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ABSTRACT

TH17 cells are implicated in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). We

previously reported that the transcription factor basic helix-loop-helix family member e40 (BHLHE40) marks cytokine-producing

pathogenic TH cells during EAE, and that its expression in T cells is required for clinical disease. In this study, using dual reporter mice,

we show BHLHE40 expression within TH1/17 and ex-TH17 cells following EAE induction. Il17a-Cre–mediated deletion of BHLHE40 in

TH cells led to less severe EAE with reduced TH cell cytokine production. Characterization of the leukocytes in the CNS during EAE by

single-cell RNA sequencing identified differences in the infiltrating myeloid cells when BHLHE40 was present or absent in TH17 cells.

Our studies highlight the importance of BHLHE40 in promoting TH17 cell encephalitogenicity and instructing myeloid cell responses

during active EAE. ImmunoHorizons, 2023, 7: 737–746.

INTRODUCTION

The myelin oligodendrocyte glycoprotein (MOG)35�55 peptide�
induced experimental autoimmune encephalomyelitis (EAE)

animal model of multiple sclerosis in C57BL/6 mice represents a
CD41 T cell�mediated demyelinating disease of the CNS (1).
Following immunization with MOG35�55 peptide and adjuvant,
CD41 T cells primed in the periphery develop into TH1 and
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TH17 cells that are both capable of mediating disease. Fate-
reporter mice that make use of Il17a-driven Cre expression
have been instrumental in identifying populations of CD41

T cells that express both IL-17A and IFN-g (here referred
to as TH1/17 cells) as well as IFN-g1 ex-TH17 cells following EAE
induction (2), both of which have been associated with encephali-
togenicity that is dependent on their GM-CSF production (2�6).

Both active immunization and adoptive transfer models of
EAE have been useful for identifying important T cell�intrinsic
regulators of neuroinflammation. Using adoptive transfer models
of EAE, the transcription factor T-bet is needed for encephalito-
genicity of both TH17 and so-called THGM cells (CD41 T cells
cultured to enhance their GM-CSF production) (7�9); however,
Il17a-Cre�mediated deletion of floxed alleles of either Tbx21
(T-bet) or Rorc (RORgt) led to only modest reductions in active
EAE clinical disease (10). Other transcription factors are impor-
tant for T cell pathogenicity during actively induced EAE such
as Fosl2 (11) and Blimp-1 (12), although these have not been se-
lectively deleted in only TH17 cells to test their impact on clini-
cal disease. Although a few transcription factors, such as JunB
(13, 14) and STAT4 (15, 16), have been demonstrated as having
important intrinsic roles in TH17 cells using Il17a-Cre�mediated
deletion, other transcription factors also likely contribute to TH17
cell�intrinsic encephalitogenicity.

We and others have shown a cell-intrinsic requirement for
the transcription factor basic helix-loop-helix family member
e40 (BHLHE40) in CD41 T cells for disease in actively induced
EAE in Bhlhe40�/� mice, through the action of BHLHE40 as a
positive regulator of GM-CSF and negative regulator of IL-10
production (17�19). Furthermore, in an adoptive transfer model
of EAE, BHLHE40-deficient MOG-specific TH1 or TH17 cells
were incapable of mediating disease (20). Others have shown
Bhlhe40 induction downstream of the TH17 cell�associated tran-
scription factors RORgt, RORa, and SATB1 (11, 21, 22). In the
case of SATB1, overexpression of BHLHE40 restored GM-CSF
production and pathogenicity by Satb1-deficient CD41 T cells
(22). Additionally, Bhlhe40 expression has been correlated with
a pathogenic CD41 T cell transcriptional signature during EAE
(23�26). In this study, we sought to more thoroughly explore
the role of BHLHE40 specifically in TH17 cells during active
EAE. Using a combination of BHLHE40 reporter and condi-
tional knockout mice along with single-cell RNA sequencing
(scRNA-seq), we identify specific roles for BHLHE40 in deter-
mining the pathogenicity of TH17 cells during EAE.

MATERIALS AND METHODS

Mice
Bhlhe40GFP (20) and Bhlhe40fl/fl (27) mice have been previously
described. Bhlhe40GFP mice were crossed to Il17a-Cre (The Jack-
son Laboratory, 016879, Il17atm1.1(icre)Stck/J) and Rosa26-TdTomato
mice (The Jackson Laboratory, 007914, B6.Cg-Gt(ROSA)
26Sortm14(CAG-tdTomato)Hze/J). Bhlhe40fl/fl mice were crossed to
Cd4-Cre (022071, B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ), Il17a-Cre,

Lyz2-Cre (018956, B6N.129P2(B6)-Lyz2tm1(cre)Ifo/J), and S100a8-Cre
mice (021614, B6.Cg-Tg(S100A8-cre,-EGFP)1Ilw/J) (all from The
Jackson Laboratory). All mice were on the C57BL/6 background
and used between 8 and 20 wk of age. Animal experiments were
approved by the Animal Studies Committee of Washington Uni-
versity in St. Louis. Littermates were used when possible, and both
male and female mice were used in experiments.

Immunizations and induction of EAE
EAE induction, EAE clinical scoring, MOG35�55 peptide immuni-
zations, and assessment of T cell responses in the draining lymph
node (DLN) at day 7 postimmunization were performed as previ-
ously described (20). To achieve the best use of littermates and
age-matched mice, independent experiments were performed
and data were combined.

Cell preparation and flow cytometry
These techniques have been previously described (20). In brief,
DLNs were collected at day 7 postimmunization to prepare
single-cell suspensions. Brains and spinal cords (CNS) were
processed together from either naive or EAE-induced mice at
day 14 postinduction. Surface staining and intracellular cytokine
staining were performed using the Abs in Supplemental Table I. For
scRNA-seq experiments, CD4517-aminoactinomycin D� live, single
cells of the CNS were sorted using a FACS-Aria II (BD Biosciences),
washed, and adjusted to 103 cells/ml in PBS1 0.04% BSA.

scRNA-seq and data analysis
scRNA-seq was performed at the McDonnell Genome Institute
using the Chromium single cell 3� library kit v2 and Chromium
instrument (10x Genomics, Pleasanton, CA). Sequencing was
performed on an Illumina HiSeq 4000 instrument. Data were
processed as described (28) for dimensionality reduction, con-
struction of t-distributed stochastic neighbor embedding (tSNE)
plots, clustering, identification of cluster-specific genes, and
differential expression analysis. Differentially expressed genes
(adjusted p value <0.05 and log2 fold-change >0.35) were cross-
referenced to the hallmark (29), Reactome (https://reactome.org/)
(30), and KEGG (https://www.kegg.jp/) (31) gene sets in the Mo-
lecular Signatures Database (MSigDB) (https://gsea-msigdb.org/
gsea/msigdb/index.jsp). Monocle 2 was used for pseudotemporal
analysis of CNS myeloid cell populations (32, 33). Data have been
deposited in the Gene Expression Omnibus (GSE234705).

Statistical analysis
Data were analyzed with Prism (GraphPad Software) and one-
way ANOVA, Student t tests, or Mann�Whitney U tests were
used as indicated in individual figure legends. For relevant com-
parisons where no p value is shown, the p value was >0.05.
Horizontal bars represent the means, and error bars represent
the SEM. Although we did not directly account for interexperi-
ment variability in experiments in which EAE disease scores
were measured, we confirmed that trends were repeated in
each independent experiment.
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FIGURE 1. Expression of GFP in TH1/17 and ex-TH17 cells and cytokine production in double reporter mice.

(A) Representative flow cytometry of TdTomato and GFP expression in CD41 T cells (CD19�TCRb1TCRgd�CD41CD8a�) isolated from DLNs of naive

Il17a-Cre Rosa26-TdTomato Bhlhe40GFP reporter mice or at day 7 postimmunization with pertussis toxin (PTX), MOG35–55 in CFA, or MOG35–55 in CFA

plus PTX. (B and C) Percentages (B) or number (C) of TdTomato1, GFP1, or TdTomato1GFP1CD41 T cells (pooled from two experiments, n 5 3–6 per

group). (D) The GFP1 percentage of TdTomato1CD41 T cells at day 7 after MOG/CFA 1 PTX treatment within different cytokine-producing popula-

tions (pooled from two experiments, n 5 6 per group). (E) Cytokine production from DLN CD41 T cells from Il17a-Cre Rosa26-TdTomato (Continued)
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RESULTS

BHLHE40 is expressed in TH1/17 and ex-TH17 cells
To track BHLHE40 expression along with IL-17A fate map-
ping, we crossed Bhlhe40GFP BAC transgenic mice to Il17a-Cre
Rosa26-TdTomato mice. We immunized these mice with either
pertussis toxin (PTX), MOG35�55 in CFA, or MOG35�55 in CFA
with PTX injections, and on day 7 postimmunization, we ana-
lyzed the CD41 T cell compartment for TdTomato and GFP
(as a surrogate for BHLHE40) expression (Fig. 1A). Immuniza-
tion with MOG35�55 in CFA increased the percentage and num-
ber of TdTomato1 CD41 cells, but only with the addition of
PTX was the percentage and number of GFP1 and GFP1

TdTomato1 CD41 T cells increased (Fig. 1B, 1C). This is con-
sistent with our previous finding that PTX stimulates secretion
of IL-1b from myeloid cells, which induces BHLHE40 expres-
sion in CD41 T cells (20). To ask whether BHLHE40 was ex-
pressed in TH1/17 and ex-TH17 cells, we examined TdTomato1

CD41 T cells for intracellular production of IFN-g and IL-17A.
GFP was highly expressed in IFN-g1IL-17A1 TH1/17 cells and
IFN-g1IL-17A� ex-TH17 cells (Fig. 1D).

We further characterized cytokine production of IFN-g,
IL-17A, and GM-CSF from the different types of reporter cells
in the DLN. GM-CSF production correlated with GFP expression
in both TdTomato1 and TdTomato� CD41 T cells (Fig. 1E). In
addition, the greatest frequency of multifunctional CD41 T cells
(i.e., simultaneously producing IL-17A, IFN-g, and GM-CSF) was
found in the GFP1TdTomato1 group. A similar trend of cytokine
production was seen in the CNS on day 14 after EAE induction
(Fig. 1F, Supplemental Fig. 1). Within the CNS, a notable differ-
ence was an increase in IL-17A�IFN-g1GM-CSF� and IL-17A�

IFN-g1GM-CSF1 cells in both TdTomato1GFP� ex-TH17 cells
and TdTomato�GFP� cells. This could indicate underreporting
of BHLHE40 expression by the GFP reporter after permeabili-
zation for intracellular cytokine staining or that some cells use
BHLHE40-independent pathways to produce these cytokines.
Nevertheless, the greatest fraction of total GM-CSF producers
(i.e., IL-17A/IFN-g agnostic) in both the DLN and CNS was
found in GFP1 cells, consistent with the known role for
BHLHE40 in supporting GM-CSF production.

Bhlhe40 deletion in IL-17A�expressing cells reduces
neuroinflammation
Because BHLHE40 was highly expressed in TH1/17 and ex-TH17
cells, we tested whether Il17a-Cre1 Bhlhe40fl/fl mice would
have an altered course of EAE. For comparison, we also in-
duced EAE in Cd4-Cre1 Bhlhe40fl/fl mice, which lack Bhlhe40
expression in all T cells and which have previously been shown

to be protected from EAE (34). As expected, Cd4-Cre1 Bhlhe40fl/fl

mice were highly protected during EAE compared with
Bhlhe40fl/fl controls (Fig. 2A). Notably, we found consistently
reduced EAE severity upon Il17a-mediated deletion of Bhlhe40,
although not to the same extent as Cd4-Cre�mediated deletion
(Fig. 2B). We restimulated cells isolated from the CNS of naive
mice and from immunized Bhlhe40fl/fl, Cd4-Cre1 Bhlhe40fl/fl,
or Il17a-Cre1 Bhlhe40fl/fl mice 14 d after immunization to ex-
amine cytokine production. In both Cd4-Cre1 Bhlhe40fl/fl

and Il17a-Cre1 Bhlhe40fl/fl mice we found that the most
striking reduction was in the IL-17A�IFN-g1GM-CSF1 popula-
tion, which was the most increased population in immunized
Bhlhe40fl/fl mice relative to naive mice (Fig. 2C, 2D). Based on
our fate-mapping experiments, in Il17a-Cre1 Bhlhe40fl/fl mice
these cells likely represent ex-TH17 cells that had once produced
IL-17A and therefore deleted Bhlhe40, reducing their potential
for GM-CSF production. As BHLHE40 has been shown to nega-
tively regulate IL-10 in CD41 T cells (18), we examined IL-10
production in the context of Il17a-Cre�driven deletion of
BHLHE40. At the peak of disease, Il17a-Cre1 Bhlhe40fl/fl

CD41 T cells had no statistically significant difference in
IL-10 production compared with Bhlhe40fl/fl CD41 T cells,
although there was a trend toward greater IL-10 production
upon BHLHE40 deletion (Fig. 2E, 2F). As expected, Il17a-
Cre1 Bhlhe40fl/fl CD41 T cells had decreased total GM-CSF
production. This suggests that the clinical protection seen in
Il17a-Cre1 Bhlhe40fl/fl mice is likely not due to local IL-10 pro-
duction in the CNS.

CNS-infiltrating myeloid cells are the critical responders to
GM-CSF produced by encephalitogenic CD41 T cells (35, 36).
We therefore examined the impact of altered cytokine produc-
tion from BHLHE40-deficient CD41 T cells on the myeloid cells
present in the CNS during EAE. Upon immunization, there was
infiltration of myeloid cells into the CNS of Bhlhe40fl/fl control
mice (Fig. 2G, 2H). These infiltrating myeloid cells, as well as
CNS-resident microglia, upregulated MHC class II upon activa-
tion (Fig. 2G, 2H). In both immunized Cd4-Cre1 and Il17a-Cre1

Bhlhe40fl/fl mice, there was a dramatic reduction in the number
and activation of infiltrating myeloid cells and activation of micro-
glia compared with immunized Bhlhe40fl/fl mice (Fig. 2G, 2H).
To test for the possibility of a cell-intrinsic role for BHLHE40 in
infiltrating myeloid cells, we crossed Bhlhe40fl/fl to Lyz2-Cre and
actively induced EAE. We did not find a role for BHLHE40 in
myeloid cells or in neutrophils using S100a8-mediated dele-
tion (Supplemental Fig. 2). Overall, we show that altered cyto-
kine production from BHLHE40-deficient CD41 T cells resulted
in a decrease in the number and activation of infiltrating myeloid
cells.

Bhlhe40GFP mice (pooled from two experiments, n 5 4 per group) separated by TdTomato and GFP expression at day 7 after MOG/CFA 1 PTX treat-

ment. (F) Cytokine production from CNS CD41 T cells (CD45.21CD19�TCRb1TCRgd�CD41CD8a�) from Il17a-Cre Rosa26-TdTomato Bhlhe40GFP

mice (pooled from two experiments, n 5 9 per group) separated by TdTomato and GFP expression at day 14 after MOG/CFA 1 PTX treatment. Data

are presented as mean 6 SEM. Statistical significance was determined by one-way ANOVA with a Tukey multiple comparison test (B, C, and D).

*p < 0.05, **p < 0.01, ***p < 0.001.
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scRNA-seq identifies CNS leukocytes altered by BHLHE40
deficiency during EAE
To further probe how deletion of BHLHE40 in T cells or
IL-17A�producing cells impacts on the immune cells present in
the CNS during EAE, we performed scRNA-seq. Immune cells
(CD451) were sorted from the CNS of naive Bhlhe40fl/fl con-
trols or from immunized Bhlhe40fl/fl, Cd4-Cre1 Bhlhe40fl/fl, or
Il17a-Cre1 Bhlhe40fl/fl mice on day 14 of EAE. After dimension-
ality reduction of the scRNA-seq data, immune cells partitioned
into 17 unique clusters (Fig. 3A). Clusters were identified based
on gene expression of common lineage-specific markers (Fig. 3B,
Supplemental Fig. 3A). Immunization of Bhlhe40fl/fl mice resulted
in an increased fraction of CD41 T cells (cluster 1) and myeloid
cells (clusters 5 and 7) infiltrating into the CNS compared with
naive mice (Fig. 3C, Supplemental Fig. 3B). This increase was not
seen in the CNS of immunized Cd4-Cre1 Bhlhe40fl/fl mice, which
largely resembled the naive CNS with the exception of an in-
creased frequency of monocytes (cluster 2) and neutrophils
(clusters 4 and 11) (Fig. 3C). The CNS of immunized Il17a-Cre1

Bhlhe40fl/fl mice largely resembled those of immunized
Bhlhe40fl/fl mice, with a high percentage of CD41 T cells
(cluster 1) and infiltrating myeloid cells (the collection of clus-
ters 5, 7, and 9) (Fig. 3C, Supplemental Fig. 3B). Based on our
sorting strategy using CD45 expression, few microglia (cluster 14)
were sequenced from our various samples. In general, microglia
resembled myeloid cluster 7 in terms of gene expression based
on their proximity on the tSNE plot, but due to their low abun-
dance in individual samples, comparisons between genotypes
were not made.

To determine the different pathways upregulated or down-
regulated in CD41 T cells from immunized Bhlhe40fl/fl and
Il17a-Cre1 Bhlhe40fl/fl mice, we cross-referenced the list of
top differentially expressed genes to gene signatures within
the MSigDB. CD41 T cells from the immunized Bhlhe40fl/fl

CNS upregulated genes in pathways involved in the innate im-
mune system and complement (Supplemental Fig. 3C). The path-
ways most enriched in CD41 T cells from immunized Il17a-Cre1

Bhlhe40fl/fl CNS included both type 1 and type 2 IFN responses
(Supplemental Fig. 3D).

We further examined several clusters of infiltrating myeloid
cells (clusters 5, 7, and 9). Cluster 5 was present in immunized
Bhlhe40fl/fl and Il17a-Cre1 Bhlhe40fl/fl CNS in roughly equal
proportions (Fig. 4A). Cluster 7 was dramatically higher in im-
munized Bhlhe40fl/fl CNS, compared with its near absence in
the other samples. Similarly, cluster 9 was largely specific for
the Il17a-Cre1 Bhlhe40fl/fl CNS. Cluster 5 was enriched in in-
flammatory pathways, such as IFN-g response, TNF-a signaling,
inflammatory response, and cytokine signaling (Fig. 4B, 4E).
Cluster 7 appeared to be a highly phagocytic population, with
enrichment in pathways such as neutrophil degranulation, lyso-
some, and complement (Fig. 4C, 4F). Cluster 9 was enriched in
cytokine signaling and type 1 IFN responses (Fig. 4D, 4G), simi-
lar to the CD41 T cells from immunized Il17a-Cre1 Bhlhe40fl/fl

CNS. The emergence of a type 1 IFN signature in cluster 9, which
was almost exclusively present in the Il17a-Cre1 Bhlhe40fl/fl CNS,
and the CD41 T cells from this same sample was notable. In
summary, deletion of Bhlhe40 from IL-17A�producing cells
resulted in CNS-infiltrating myeloid cells with altered pheno-
types during EAE.

To examine the potential for developmental relationships
between the myeloid clusters, we employed the Monocle 2 al-
gorithm (32, 33) to assign a pseudotime trajectory to the mye-
loid cells in clusters 2, 5, 7, and 9 (Fig. 4H). We included
cluster 2 (monocytes) in this analysis, as these cells likely repre-
sent the precursor population that gives rise to the other mye-
loid clusters (36�39). When the clusters were mapped onto the
pseudotime plot, monocytes (cluster 2) were predicted to be
the precursor that progresses through one of two differentia-
tion pathways (Fig. 4I, 4J). The first branch point (branch
point 1) was where most of cluster 9 resided, and the second
branch point (branch point 2) involved a differentiation from
cluster 5 to cluster 7. Part of cluster 5 appeared to be a distinct
cell fate, while the rest of cluster 5 appeared mostly in the tran-
sition between clusters 9 and 7. This is consistent with the fact
that some of the enriched pathways present in cluster 5 are
also shared pathways with cluster 9 (Fig. 4B, 4D). It appeared that
cluster 9, an IFN-responsive population, is a cell fate that was
largely unlocked by the absence of Bhlhe40 from IL-17A�producing

FIGURE 2. Decreased EAE severity in Cd4-Cre+ Bhlhe40fl/fl and Il17a-Cre+ Bhlhe40fl/fl mice.

(A) Left, Clinical EAE scores from actively immunized Cd4-Cre� Bhlhe40fl/fl or Cd4-Cre1 Bhlhe40fl/fl mice (pooled from three experiments, n 5 12–14 per

group). Right, Maximum clinical score of individual mice with independent experiments indicated by color. (B) Left, Clinical EAE scores from actively immu-

nized Il17a-Cre� Bhlhe40fl/fl or Il17a-Cre1 Bhlhe40fl/fl mice (pooled from four experiments, n 5 10–14 per group). Right, Maximum clinical score of indi-

vidual mice with independent experiments indicated by color. (C) Representative flow cytometry of cytokine production from CD41 T cells (CD45.21

TCRb1TCRgd�CD41CD8a�) isolated from the CNS of naive Bhlhe40fl/fl mice or immunized Bhlhe40fl/fl, Cd4-Cre1 Bhlhe40fl/fl, and Il17a-Cre1 Bhlhe40fl/fl

mice at day 14 after EAE induction. (D) Quantitation of CD41 T cell cytokine production as described in (C) (pooled from three experiments, n 5 3–10 per

group). (E) Representative flow cytometry of GM-CSF1 and IL-101 CD41 T cells isolated from the CNS of immunized Bhlhe40fl/fl and Il17a-Cre1

Bhlhe40fl/fl mice at day 14 after EAE induction. (F) Quantitation of CD41 T cell cytokine production as described in (E) (pooled from two experiments,

n 5 6–8 per group). (G) Representative flow cytometry of microglia (CD45intCD11b1) and infiltrating myeloid cell (CD45highCD11b1) activation (MHC

class II1) from the indicated mice. (H) Quantitation of the data presented in (G) (pooled from seven experiments, n 5 10–19 per group). Data are pre-

sented as mean 6 SEM. Statistical significance was determined by a Mann–Whitney U test between the area under the curve for individual mice

(A and B, left panels), Mann–Whitney U test (A and B, right panels), one-way ANOVA with a Tukey multiple comparison test (D and F), and an unpaired

two-sided Student t test (F). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
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cells. Overall, scRNA-seq revealed regulation of myeloid cell
gene expression by pathogenic CD41 T cells in a BHLHE40-
dependent manner.

DISCUSSION

We sought to interrogate the expression of and role for
BHLHE40 in TH17 cells and TH17-cell derived populations

(TH1/17 and ex-TH17 cells) during active EAE. Using our dual
reporter system we demonstrate that after EAE induction,
BHLHE40 is expressed in both TH1/17 and ex-TH17 cells and
that BHLHE40 expression correlates with GM-CSF production.
Deletion of BHLHE40 either in all T cells (Cd4-Cre) or in TH17
cells (Il17a-Cre) was protective from clinical EAE disease. The
CNS of immunized Il17a-Cre1 Bhlhe40fl/fl mice contained
fewer IL-17A�IFN-g1GM-CSF1CD41 T cells compared with
immunized Bhlhe40fl/fl control mice, suggesting that BHLHE40
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regulates pathogenicity at a step subsequent to TH17 differentiation,
likely as these cells convert into ex-TH17 cells. As a consequence of
altered CD41 T cell cytokine production, there were fewer and
less activated infiltrating myeloid cells in the CNS at the peak of
EAE clinical disease of Il17a-Cre1 Bhlhe40fl/fl mice.

Using scRNA-seq we show how populations of immune cells
in the CNS change with the presence or absence of BHLHE40
in our different deletion systems. The Cd4-Cre1 Bhlhe40fl/fl

CNS largely resembled the CNS of naive mice, with low percen-
tages of pathogenic CD41 T cells and few infiltrating myeloid
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cells compared with the increases seen in the CNS of immu-
nized Bhlhe40fl/fl and Il17a-Cre1 Bhlhe40fl/fl mice. Both CD41

T cells (cluster 1) and myeloid cluster 9 (abundant in the Il17a-
Cre1 Bhlhe40fl/fl CNS) were enriched for IFN response path-
ways, highlighting a potential mechanism of protection upon de-
letion of BHLHE40 in TH17 cells, potentially downstream of
decreased GM-CSF and IFN-g production by BHLHE40-
deficient CD41 T cells.

GM-CSF production from encephalitogenic T cells is essen-
tial for infiltrating myeloid cell activation in the CNS during
EAE (6, 35, 36, 38, 40, 41). We hypothesize that in the setting
of Cd4-Cre�mediated deletion of Bhlhe40, there is not enough
GM-CSF produced from CD41 T cells to differentiate infiltrat-
ing monocytes in the CNS, potentially explaining why this
scRNA-seq sample lacks monocyte-derived cells (clusters 5, 7,
and 9). In the case of Il17a-Cre�mediated deletion of Bhlhe40,
there may still be enough GM-CSF production from unaffected
TH1 cells to activate infiltrating monocytes, allowing these cells
to differentiate into unique cell fates. The loss of Bhlhe40 in
TH1/17 and ex-TH17 cells in Il17a-Cre1 Bhlhe40fl/fl mice allows
for a new type I IFN�responsive myeloid cell fate to emerge
(cluster 9). It is interesting that both the protective effects of en-
dogenous type I IFNs and the pathogenic effects of GM-CSF act
through monocyte-derived cells that directly respond to these
cytokines during active EAE (42). GM-CSF may directly in-
hibit a monocyte-derived cell�s ability to effectively respond to
type I IFNs, which has been suggested in vitro (43) and re-
cently in vivo during EAE (36).

Additionally, it has been suggested that one mechanism of
protection by type I IFNs is to limit IL-1b production from
CNS-infiltrating monocytes, resulting in less IL-1b�dependent
GM-CSF production from CD41 T cells (44). BHLHE40 defi-
ciency in IL-17A�producing CD41 T cells could disrupt the
normal GM-CSF/IL-1b�dependent positive amplification loops
shown to take place during EAE (20, 36, 44�46). A more com-
prehensive understanding of cytokine production by autoreactive
CD41 T cells and cytokine feedback loops active in infiltrating
monocytes in EAE could inform future therapeutic discovery
efforts in multiple sclerosis. Recombinant IFN-b was the first
Food and Drug Administration�approved therapy for multiple
sclerosis, although its clinical efficacy has been surpassed by
other therapeutics. Perhaps a dual approach of altering myeloid
cells� responsiveness to pathogenic signals (GM-CSF) and en-
hancing their responsiveness to protective signals (type I IFNs)
may be worthy of future investigation.
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