1.81, 95% confidence interval (CI) 1.10-2.99, for
each copy of the T allele] and the risk of estrogen receptor (ER)-defined subtypes (ER+ tumors:
OR =1.83, 95% CI 1.04,3.29, for each copy of the T allele; ER- tumors OR = 2.14, 95%

Cl 1.03,4.45, for each copy of the T allele). Genetic variants in AK7, AKT1, PGF, PRKAGZ,
RAPTOR, TSCZshowed suggestive associations with overall breast cancer risk and the risk of,
ER+ and ER- tumors (range of p-values = 0.040 — 0.097). We also found interactions of several of
the SNPs with BMI, WHR, WC, fat mass, fat mass index and percent body fat in relation to breast
cancer risk. These associations and interactions, however, became nonsignificant after correction
for multiple testing (FDR-adjusted p-value >0.05)

Conclusion: We found associations between mTOR genetic variants and breast cancer risk
as well as gene and body fatness interactions in relation to breast cancer risk. However, these
associations and interactions became nonsignificant after correction for multiple testing. Future
studies with larger sample sizes are required to confirm and validate these findings.
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Introduction

Obesity plays an important role in breast carcinogenesis (1-6). In the US, Black women
have the highest rates of obesity compared to other racial and ethnic groups (7). In
addition, epidemiological data have shown that there are differences in breast cancer

risk in women with different patterns of body fat distribution; these associations also
differ by estrogen receptor (ER)- defined breast cancer subtypes and menopausal status
(8,9). In postmenopausal Black women, BMI=30 kg/m? is associated with an increased
risk of ER-positive (ER+) tumors (7,10-12) and a decreased risk of ER-negative (ER-)
and triple-negative breast cancer risk (8). Evidence from the African American Breast
Cancer Epidemiology and Risk (AMBER) consortium is similar; however, central obesity,
measured by waist circumference (WC) or waist-to-hip ratio (WHR), is associated with an
increased risk of ER+ tumors in premenopausal women and a suggestive increased risk in
postmenopausal Black women (8). WHR is also associated with a suggestively increased
risk of ER— and triple-negative breast cancer in premenopausal and postmenopausal Black
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women (8,9). Taken together, the epidemiologic evidence suggests the complexity of body
fatness and its influence on breast cancer subtypes. The mechanism commonly thought to
affect breast cancer in postmenopausal women is the estrogen synthesized by adipose tissues
(13). However, the association between central obesity and ER— tumors in both pre- and
post-menopausal breast cancer suggests that mechanisms other than estrogen such as insulin
resistance may explain this relationship (8,9). Overactivation of the mammalian target of
rapamycin (mTOR) pathway has been implicated as one of the underlying mechanisms of
breast cancer (14), as its activity is influenced by nutrients, growth factors (including insulin
like growth factors), and hormones to promote cell proliferation and resistance to apoptosis
(15). mTOR is a part of phosphatidylinositol 3-kinase (PI3K) pathway generally involved

in cell growth, differentiation, and survival (14,16). To date, a few studies have investigated
the associations between genetic variants in mTOR pathway and breast cancer risk (17-27).
Specifically, data from the AMBER consortium has delineated some important mTOR and
IGF-related genes associated with breast cancer risk (21,28), including 7SC2, BRAF, PGF,
MAPKS3, RPS6KBZ2, and BAIAPZ, CALMZ2, CSNK2A1, BAD, MAPK?3(21,28). Genetic
variants in mTOR signaling pathway have also been found to be associated with other cancer
types (29-48). Given that the mTOR pathway may play a vital role in breast cancer etiology,
examining genetic variants in the mTOR pathway may help explain the etiology of breast
cancer as well as the impact of obesity on breast cancer risk.

At the cellular level, it is unclear how obesity impacts breast cancer risk. Several
mechanisms have been hypothesized including hormonal signaling, inflammation, and
insulin resistance, which involves promoting the IGF-PI3K-mTOR axis (Figure 1) as mTOR
pathway is linked to the maintenance of cellular homeostasis through cellular bioenergetics
and nutrient availability. Obesity enhances activation of the mTOR signaling pathway which
may subsequently promote breast cancer risk (49). As shown in preclinical data, adipocyte-
derived conditioned media activated the mTOR pathway and enhanced the proliferation and
migration of breast cancer cells (49). How obesity influences the mTOR pathway in humans
is not fully understood. Joint effects of genetic variants in the mTOR pathway and energy
balance on increased bladder cancer risk have been reported (50). An interaction between
obesity and genetic variants in the mTOR pathway in relation to breast cancer risk has been
previously reported in White women (20). A recent study reported an association between
genetic variants in the mTOR signaling pathway and breast cancer risk in Black women but
did not elucidate how obesity may modify this association (21). Thus, the evidence on the
interaction between obesity and the mTOR pathway remains very limited.

The primary objective of this study was to investigate whether the selected candidate
polymorphisms in the mTOR pathway were associated with breast cancer risk in Black
women. We examined the association with overall breast cancer risk, ER+ and ER-

breast cancer risk separately due to potential differences in the etiology of these subtypes
related to obesity (8,51). We hypothesized that the selected candidate polymorphisms in the
mTOR signaling pathway are associated with breast cancer risk. We further evaluated gene-
environment interactions between mTOR pathway candidate genes and obesity measures
(body size and body composition) on breast cancer risk overall and by ER-defined subtypes.
We hypothesized that the associations of mTOR candidate polymorphisms with breast
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cancer risk were stronger in women with higher body size and body fat composition than in
women with lower body size and body fat composition.

Methods
Study population

Women for these analyses were selected from participants of the Women’s Circle of Health
Study (WCHS), described in detail elsewhere (52,53). WCHS is a case-control study
comprised of two recruitment bases, a hospital-based case ascertainment in New York City
and a population-based case ascertainment in New Jersey (52). The hospital-based case
ascertainment in New York City started in 2003 and included women who were between the
ages of 20 to 75 years old, with no previous history of cancer other than nonmelanoma skin
cancer, who were diagnosed within 9 months with primary, histologically confirmed invasive
breast cancer or ductal carcinoma in situ and were English-speaking. In the population-based
case ascertainment in New Jersey, cases were identified through rapid case ascertainment by
the New Jersey State Cancer Registry. Black women who were less than 75 years of age,
diagnosed within 9 months with primary, histologically confirmed invasive breast cancer or
ductal carcinoma in situ were eligible for participation. Control eligibility and identification
was similar for New York City and New Jersey study bases as women who were between the
ages of 20 to 75 years without a history of any cancer diagnosis other than non-melanoma
skin cancer were eligible to be controls. Random digit dialing was used to generate controls
in New York City while community-based recruitment was used to supplement random

digit dialing for sampling controls in New Jersey (53). Controls were frequency matched to
cases by 5-year age groups and race. The in-person interview comprised of the informed
consent procedure, an in-depth in-person interview, administration of many behavioral
questionnaires, collection of biospecimens and anthropometric measurements. Requests

for medical records release, pathology data and tumor tissue release were obtained from
cases. Information on ER status was obtained from pathology reports. The current study
included 1655 Black women (821 cases and 834 controls) with available questionnaire,
anthropometric, and genetic data. The WCHS protocol was approved by the Institutional
Review Boards at Roswell Park Cancer Institute, the Rutgers Cancer Institute of New Jersey,
Mount Sinai School of Medicine, and participating hospitals in New York. Signed informed
consent was obtained from each participant prior to interview and biospecimen collection.
The current study was approved by the University of Florida’s institutional review board.

Anthropometric Data collection

Anthropometric measurements were taken at the end of the interview by trained research
staff using standardized protocols (50); participants were asked to wear light clothing.
Weight was measured in pounds while standing height was measured once to the nearest
0.1 cm. Body mass index (BMI) was calculated as the measured weight (kg) divided by
height (m)2. To minimize measurement error, waist and hip circumferences were measured
twice to the nearest 0.1 cm; a third measurement was taken if the difference between the
first and second measurement was >2 cm. The 2 (or 3) measurements were averaged for
analyses. Body composition was measured by bioelectrical impedance analysis using a
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Tanita® TBF-300A scale, and the data were transformed to fat mass in kg, fat mass index,
and percent body fat.

SNP Selection

We performed a computerized literature search of the PubMed database (2000-2021) and
Google search engine to identify all the relevant studies of mTOR candidate polymorphisms
and any cancer risk. The search strategy included the following key words: “Candidate
polymorphisms in the mTOR pathway and breast cancer risk”, “mTOR genetic variants and
breast cancer”, “mTOR genetic variants and breast cancer risk”, “mTOR genetic variants
and cancer”, “Candidate polymorphisms in the mTOR pathway and cancer”. The studies
selected were required to meet the following criteria: 1) evaluate the associations between
mTOR genetic variants and breast cancer risk in Black and/or Non-Black populations; 2)
evaluate the associations between mTOR genetic variants and risk of other cancer types

in Black and/or Non-Black populations. Data were extracted from all eligible publications
and the following information was extracted from each of the included publications: the
first author’s name, publication date, gene/SNP name, sample population, cancer type, study
type and sample size. We identified 86 SNPs in 38 genes in the mTOR pathway that were
significantly associated with breast cancer risk, as well as the risk of other cancer types
from the literature. (Supplemental Table 1). Candidate SNPs in this present study are defined
as SNPs that were statistically significantly associated with breast cancer risk and other
cancers. Out of 86 identified SNPs, we selected a total of 43 candidate SNPs in the 20
mTOR pathway genes (43 SNPs in 20 genes) that were previously genotyped in WCHS for
statistical analyses (Supplemental Table 2). WCHS is a subset of AMBER consortium and
genotyping procedures have been previously reported (21,54-57).

Statistical Analyses

Characteristics of cases and controls were compared with t-tests for continuous variables
and chi-square tests for categorical variables. Pearson’s correlation coefficients were used

to examine correlations between body size and body fat composition measurements.
Multivariable logistic regression was used to test the associations between selected candidate
SNPs and breast cancer risk while adjusting for age group (18-39, 40-49, 50-59 [as
reference] and 60-79 years), BMI (<25 [as reference], 25-<30, and =30 kg/m?), geographic
location (New Jersey [as reference] and New York City, DNA source (blood [as reference],
mouth wash and saliva) and principal components (PC) of the genotypes (PC5, PC6 and
PC8). The largest or normative category was chosen as the reference group for these
covariates. These covariates were regarded as known or probable risk factors with the
potential to confound the associations between mTOR genetic variants and breast cancer
risk. Since menopausal status and education did not change the estimates, they were not
included in the final models. The associations were presented as odds ratios (OR) and
corresponding 95% confidence intervals (Cl). The genetic association analysis tested for an
additive model and the genetic variants, i.e., the independent variables, were modeled as

0, 1, or 2 alleles. We examined associations for all breast cancer cases combined as well

as separately for ER+ and ER- tumors. Among cases with known ER status, case-only
analyses were conducted comparing genetic variants between ER- tumors and ER+ tumors
to determine the extent of etiologic heterogeneity in breast cancer cases and tumor subtypes.
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Statistical significance was defined as nominal p < 0.05 for selected candidate SNPs and all
statistical tests were 2-sided. To control for the inflation of false-positive rates from multiple
comparisons, we controlled the false discovery rate (FDR). The adjusted p-value with a
significance threshold of 0.05 was applied (58).

To explore whether associations between mTOR genetic variants and breast cancer were
modified by obesity, we conducted stratified analyses by obesity measures defined as BMI;
central obesity i.e., waist circumference (WC) and waist/hip ratio (WHR); and body fat
distribution (fat mass, fat mass index and percent body fat). BMI was categorized as

<25 (underweight to normal), 25-<30 (overweight), and =30 kg/m? (obese), according to
the World Health Organization (WHO) International Classification; WC was categorized

as <88 (normal) and >88cm (abdominal obesity) while WHR was categorized as <0.85
(normal) and > 0.85 (abdominal obesity) (59). Fat mass (<25.40, >25.40 - <33.80, >33.80

- <44.20 and >44.20 kg); fat mass index (<9.41, >9.41- <12.75, >12.75 - <16.62 and

>16.62 kg/m?) and percent body fat (<35.90, >35.90 - <41.35, >41.35 - <46.50 and >46.50)
were categorized into quartiles based on the distribution in the control group. The Wald

test was used to evaluate effect modification, including a 2-way interaction term between
the SNPs and effect modifiers (body size and body composition variables). We further
conducted a stratification analysis by menopausal status for the gene-environment (body size
and body composition variables) interactions in association with overall breast cancer risk.
We calculated aggregated genetic risk scores only for mTOR candidate SNPs associated
with overall breast cancer with nominal p-values (p <0.05) and (p<0.10) and evaluated
whether their associations with overall breast cancer were modified by body size and body
composition variables. The scores for risk alleles were modeled as 0, 1, or 2 alleles and
imputed values were rounded up to the nearest whole number. The scores of all the SNPs
were summed and the distribution of the total SNP score was divided into quartiles in
multivariable logistic regressions. Statistical significance was defined as nominal p < 0.05
for selected candidate SNPs and all the statistical tests were 2-sided. We controlled the FDR
at 0.05 for the multiple hypotheses corrections as before. Statistical analyses were performed
using SAS 9.4 software (SAS Institute Inc.).

Characteristics of Study Sample

Table 1 shows the descriptive characteristics of the study participants. Study participants
included 821 cases and 834 controls. Among cases with known ER status, 20.10 % were
ER- and 52.98% were ER+ tumors. Cases were more likely to be older than controls (52.93,
and 51.02 years, p= 0.002). The categories for body size and body composition measures as
well as menopausal status did not differ by case-control status..

In our sample, we observed strong positive correlations of BMI with WC, fat mass, fat mass
index and percent body fat (range of correlation coefficients, r= 0.81-0.97); WC with fat
mass, fat mass index and percent body fat (r= 0.81-0.89) and fat mass with fat mass index
and percent body fat (r = 0.99 and 0.91, respectively) (Supplemental Table 3). However,
WHR was weakly correlated with BMI, fat mass, fat mass index and percent body fat (range
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of correlation coefficients, r = 0.25-0.30) while the correlation between WHR and WC was
moderate (r = 0.54).

Associations of selected SNPs with breast cancer risk

Table 2 shows the significant associations that were found in the SNP-level association
analyses for overall, ER+ and ER- breast cancer as well as in the case-only analysis. The
variant allele of BRAF (rs114729114 C>T) was associated with an increase in overall breast
cancer risk (OR=1.81, 95% CI 1.10,2.99, for each copy of the T allele) as well as the risk

of ER+ (OR =1.83, 95% CI 1.04,3.29, for each copy of the T allele) and ER- tumors (OR
=2.14, 95% CI 1.03,4.45, for each copy of the T allele). In addition, some variant alleles
showed suggestive associations with overall, ER+ and ER- breast cancer. These associations
did not remain significant after correction for multiple testing (FDR-adjusted p-value >0.05).

Interactions of obesity measures with selected SNPs

Table 3 provides the summary of nominally significant gene-environment (gene-BMI)
interactions showing the results of the associations of mTOR candidate SNPs with breast
cancer risk stratified by BMI. PRKAGZ (rs2727572 C>T) was associated with an increased
risk of overall breast cancer among obese women (OR = 1.51, 95% CI 1.08, 2.11, for each
copy of the T allele, p-interaction = 0.046) but not in normal weight and overweight women.
For AKT1(rs1130214 C>A), AKT1(rs10138227 C>T) and 75C2(rs181088346 G>A),
there was a decreased risk of breast cancer among normal-weight women but not among
overweight and obese women (p-interaction=0.046, 0.030 and 0.035). In contrast, STRADB
(rs16837635 A>G) was associated with an increased risk of ER+ breast cancer among obese
women (OR = 1.56, 95% CI 1.06, 2.30, for each copy of the G allele, p-interaction =

0.035) but not in overweight and normal-weight women. These interactions did not remain
significant after correction for multiple testing (FDR-adjusted p-value >0.05).

Table 4 provides the summary of nominally significant gene-environment (gene-WC)
interactions, showing the results of the associations of mTOR candidate SNPs with breast
cancer risk stratified by WC. The variant PRKAGZ2 (rs1104897 C>T) was associated with an
increased risk of overall breast cancer among normal WC women (OR = 1.51, 95% CI 1.02,
2.22, for each copy of the T allele, p-interaction = 0.010) but not abdominal obese women.
The variant PRKAGZ2 (rs9632641 A>C) was associated with an increased risk of ER— breast
cancer among abdominal obese women (OR = 1.63, 95% CI 1.18, 2.24, for each copy of the
T allele, p-interaction = 0.004) but not normal WC women. The variant AK71 (rs10138227
C>T) was associated with a decreased risk of ER— breast cancer among normal WC women
(OR =0.42, 95% CI 0.21, 0.83, for each copy of the T allele, p-interaction = 0.0256) but not
abdominal obese women. These interactions did not remain significant after correction for
multiple testing (FDR-adjusted p-value >0.05).

Table 5 provides the summary of nominally significant gene-environment (gene-WHR)
interactions, showing the results of the associations of mTOR candidate SNPs with breast
cancer risk stratified by WHR. WHR was an effect modifier for the association of PRKAG2
(rs6464156 A>G) with overall breast cancer (p-interaction = 0.032). The variant PRKAG2
(rs6464156 A>G) was associated with an increased risk of overall breast cancer among
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abdominal obese women (OR = 1.23, 95% CI 1.01, 1.49, for each copy of the G allele,
p-interaction = 0.032) but not normal WHR women. The variant PRKAGZ2 (rs2727572 C>T)
was associated with an increased risk of ER+ breast cancer among abdominal obese women
(OR =1.47,95% CI 1.02, 2.12, for each copy of the T allele, p-interaction = 0.023) but not
normal WHR women.

FRAPI (rs1057079 C>T) was associated with an increased risk of overall and ER- breast
cancer among abdominal obese women (OR = 1.24, 95% CI 0.97, 1.59, for each copy

of the C allele, p-interaction = 0.038 and OR =1.42, 95% CI 0.94, 2.13, for each copy

of the C allele, p-interaction = 0.034 respectively) but not normal WHR women. 75C2
(rs2073636 A>G) was associated with an increased risk of overall and ER+ breast cancer
among abdominal obese women (OR = 1.28, 95% CI 1.00, 1.64, for each copy of the A
allele, p-interaction = 0.084 and OR = 1.61, 95% CI 1.18, 2.20, for each copy of the A allele,
p-interaction = 0.015, respectively) but not normal WHR women. PGF (rs11542848 C>T)
was associated with an increased risk of ER- breast cancer among abdominal obese women
(OR =1.99, 95% CI 1.21, 3.27, for each copy of the T allele, p-interaction = 0.024) but

not normal WHR women. These interactions did not remain significant after correction for
multiple testing (FDR-adjusted p-value >0.05).

Table 6 provides the summary of nominally significant gene-environment (gene-fat mass)
interactions, showing the results of the associations of mTOR candidate SNPs with breast
cancer risk stratified by fat mass. PI3KCA (rs7651265 A>G) was associated with an
increased risk of overall breast cancer among women in Q4 (OR = 1.61, 95% CI 1.00, 2.58,
for each copy of the G allele) but not among women in other strata. AK71 (rs1130214 C>A)
was associated with a decreased risk of overall and ER+ breast cancer among women in Q1
(OR =0.62, 95% CI 0.46, 0.84, for each copy of the A allele and OR = 0.59, 95% CI 0.40,
0.88, for each copy of the A allele, respectively, p-interaction <0.05) but not among women
in other strata. AKTI (rs2494752 A>G) and AKT1 (rs10138227 C>T) were associated with
a decreased risk of ER- breast cancer among women in Q1 (OR = 0.40, 95% CI 0.24, 0.67,
for each copy of the A allele, p-interaction = 0.035) but not among women in other strata
(p-interaction = 0.035 and 0.029, respectively). These interactions did not remain significant
after correction for multiple testing (FDR-adjusted p-value >0.05).

Supplemental Table 4 provides the summary of nominally significant gene-environment
(gene-fat mass index) interactions, showing the results of the associations of mTOR
candidate SNPs with breast cancer risk stratified by fat mass index. 75C2 (rs181088346
G>A) was associated with a decreased risk of overall and ER+ breast cancer among women
in Q1 (OR =0.31, 95% CI 0.15, 0.65, for each copy of the A allele, p-interaction =

0.012 and OR =0.35, 95% CI 0.14, 0.87, for each copy of the A allele, p-interaction =
0.016, respectively) but not among women in other strata. PRKAGZ2 (rs1104897 C>T) was
associated with an increased risk of ER— breast cancer among women in Q1 (OR = 2.06,
95% CI 1.11, 3.82, for each copy of the T allele) and a decreased risk of ER- breast
cancer among women in Q3 (OR = 0.51, 95% CI 0.24, 1.11, for each copy of the T allele,
p-interaction = 0.0214). These interactions did not remain significant after correction for
multiple testing (FDR-adjusted p-value >0.05).

Cancer Causes Control. Author manuscript; available in PMC 2024 May 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

llozumba et al.

Page 9

Supplemental Table 5 provides the summary of nominally significant gene-environment
(gene-percent body fat) interactions, showing the results of the associations of mMTOR
candidate SNPs with breast cancer risk stratified by percent body fat. 75C2 (rs181088346
G>A) was associated with a decreased risk of overall and ER+ breast cancer among women
in Q1 (OR =0.35, 95% CI 0.18, 0.70, for each copy of the A allele, p-interaction = 0.017
and OR = 0.37, 95% CI 0.15, 0.89, for each copy of the A allele, respectively) but not
among women in other strata. PRKAGZ (rs7784818 A>G) was associated with a decreased
risk of overall breast cancer among women in Q2 (OR = 0.60, 95% CI 0.44, 0.82, for each
copy of the G allele) and an increased risk of overall breast cancer among women in Q3 (OR
=1.28, 95% CI 0.96, 1.72, for each copy of the G allele, p-interaction = 0.004). PRKAG2
(rs7784818 A>G) was associated with a decreased risk of ER+ breast cancer among women
in Q2 (OR =0.63, 95% CI 0.43, 0.92, for each copy of the G allele, p-interaction = 0.016)
but not among women in other strata. These interactions did not remain significant after
correction for multiple testing (FDR-adjusted p-value >0.05).

Supplemental Table 6 provides the aggregated genetic risk score estimation for the
gene-environment (gene-body size and body fat composition) interactions showing the
associations of mMTOR candidate SNPs with overall breast cancer risk stratified by body
size and body fat composition measures. Interactions were observed for BMI, fat mass index
and percent body fat. Q4 and Q3 vs Q1 of the aggregated genetic risk score was associated
with an increased risk of overall breast cancer among normal weight women (Q4, OR =
2.57,95% CI 1.21, 5.47; Q3, OR = 1.92, 95% CI 1.04, 3.55) and overweight women (Q4,
OR =3.14, 95% Cl 1.66, 5.94; Q3, OR = 1.97, 95% CI 1.21, 3.21, p-interaction = 0.065)
but not in obese women. Q4, Q3 and Q2 vs Q1 of the aggregated genetic risk score was
associated with an increased risk of overall breast cancer among women in Q2 of fat mass
index (Q4, OR = 3.89, 95% CI 1.91, 7.95; Q3, OR = 1.97, 95% CI 1.13, 3.45 and Q2, OR
=2.05, 95% CI 1.21, 3.46, respectively, p-interaction = 0.072) but not in Q3 and Q4 of fat
mass index. Q4, Q3 and Q2 vs Q1 of the aggregated genetic risk score was associated with
an increased risk of overall breast cancer among women in Q2 of percent body fat (Q4, OR
=4.37,95% ClI 2.05, 9.34; Q3, OR = 3.10, 95% CI 1.76, 5.56 and Q2, OR = 2.25, 95% ClI
1.32, 3.85, respectively, p-interaction = 0.019) but not in Q3 and Q4 of percent body fat.

Supplemental Table 7-12 provides the results of the stratification analysis by menopausal
status for the gene-environment (body size and body composition) interactions in association
with overall breast cancer risk. PRKAGZ2rs1104897 (C>T) was associated with an increased
overall breast cancer risk in premenopausal women with normal weight, normal WC

and in Q1 of fat mass but not in postmenopausal women. PRKAGZ2rs7784818 (A>G)

was associated with a decreased risk of overall breast cancer risk in premenopausal

women in Q2 of fat mass index and percent body fat but not in postmenopausal

women. AK71rs10138227 (C>T) was associated with a decreased overall breast cancer
risk in postmenopausal women with normal weight but not in premenopausal women.
PI3KCA rs7640662 (C>G) was associated with a decreased overall breast cancer risk in
postmenopausal women with abdominal WC and in Q4 of percent body fat but not in
premenopausal women. These interactions did not remain significant after correction for
multiple testing (FDR-adjusted p-value >0.05).
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Discussion

In this sample of Black women enrolled in the WCHS, we found significant associations of
several SNPs within mTOR pathway with the risk of breast cancer, overall and in ER+ and
ER- tumors. Some of these associations were limited to specific tumor subtypes only. We
also found significant interactions of several of the SNPs with BMI, WHR, WC, fat mass,
fat mass index and percent body fat in relation to breast cancer risk. These associations and
interactions did not remain statistically significant after correction for multiple testing and
thus should be interpreted with caution.

Epidemiological literature on the associations of mMTOR pathway SNPs and breast cancer

in Black population is limited. Our finding that BRAF rs114729114 was significantly
associated with an increase in overall, ER+ and ER- breast cancer risk is consistent with
the previously reported results. We have previously shown that BRAFrs114729114 was
associated with an increase in overall, ER+ and ER- breast cancer, among Black women in
the AMBER consortium of 3663 cases and 4687 controls, inclusive of WCHS participants
(21). The BRAF gene encodes a protein in the RAF family of serine/threonine protein
kinases that regulates the MAP kinase (MAPK)/ERK signaling pathway which influences
cell growth, division and differentiation (60). Activated MAPK pathway has been linked

to breast cancer (60). Activated MAPK in wild-type MCF-7 breast cancer cells have been
shown to be hypersensitive to the proliferative effects of estradiol after long-term deprivation
of estrogen, highlighting the importance of interactions between the MAPK and ER
pathways in mediating cell proliferation (61). MAPK signaling is activated in response to
both growth factors and cellular stress and have had a long-standing implication in endocrine
and chemotherapy resistance in breast cancer (61). Intronic SNPs PGFrs11542848 and
PGFrs61759375 were associated with increased risk of ER—tumors in AMBER (21). We
found that PGFrs61759375 was associated with a suggestive increased risk of ER— breast
cancer in our current study. Note, however, that the study participants in our current study
were a subset of AMBER consortium, so this comparison should be interpreted cautiously.
However, associations of mTOR pathway SNPs and breast cancer in other populations have
been extensively reported (17-20,23-26,62-64). There are complex reasons responsible for
the potential differences in the associations between genetic variants in mTOR pathway and
breast cancer risk in Black women when compared to associations in women of other racial
groups from previous studies. Minor allele frequencies and linkage disequilibrium (LD)
structures differ by racial groups (20,21). Racial difference in obesity phenotype and breast
cancer subtypes is also implicated. Evidence shows that Black women have the highest rates
of obesity compared to other races in the US (7). Given that mTOR pathway is activated

by positive energy imbalance- an obesity-related phenomenon (65), associations between
mTOR genetic variants and breast cancer risk may differ among Black women and women
of other racial groups. Black women have a higher percentage of ER- tumors than other
races. Therefore, research is needed to investigate gene-environment interactions involving
obesity phenotypes and breast cancer subtypes to further understand the influence of mMTOR
pathway genes on breast cancer risk.
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Gene-Environment Interaction

In this study, we found interactions of BMI, WC, WHR, fat mass, fat mass index and percent
body fat with genetic variants of mTOR pathway related genes including AK7, AKT1,
FRAP1, MAPK3, MTOR, PRKAGZ, PI3KCA, PIK3CA, PGF, RAPTOR, STRADB, and
T7SCZin relation to breast cancer risk in Black women.

Data on gene-environment interactions involving the interactions of mTOR pathway SNPs
and obesity in relation to breast cancer risk are very limited. Previous analysis of WCHS
data observed no effect modification of BMI and WHR with mTOR genetic variants in
association with breast cancer in Black women but effect modification of BMI was observed
for FRAP1rs12125777 in White women only (20). The study had a smaller sample size
compared to our current study.

In our study, PRKAGZ2rs2727572 interacted with BMI, WC and WHR. The stratified results
generally showed an increased risk for overall breast cancer and ER+ breast cancer in

obese women. PRKAGZ2rs2727572 is an intronic coding gene located in a region with
strong transcriptional enhancers in mammary epithelial cells (66). PRKAG2rs7784818, an
intronic SNP interacted with fat mass index and percent body fat with a decreased risk of
overall and ER+ breast cancer in normal weight women and an increased risk of overall
breast cancer in obese women, findings that supported our study hypothesis. The regulatory
function of PRKAG2rs7784818 is unclear. These genetic variants in PRKAGZ2 were found
to be associated with an increased risk of colon and rectal cancer (45). PRKAGZ2rs9632641
and PRKAGZ2rs6464156, intronic SNPs interacted with WC and WHR respectively with an
increased risk of ER- and overall breast cancer in obese women, findings that supported our
hypothesis. PRKAG2rs9632641 was associated with increased colon cancer risk (45). The
genetic variants in PRKAGZ gene have not been reported in studies of breast cancer risk and
warrant replication.

In the present study, AK71rs1130214 interacted with BMI, fat mass and fat mass index
with decreased risk of overall breast cancer and ER+ breast cancer in normal weight
women, which is in the same direction with our hypothesis. Based on ENCODE data,
AKT1rs1130214 is a 5’-UTR genetic variant found in regions with weak transcriptional
enhancers in mammary epithelial cells and DNase hypersensitivity sites in mammary

gland (adenocarcinoma) (66). AK71rs1130214 has also been mapped in regions with
active transcriptional enhancers in breast myoepithelial cells (66). AK71rs1130214 was
associated with HER2-positive breast cancer in Sri-Lankan women (19). AK71rs10138227
interacted with BMI, WC and fat mass with decreased risk of overall breast cancer and

ER- breast cancer in normal weight women, which supports our study hypothesis. Based on
ENCODE data, AK71rs10138227 is a 5’-UTR genetic variant found in regions with weak
transcriptional enhancers in mammary epithelial cells and DNase hypersensitivity sites in
mammary gland (adenocarcinoma) (66). AK71rs10138227 has also been mapped in regions
with active transcriptional enhancers in breast myoepithelial cells (66). AKT71rs2494752
showed interactions with WC and fat mass with decreased risk in ER- breast cancer in
normal weight women, which also supports our hypothesis. The functional annotation for
AKTI1rs2494752 is unknown but the SNP is found in regions with weak transcriptional
enhancers in breast myoepithelial cells and DNase hypersensitivity sites in mammary gland
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(adenocarcinoma) (66). AKT1 rs2494752 was associated with an increased risk of breast
cancer in a Chinese population (26).

In our study, we observed that STRADB (rs16837635), an intronic SNP interacted with BMI
with increased risk of ER+ breast cancer in obese women which supports our hypothesis.
Our finding is consistent with the literature. In the ROOT consortium study, STRADB
rs16837635 was associated with an increased risk of ER+ breast cancer in women of African
Ancestry (22). PGFrs11542848 interacted with WHR with an increased risk of ER- breast
cancer in obese women, which supports our hypothesis. We have previously shown that
intronic SNP PGFrs11542848 was associated with increased risk of ER-tumors in Black
women in the AMBER consortium, which also included our current study participants (21).
Based on ENCODE data, PGFrs11542848 is a 5’-UTR SNP located in regions with active
transcriptional promoters in mammary epithelial cells and hepatocellular carcinoma. It has
been mapped in regions with active TSS in breast myoepithelial cells (66).

We observed that higher versus lower category of aggregated genetic risk score for the
mTOR candidate genes generally were associated with increased risk of overall breast
cancer among women who are normal weight and overweight as well as in women in
lower quartiles of body fat composition measures, which did not entirely support our study
hypothesis. The exact reason for the directions of association in the different strata of
body size and body composition measures is unclear. A hypothesis is that there is potential
attenuation of predictive performance of aggregated genetic risk scores in populations with
African ancestry (67).

Our stratification analysis by menopausal status showed that the directions of association
between body size and body fat compaosition measures with overall breast cancer

differed in pre- and postmenopausal women, implying potential differences in disease
etiology. AKT1rs10138227 (C>T) was associated with a decreased overall breast cancer
risk in post-menopausal women with normal weight which supports our hypothesis.
PRKAGZ2rs1104897 (C>T) was associated with an increased overall breast cancer risk

in premenopausal women with normal weight, normal WC and in Q1 of fat mass while
PI3KCA rs7640662 (C>G) was associated with a decreased overall breast cancer risk in
post-menopausal women with abdominal WC and in Q4 of percent body fat, which were
not in the direction of our study hypothesis. These study findings should however be
interpreted with caution, given that the current stratification analysis by menopausal status
may lack adequate statistical power. Taken together, the epidemiologic evidence suggests
the complexity of body fatness and its interplay with menopausal status and overall breast
cancer risk. Our study had several strengths. To our knowledge, this is the first study

to comprehensively evaluate gene-environment interactions involving the interactions of
mMTOR pathway candidate genes and obesity measured as body size and body compositions
on breast cancer risk in Black women, a population with the highest rate of obesity. It had
a relatively large sample size of Black women which enabled analysis of risk for overall
breast cancer, as well as for ER+ and ER- cancer separately. The information on breast
cancer subtypes aided a better understanding of breast cancer etiology and contributed

to the limited knowledge for the population of Black women. The study analyzed the
effect of obesity phenotype on breast cancer risk in Black women using comprehensive
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measurements of body size and body fat composition. Most anthropometric measurements
were taken by trained staff and were thus less prone to measurement error than self-report.
The large panel of genes used in the study covered a detailed mTOR signaling pathway and
genes were available for the selected candidate SNPs that were reported in the literature.

The study has a few limitations. First, our findings require validation, as the SNP-level
associations and gene-environment interactions were not significant after correction for
multiple tests. Thus, interpretation of the study findings with caution is warranted. Second,
there is lack of generalization of study findings to other racial and ethnic groups as

the study only used Black women participants. Third, there is still a possibility for

residual confounding potentially due to unmeasured variables despite the study aiming to
adjust for important confounders in the statistical analysis. We did not have information
on comorbidities, but these variables may not have a significant effect on the result
estimates. Another potential limitation is that the anthropometric measurements occurred
after diagnosis and participants were asked about their weight 1 year prior to diagnosis.
We, however, observed good correlation between BMI determined by self-report and BMI
measured by study staff. This suggests that body size was relatively stable before and after
diagnosis for this study. The difference in ascertainment of controls in New York City

and New Jersey may raise concerns regarding bias due to systematic over-enumeration of
controls in New Jersey but the sampled controls were representative of the same populations
from which the cases were derived (53).

In conclusion, we observed associations of several genetic variants within mTOR pathway
with risk of breast cancer, overall, and ER+ and ER- tumors. We additionally found
interactions of several of the SNPs with BMI, WHR, WC, fat mass, fat mass index and
percent body fat in relation to breast cancer risk. The study findings suggest that mTOR
genetic variants may impact breast cancer risk in Black women. Body size and body
composition may modify the associations between mTOR genetic variants and breast cancer
risk in Black women. Therefore, there may be an interplay between mTOR genetic variants,
body size and body composition on breast cancer risk in Black women. Validations for these
observed associations and effect modifications are required. Our findings may be clinically
meaningful because it will inform changes in lifestyle factors especially in Black women
with existing germline encoded polymorphisms in the mTOR pathway, which would to a
greater extent reduce breast cancer risk. Studies with larger sample size of black women are
needed to validate our findings. Future studies should examine the functional consequence
of the mTOR genetic variants.
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