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Abstract

Precision medicine seeks to tailor therapy to the individual patient, based on statistical correlates 

from patients who are similar to the one under consideration. These correlates can and should 

go beyond genetics, and in general, beyond tabular or array data that can be easily represented 

computationally and compared. For example, in many types of cancer, cancer treatment and 

toxicity depend in large measure on the spatial disease spread—e.g., metastasizes to regional 

lymph nodes in head and neck cancer. However, there is currently a lack of methodology for 

integrating spatial information when considering patient similarity. We present a novel modeling 

methodology for the comparison of cancer patients within a cohort, based on the spatial spread 

of lymph node involvement in each patient. The method uses a topological map, bigrams, and 

hierarchical clustering to group patients based on their similarity. We compare this approach 

against a categorical similarity approach where patients are binned by their nodal involvement. 

We present similarity results on a 582 head and neck cancer patient cohort, along with two visual 

abstractions for analysis of the results, and we present clinician feedback. Our novel methodology 

partitions a patient cohort into clinically meaningful groups more susceptible to treatment side-

effects. Such spatially-aware similarity approaches can help maximize the effectiveness of each 

patient’s treatment.

Keywords

Precision medicine; Spatial Similarity; Topology; Visual Interface; Oncology

1. Introduction

The United States National Cancer Institute estimates that more than 51,000 people in 

the United States were diagnosed in 2018 with head and neck squamous cell carcinoma 

(HNSCC) [1]. Of these HNSCC cases, more than 90% result as oropharyngeal carcinomas 

(OPC), which include cancers of the larynx (voice box), pharynx (throat), lips, tongue, 

and nose [2, 3]. At the same time, the large number of HNSCC cases makes possible the 
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creation of big data repositories consisting of the demographic and clinical characteristics, 

treatments, and outcomes of patients undergoing therapy. These repositories present 

opportunities towards informing and further personalizing treatment on a per-patient 

level, rather than relying on clinician experience or institutional memory alone [4, 5]. 

Under a healthcare model termed ”precision medicine”, clinicians aim to use these patient 

repositories to tailor therapy decision to the individual patient, based on data from patients 

who are similar to the one under consideration. Currently, these correlates typically include 

age, performance status, clinical staging information, and sometimes genetics—attributes 

that can be statistically aggregated, matched and analyzed.

Yet, similar to most other cancer types, HNSCC treatment and side effects depend in 

large measure on the spatial location and spread of the cancer. In particular, for more 

than 50% of OPC patients, the treatment and side-effects are heavily influenced by the 

spread of disease to lymph nodes (LN) and their corresponding areas (levels), at risk for 

metastases. OPC generally metastasizes to regional LNs following the lymphatic drainage 

of the head and neck [6], often resulting in chains of affected LNs along the drainage 

pathway. These chains correspond to the spread of involvement to specific locations of the 

head and neck and are thus defined by their spatial attributes. Therefore, for those patients 

receiving intensity-modulated radiation therapy (IMRT), these chains represent additional 

targets that must receive radiation treatment. Further complicating matters, the soft tissue 

structures of the head and neck (organs, muscles, etc.) are highly susceptible to both direct 

and indirect radiation exposure [1], and the increased toxicity to specific regions has been 

shown to correlate with post-therapy quality of life. For example, aspiration and dysphagia 

side-effects affect as many as 30%−50% of patients treated with IMRT [7]. Therefore, 

clinicians believe that grouping patients by their patterns of nodal involvement spread can 

help improve treatment strategies regarding both efficacy and toxicity.

The state of the art in lymph pattern similarity uses either categorical matching of node 

labels, or relies on clinician memory. The first approach does not capture the spatial patterns 

of disease spread, and the second approach clearly does not scale well. Because within a 

patient cohort there are many rare or unique combinations of spatial involvement chains, 

analyzing and interpreting the results of any lymph similarity measure is further challenging. 

Precision medicine stands to benefit from scalable, rigorous computing methodology that 

takes into account both the information about metastasized nodes and about the pathways 

that connect them, and facilitates the analysis and interpretation of the resulting similarity 

measures.

At the same time, spatial similarity has been facilitated in many domains such as mechanical 

engineering [8], bioinformatics [9], and oncology [10, 11] by encoding spatial relationships 

through either topology-based or shape-based techniques. These techniques have the ability 

to ”exhibit common classes of descriptive spatial (topological) features that are quantified 

by definition of computable measures” [12]. Both topology and shape-based techniques aim 

to extract spatial attributes, then establish a relationship between corresponding attributes 

in different patients. However, shape-similarity based methods tend to focus on classifying 

models of very different shapes, and fall short of distinguishing anatomical objects within 

the same class unless the objects have easily identifiable structures, such as the mandible 
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and outer body contour [10, 13, 14]. In the case of lymph nodes, structures are in the same 

class and do not have easily identifiable features. However, OPC patient analysis presents an 

opportunity for topology-based techniques.

In this paper, we present a novel topology-based modeling methodology for the comparison 

of patients within a cohort, based on the spatial pattern of lymph nodes affected by disease. 

As part of this methodology, we construct a topological map, we define computational 

representations, and we introduce a novel graph-based measure to derive patient LN 

involvement similarity. We further construct a novel visual interface to interpret the spatial 

similarity results, followed by a novel dendrogram visual encoding to communicate the 

results to clinicians. We evaluate this methodology on a clinical cohort of 582 post-therapy 

OPC patients. We perform hierarchical clustering on the output of the similarity ranking 

to test for correlations with post-therapy toxicity. We contrast these spatial measure results 

against the results obtained using a categorical labeling of the nodes. Specifically, we 

hypothesize that the underlying spatial information contained within the chains of affected 

LN levels would significantly correlate with post-therapy side-effects known to arise due to 

radiation toxicity. This computing methodology should further allow for binning of patients 

in cohorts deemed by clinicians as significantly more informative than categorical binning.

2. Materials and Methods

2.1. Method Overview

Our methodology is constructed as follows (Figure 1): the LN levels for eligible patients 

are manually segmented from contrast-enhanced computed tomography imaging data. We 

then construct a LN topological map, based on the level location and its surrounding 

local neighborhood, and using the medical literature [15] and clinician input; because of 

left-right symmetry in the human head and neck, this is a 2D map with cells for each node 

region. To facilitate patient comparison using the spatial information, we next define and 

construct a dual-graph representation over the topological map; this representation captures 

the neighbor relationships among the lymph nodes. We use the graph representation to 

compute the pair-wise similarity between each patient using a spatial measure. Next, we 

perform hierarchical agglomerative clustering and visual analysis on the similarity output 

and compare the resulting patient groupings. The results are then presented to the clinicians 

for interpretation of the rankings and clusters of patients. Finally, we perform a statistical 

analysis to determine if our spatial measure is significantly correlated with post-treatment 

toxicity outcomes. We describe below in detail each component of this method.

2.2. Patient Cohort

Oropharyngeal cancer (OPC) patients who were treated at the MD Anderson Cancer Center 

between 2005 and 2013 were retrospectively reviewed under an approved IRB protocol. Out 

of the 644 eligible patients who had a pathologically proven OPC, either with a positive 

biopsy or a surgical excision and received treatment (i.e., radiotherapy +/− chemotherapy) 

with a curative intent, 582 patients had affected lymph nodes and were included in this 

study. Affected lymph node (LN) levels were collected from contrast enhanced computed 

tomography (CECT) diagnostic scans which took place at patients’ initial visit for staging 
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and disease assessment. LN levels (retropharyngeal (RP), submental (Ia), submandibular 

(Ib), upper, medial and lower jugular (II, III, IV respectively) and level V a, b) were defined 

based on anatomical landmarks and were coded in relation to tumor position. Patients’ 

relevant demographic, clinical, and toxicity data (toxicity of interest were feeding tube and 

aspiration at six months) were retrieved from electronic medical records.

Table 1 shows the post-therapy side-effect counts and patient characteristics across the 

cohort. Of the 582 patients who underwent intensity-modulated radiotherapy, 163 patients 

suffered from either post-therapy dysphagia side-effects, with 95 (16.32%) patients reporting 

aspiration (breathing a foreign material to the airways, such as saliva) and 99 (17.01%) 

requiring a feeding tube six months after the end of radiotherapy treatment (Feeding Tube at 

6 months).

2.3. Topological Map

To this end, we first defined and constructed a novel 2D topological map over the LN 

levels, based on the consensus guidelines for the delineation of the head and neck [15], 

and using the left-right symmetry of the human head and neck and input from our clinician 

collaborators. Each cell in this topology (shown in gray in Figure 2 (right)) corresponds 

to an LN level in the human head and neck, based on the spatial location and local 

neighborhood of each level. Over this topology, we then defined a dual graph representation 

(shown in red in Figure 2 (right)), where each cell was represented as a node in an 

undirected graph, and edges were created between each pair of adjacent faces. Using this 

abstraction, a chain of involvement would follow the links between the adjacent faces; 

for example, the path connecting LN levels 2B-2A-3 corresponds to a lymph chain of 

involvement. We decided to place the Retropharyngeal (RP) LN, a LN group near the base 

of the skull, as a disconnected node in the graph (upper left) because metastasis to this group 

bears a poor prognosis to OPC patients and requires specialized treatment.

Finally, to account for both sides of the head and neck, the graph was encoded as an 

adjacency matrix where the upper and lower triangles correspond to the left and right side, 

respectively; Figure 2 (left) illustrates metastasis over both sides of the head and neck. We 

initialized the matrix so that each row and column corresponded to one of the LN levels 

in the graph and assigned the LN levels (involved, not-involved) to each element along the 

diagonal, as follows:

Mi, i =
2,
1,
0,

     if Ml, i AND Mr, i are involved
if Ml, i OR Mr, i is involved

otherwise
(1)

where Mii is the graph node corresponding to LN level i, and Mij is an edge between graph 

nodes i and j. Furthermore, edges between two involved LNs nodes were assigned a value 

of 1 in the matrix, according to the dual graph in Figure 2 (right). Since the RP LN level 

appears as a disconnected node on the graph, we handle it as a special case and encoded its 

status via two boolean flags related to the left and right involvement. Therefore, the resulting 
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matrix M has dimensions of 9×9, for the nine groups of lymph nodes that are connected in 

the graph representation.

For later analysis, we furthermore encode the laterality of nodal involvement for each patient 

using the position of their primary tumor: for patients with right-sided primary tumors, 

right-sided LNs are encoded as ipsilateral’ structures with tumor on the right; for patients 

with left-sided primary tumors, left-sided LNs are encoded as contralateral’ structures with 

tumor on the left.

2.4. Similarity Computation

We designed two similarity measures to investigate whether incorporating spatial 

information about the lymph node chains (i.e., the spatial location and neighborhood of 

the nodes involved) partitioned patients more meaningfully than only considering the level 

itself (i.e., non-spatial labels). Each measure was designed around the non-binary Tanimoto 

coefficient [16] using either: a) each patient’s LN level involvement status only (i.e., only 

the affected nodes in the graph representation) to measure the non-spatial similarity or b) a 

combination of status and pathways (affected nodes and edges in the graph representation) 

to measure the spatial similarity. We chose the Tanimoto coefficient based on its ability to 

produce the most ”meaningful” rankings for smaller, diverse graphs [17] when compared 

against subgraph [18] and substructure [19] measures.

2.4.1. Spatial and Non-Spatial Similarity measures—After constructing the 

adjacency matrices M (see Section 2.3), a vector was instantiated for each patient using 

the involvement status of their LN levels, as follows:

vp, i =
2,
1,
0,

if LNLi AND LNRi are involved
if LNLi OR LNRi is involved

otherwise
(2)

where vp, i is the vector element that corresponds to the involvement status of the left and 

right LN levels i for patient p. These values were extracted from the main diagonal of each 

patients’ matrix M. Then, to incorporate the spatial information into the measure, additional 

elements were appended to the resulting vector to encode the edges to and from the involved 

LNs as defined by the topological map. We enumerated every pair of involved LN levels 

connected by an edge as a bigram [20] label and added them to the involvement vector vp, i

(Eq. 3). We choose not to enumerate further than the two-node combinations because of 

the small number of nodes in the graph – if all n-grams were enumerated, the similarity 

distance between patients would increase, and the similarity score for partial pattern matches 

would decrease. Furthermore, permutations of each bigram are considered once (e.g., bigram 

permutations between LN levels 2A and 2B, 2A-2B and 2B-2A, are considered as being the 

same).

Once enumerated, the bigrams on the left- and right-side were encoded into the vector:
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vp, B =
2,
1,
0,

if BLi, j AND BRi, j are involved
if BLi, j OR BRi, j is involved

otherwise
(3)

where vp, B is the vector element that corresponds to the combined left- (L) and right-side (R) 

bigrams B of involved LNs i and j for patient p. Overall, 13 bigrams weights were added to 

the vector to represent the 26 bigrams on both sides of head and neck.

Next, the cohort was ranked in pairwise-fashion by computing the Tanimoto coefficient 

between each of the newly constructed vectors:

T vp, vq = vp ⋅ vq

vp
2 + vq

2 − vp ⋅ vq
(4)

where the function T vp, vq  returns the Tanimoto coefficient between the vectors v of patients 

p and q.

In order to examine the merits of the spatial measure, we likewise constructed a vector 

using only the involvement status of the LN level labels (Eq. 2) for the non-spatial 

(categorical) measure and again ranked the cohort in pairwise-fashion by computing a 

Tanimoto coefficient (Eq. 4).

To illustrate, in contrast, how these measures work, let us consider patients #14 and #245 

from Figure 3 (top left). Patient #14 possesses a bilateral involvement between LN levels 

2A, 2B, 3, 4, and 5B, and a unilateral involvement on one RP LN level, while Patient #245 

possess a bilateral involvement between LN levels 2A, 2B, 3, and 4. Figure 4 illustrates the 

corresponding vectors that are constructed for the spatial (Fig. 4a) and non-spatial (Fig. 4b) 

measures using Eq. 2 and Eq. 3. Computing the Tanimoto coefficient (Eq. 4) between both 

sets of patient vectors results in a similarity score of 0.87 for the spatial measure and 0.76 

for the non-spatial measure.

After ranking each patient, we construct two similarity matrices for the spatial (MSp) and 

non-spatial (MnSp) measures, using the similarity scores between each patient pair in the 

cohort. The result of this step is a similarity matrix for each measure, with the number 

of rows/columns in each matrix equal to the number of patients in the repository. These 

matrices are then used in the hierarchical clustering analysis. The patient similarity was 

implemented using Python 2.7.

2.4.2. Hierarchical Clustering—Once a spatial measure is obtained, stepwise 

clustering techniques, such as hierarchical agglomerative clustering (HAC), are a quick yet 

practical approach to group similar subjects without a priori knowledge of the underlying 

data distribution [21, 22]. For example, recent studies [23, 24] have used hierarchical 

clustering to define anatomical subgroups of patients and test for clinical significance. 

Furthermore, Bruse et al. [24] investigated which distance/linkage combinations would 
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provide the most ”clinical meaningfulness” when applied to a cohort of healthy and 

pathological aortic arches post-surgical repair patients. Their results show that hierarchical 

clustering using a Matthews correlation coefficient [25] combined with a weighted-linkage 

[26] function can yield significant patient subgroups based on spatial features. While we 

define our own similarity measure in this paper, we adopt the weighted-linkage function for 

determining the distance between the groups when performing our hierarchical clustering.

Following a bottom-up approach where each patient was first represented as a singleton 

cluster, we used a hierarchical agglomerative clustering (HAC) algorithm to iteratively 

combine clusters in a pairwise fashion, based on the computed similarity scores and linkage 

distance function. Based on the results from Bruse et al.’s study [24], we chose to use 

the weighted-linkage function [26] when determining the distance between clusters. At 

each iteration, the weighted-linkage function calculates the distance between every pair of 

clusters, i and j, by computing the arithmetic mean of distances (i.e., similarity scores) 

between all points in i and j. The algorithm then combines the ”nearest” (smallest distance) 

two clusters and continues iterating until only a single cluster remains.

The resulting clustering output for the spatial measure was further summarized in a 

dendrogram, a tree-like abstraction which illustrates how similar clusters were grouped 

(x-axis) and at what level/distance (y-axis) they merged. Finally, partitions of highly similar 

patients were formed by cutting the dendrogram at a specified level. This level was 

empirically determined based on the calculated expected values of toxicological outcomes, 

as described in the next section. Clustering was performed using the Matlab r2018a machine 

learning toolbox [27].

2.4.3. Statistical Analysis—Results from hierarchical clustering are commonly 

summarized using a dendrogram, a tree-like structure that displays how the elements are 

partitioned into groups based on the computed similarity and linkage functions [28, 29]. We 

construct such a dendrogram as described below.

The patient groupings were compared using the Rand Index [30] to determine the measure 

of similarity between the two measures’ clustering output. This measure quantifies the 

number of pairing agreements between two clusters into a frequency between 0.0 and 1.0, 

where a value of 0.0 indicates that the clusterings disagree on every pairing of samples 

and a value of 1.0 indicates that both clusterings are the same. Additionally, the Fisher’s 

exact test [31] was performed on both clusterings using two toxicity binary variables (Y/N) 

provided with the cohort: the post-treatment aspiration symptoms and feeding-tube necessity 

at six-months. We chose the more computationally-expensive Fisher’s exact test over the 

Chi-squared test because the high variation of nodal involvement patterns within the cohort 

yields small numbers of expected values within each group (e.g., for a clustering with k =  6
clusters). While when using Chi-squared the number of expected values for each group 

should be at least 5, to guarantee the significance of the p-value (otherwise a small p-value 

could be in fact not significant), Fisher’s exact test works well on small numbers of samples. 

Using Fisher’s test, the most significant grouping was for k =  6 as the number of clusters, 

and so both clusterings were cut at the k =  6 level. Statistical tests were performed using the 

Matlab 2018a statistical toolbox [27].
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2.4.4. Visual Analysis—To facilitate the assessment of our approach by clinicians, we 

have constructed an application to help interpret the abstracted nodal involvement of each 

patient in the cohort in the context of the computed similarity between patients. The visual 

interface (Figure 3) consists of small multiple representations of the abstract topological 

map (Section 2B) and control menus which allow a specific patient to be selected and 

viewed. To keep the representations compact, only one side of the head and neck was 

abstracted; color was used to distinguish between left (green), right (purple), and bilateral 

(blue) involvement. The visual interface wasimplemented using the web technologies 

JavaScript, HTML, CSS, and the D3 [32] Javascript library.

Additionally, we created an informational dendrogram (Figure 6 to convey the patient 

clustering and statistical analysis results to the collaborating radiation oncologists (co-

authors CDF, HE, BE). Side-effect statistics are displayed atop each of the groups formed 

by the k =  6 horizontal cut. The most frequently occurring involvement pattern for each 

cluster was determined based on the consensus nodal spread of each cluster along the x-axis 

(at y = 0) and is shown in miniature at the bottom of each cluster along the bottom x-axis. 

The consensus was determined based on a two-thirds majority involvement status (i.e., a LN 

level is included in the graph if 67% of the patients share that involvement). The miniature 

consensus graphs are a variation of the previously described graph representations: solid and 

outlined nodes are consensus nodes, affected in more than 67% of the patients in that cluster, 

while square marks indicate nodes affected in less than 67% of the patients in that cluster. 

Unilateral involvement is shown by a single consensus graph, while bilateral involvement is 

shown by two stacked miniature graphs, one for each side of the head and neck. We note that 

the miniature consensus graphs do not provide a complete descriptor of cluster membership.

3. Results

3.1. Spatial vs Categorical Node Patient Categorization

Our approach was able to successfully discriminate patients based on spatial involvement 

in cases where the categorical approach failed. For example, the spatial measure was 

able to discriminate between patients with bilateral spread and patients with unilateral 

node involvement by placing them into separate cohorts. The spatial measure also 

discriminated between RP node involvement versus no involvement, regardless of pattern 

spread complexity. Consequently, this approach allowed for binning of patients in cohorts 

that were deemed by clinicians and end-users (co-authors CDF, HE, BE) significantly more 

informative than categorical binning.

Figure 5 shows a representative example of the value of spatial-measure. Shown are two 

patients that have drastically geometrically different LN level involvements. Using k =  6
clusters, these patients are erroneously binned together under the categorical measure (Fig. 

5, bottom right), while our spatial approach successfully discriminates between them (Fig. 

5, bottom left). In particular, Patient A possesses a bilateral lymphatic nodal spread as well 

as a LN level 3 involvement. Involvement of level 3 implies potential radiation dose to 

laryngeal structures and is thus a potentially meaningful correlate of radiation-associated 

sequelae [33]. Likewise, RP node positivity discriminates dose to superior pharyngeal 
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constrictor which is atypical and has the potential for specific toxicity discrimination 

[34]. In the clinicians’ assessment, these are important distinctions, given prior data that 

shows differential swallowing toxicity as a function of superior pharyngeal constrictor (SPC) 

versus cricopharyngeus muscles [35, 36].

In the spatial measure, Patient A was also clustered together with other patients that have 

node 3 involvement, while Patient B was clustered together with no other patients that have 

node 3 involvement. Conversely, Patient B was primarily clustered together with patients 

with RP involvement (67% with RP involvement), while Patient A was not (16% with RP 

involvement). However, the RP partitioning may have been more related to the bilaterality of 

nodal involvement.

3.2. Domain Expert Feedback

Qualitative feedback from repeated evaluation with our collaborating clinicians emphasized 

the usefulness of this approach. When presented with the informational dendrogram (Fig. 6, 

one clinician stated that he felt confident he could take the visualization back to his clinic 

that day and use it when describing the potential outcome risks alongside proposed treatment 

plans to his patients. In addition to comparing patients of the cohort, the clinicians also 

identified several patients whose LN levels had been previously mislabeled in the dataset 

due to segmentation or data processing pipeline errors.

During the evaluation process, the clinicians noted that it is common practice to delineate 

patient groups based on bilateral involvements and the nodal spread between LN levels 

2 and 3. Of the two approaches to group patients based on their lymphatic nodal spread, 

the clinicians felt that the spatial similarity measure, which inherently separated patients 

between uni- and bilateral involvements as well as the LN level 2 and 3 nodal spread, most 

closely represented what is expected in a clinical setting.

3.3. Hierarchical Clustering Analysis

Figure 6 displays the informational dendrogram resulting from patient binning using the 

spatial measure. In the dendrogram, clusters of highly similar patients are represented along 

the x-axis using the visual representation defined in Section 2 D5 to capture the consensus 

nodal involvement of the cluster.

In the dendrogram (Fig. 6), we identified two distinct groups by focusing on the nodal 

involvement across the x-axis of each group. First, the cut that separated groups G2-G4 from 

G5, near merge level 7, also partitioned the cohort according to the involvement laterality: 

groups G1-G3 consisted of patients with unilateral involvement, groups G4 and G5 of 

patients with bilateral involvement, and group G6 of patients with unique (singular to the 

cohort) nodal involvement. Next, the cut that separated groups G3 and G4, near merge level 

5, also discriminated based on LN level 3 involvement, creating another clear distinction 

between groups with (G2, G4, G5) and without (G1, G3) the involved lymph node.

In contrast, the involvement status of LN level 3 occurred throughout each of the six groups 

generated through the non-spatial/categorical approach. Furthermore, four of the six groups 

generated through the categorical approach contained patients with bilateral involvement. 

Luciani et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2023 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therefore, the categorical approach fails to capture a meaningful demarcation between LN 

level 2 and level 3 involvement, as well as patterns of bilateral involvement.

Measure Agreement: In terms of agreement between the spatial and categorical 

approaches, we identified two identical groups between the spatial- and categorical-approach 

clusterings (G1 and G6). While these two groups represent 43% (252 patients) of the cohort, 

the consensus nodal involvements in each are also the simplest patterns in the cohort. For 

example, all 227 patients in both G1 groups possess a unilateral LN level 2 involvement. 

G6 groups together all the 25 unique LN level involvement patients in the cohort. Outside 

of these two groups, the categorical-approach did not have the discriminatory value of the 

spatial approach advocated in this paper.

After removing the two groups G1 and G6 from each of the clusterings, the computed 

Rand index between the spatial and the categorical results was a similarity measure of 0.55. 

This value indicates that outside of the two groups G1 and G6 of simple patterns, the two 

approaches are significantly dissimilar in terms of how they group the patients within the 

cohort.

3.4. Statistical Analysis Results

Statistical significance is reported assuming a level of p < 0.05, based on the occurrence of 

the toxicity symptoms within the groups. Table 2 shows the toxicity outcomes distributions 

of the four spatial-measure groups with the highest incidence rates. In terms of the 

toxicological outcomes, there was a significant difference in the rate of feeding tube (FT) 

placement among the k =  6 spatial-measure groups (p < 0.01). The measure was able to 

identify two cohorts (G4, G5) that had almost double the outcome incidence compared 

to the other four (G1-G3, G6). G4 and G5 had FT placement rates of 27.3% and 33.3%, 

respectively, while G3-G6 had rates less than or equal to 17.9%. Additionally, the spatial 

measure identified one group (G5) with more than double the aspiration rate (41.2%) 

compared to the other five groups.

3.5. Performance

We performed all computation on a 4.0 GHz Quad Core i7 machine with 32G of RAM. The 

average runtime to compute the similarity on the cohort of 582 patients was approximately 

90 seconds per similarity measure. The hierarchical clustering and statistical analysis 

averaged 45 seconds to partition the patients into groups, compute the Chi-squared and 

Fisher’s exact test, and output the statistics and dendrogram per measure.

4. Discussion

Our analysis of results and the domain expert feedback support our claim that spatial 

correlates can provide insight into therapy strategies where treatment depends on the spatial 

patterns of disease, such as intensity-modulated radiation therapy for HNSCC. The spatial 

method we introduce captures and ranks patients correctly and more clinically accurately 

compared to the categorical approach. Furthermore, we have shown that when combined 

with hierarchical clustering, our novel graph-based similarity measure partitions an OPC 
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patient cohort into clinically meaningful groups. In particular, we have shown that our 

spatial approach can capture groups of patients more susceptible to dysphagia toxicity 

(aspiration and feeding tube) based on the pattern of nodal involvement.

In terms of limitations, our similarity measure captures but a few of the many features that 

can be used in therapy response-driven decisions and predictive outcome models. While 

toxicity is heavily predicated on the relationship between the spatial location of involvement 

and the administered radiation dose, many therapy outcomes and side-effects result from 

other non-spatial features. A direction of future research, while beyond the scope of this 

work, would be to combine our spatial similarity scores with other relevant non-spatial 

features, such as T-Category and patient age [37], to create a more semantically meaningful 

view of the patient regarding treatment response and survival. Likewise, our approach notes 

but does not explicitly incorporate into the similarity measure, the tumor location with 

respect to the lymph-structures (which is typically upstream in the head and neck). Other 

clinical applications may feature higher variability in the tumor location, and in those cases, 

the location of the tumor may need to be explicitly incorporated into the similarity measure.

Next, we note that our evaluation was limited to one moderately sized cohort of patients. 

Many of these patients were referrals whose data was collected outside of the treatment 

facility. As a result, a significant amount of time spent working with this cohort was 

spent cleansing the data of malformed classifications. Furthermore, our expert feedback 

was limited to radiation oncology clinicians who were all members of the same clinical 

lab. Last but not least, our approach is constructed around a 2D graph representation that 

takes advantage of the symmetry about one of the principal axes of the structural model. 

While this approach is ideal for domains where symmetry is inherently built into the model 

(e.g., symmetry about the head and neck), it may also be easily extended to non-symmetric 

situations. In contrast, extending this approach to situations where 3D location is important 

would require modifications to the underlying graph representations and similarity measure.

5. Conclusion

In conclusion, we have introduced and evaluated a novel methodology to compare head 

and neck cancer patients based on their spatial patterns of LN involvement. Our approach 

demonstrates how the spatial location and neighborhood of the head and neck LN levels 

can be abstracted to a 2D topological representation, which can then be used to quantify 

similarity within a cohort of patients based on their extracted spatial attributes. This work 

also contributes two novel visual representations that provide clinicians with response-based 

correlates within the ranked cohort. Statistical analysis and expert feedback indicate that 

our spatial methodology can be useful in clinical settings. Furthermore, we show that our 

spatial methodology provides superior patient similarity and groupings in terms of clinical 

relevance when compared to the categorical approach. The presented methodology may find 

application beyond the 2D head and neck lymph node analysis in other domains that feature 

topological structures.

Few, if any, studies have attempted to use spatial-similarity techniques to compare post-

diagnosis patients and ”close the gap between mere data and useful knowledge, as desired 
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in current Precision Medicine” [24]. Moving forward, we aim to integrate our proposed 

measure into a risk-prediction model. We believe that when applied to spatially-driven 

diseases such as OPC, approaches such as ours can play a vital role in fulfilling precision 

medicine’s goal of maximizing the effectiveness of each patient’s treatment through 

customized care [38].
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Figure 1: 
Pipeline detailing the steps and data flow of our presented methodology. After receiving the 

contrast-enhanced computed tomography (CECT) images from the clinicians, we construct 

a topological mapping of each patient’s involved nodes and the connections between them. 

The result matrices are used to compute similarity using a Tanimoto coefficient; hierarchical 

clustering is performed on the ranked patient scores to determine patient groups; statistical 

and visual analysis is performed on the groups to determine groups with higher toxicity 

outcome rates and validate the results.
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Figure 2: 
Topological map and graph representation. (Left) A novel topological map was constructed 

over the lymph node regions (shown in gray), overlaid with a dual graph representation (red) 

of the map showing the connectivity between the lymph node levels. The Retropharyngeal 

(RP) lymph nodes are a group of nodes near the base of the skull and are disconnected from 

the dual graph because their involvement requires specialized treatment. (Right) A compact 

visual representation was derived from the red graph representation to visually illustrate 

metastasis over both sides of the head and neck, using symmetry and color to distinguish 

between left (green), right (purple), and bilateral (blue) involvement.
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Figure 3: 
Example similarity ranking. Patient #14 (shown top left) is unique within the cohort, in that 

no other patient in the 582 patient cohort exhibits the same ten bilateral LN levels and RP 

involvement. Following Patient #14 are the seven closest-ranked patients (shown in left-right 

and top-down order) based on our spatial similarity measure. The two most similar patients 

share eight bilaterally involved LN levels; the next two have similar bilateral chains but 

either share fewer involved LN levels (Patient #10128) or possess two additional involved 

LN levels (Patient #84); while the last three similar patients have similar involvements but 

with significantly fewer LNs levels.
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Figure 4: 
An illustration of the involvement vectors v constructed for Patient #14 and Patient #245. (a) 

The vectors v constructed for the spatial similarity measure (Eq. 2 and 3). (b) The vectors 

v constructed for the non-spatial measure (Eq. 2). Note that the spatial vectors (a) include 

bigrams while the non-spatial vectors (b) do not.
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Figure 5: 
Two subjects with different groupings based on the similarity measure. Patient A (top left) 

possesses a bilateral nodal spread with LN level 3 involvement while Patient B (top right) 

only possesses a unilateral nodal spread with LN level 3 involvement. Because the spatial 

measure uses the geometrically different nodal involvement, it separates Patient A and B 

into the two main clusters, G3 and G5 (bottom left). In contrast, the categorical measure 

combines the two patients under the same main cluster, G4 (bottom right).
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Figure 6: 
Dendrogram showing k = 6 patient spatial groups (indicated by arrows) and toxicity 

correlates. A clear distinction between bilateral and unilateral nodal spread can be seen 

between groups G3 and G4, as well a divide between patients with and without LN level 3 

involvement (G4 and G5). The consensus involvement (67%) of each group is shown along 

the x-axis.
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Table 1:

Patient Characteristics and Post-therapy Side Effects

Characteristics N (%)

Post-therapy Side Effect

Feeding tube at 6 mo. 99 (17.01%)

Aspiration 95 (16.32%)

No side effect 388 (66.67%)

Gender

Male 512 (87.97%)

Female 70 (12.03%)

T-category (T)

Tx 1 (0.17%)

Tis 1 (0.17%)

T1 129 (22.16%)

T2 245 (42.10%)

T3 121 (20.79%)

T4 85 (14.61%)

N-category (N)

N1 72 (12.37%)

N2 492 (84.54%)

N3 18 (3.09%)
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Table 2:

Toxicity Outcome Distributions of the Spatial-Metric Groups

Feeding Tube Placement Aspiration

Group Patients W/ outcome % w/ outcome W/ outcome % w/ outcome

G2 174 31 17.9% 28 16.1%

G3 28 3 10.7% 4 14.3%

G4 77 21 27.3% 14 18.1%

G5 51 17 33.3% 21 41.2%
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