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Abstract

A functional interplay of bottom-up and top-down processing allows an individual to appropriately 

respond to the dynamic environment around them. These processing modalities can be represented 

as attractor states using a dynamical systems model of the brain. The transition probability to 

move from one attractor state to another is dependent on the stability, depth, neuromodulatory 

tone, and tonic changes in plasticity. However, how does the relationship between these states 

change in disease states, such as anxiety or depression? We describe bottom-up and top-down 

processing from Marr’s computational-algorithmic-implementation perspective to understand 

depressive and anxious disease states. We illustrate examples of bottom-up processing as 

basolateral amygdala signaling and projections and top-down processing as medial prefrontal 

cortex internal signaling and projections. Understanding these internal processing dynamics can 

help us better model the multifaceted elements of anxiety and depression.
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INTRODUCTION

According to the most recent National Institute of Mental Health reports on US adults, 

anxiety and depression have a lifetime prevalence of 30% and 20%, respectively.1,2 

Treatment options remain unsatisfactory for a significant number of patients struggling with 

the disorders, due in part to a lack of understanding of the underlying mechanisms.3 In 

the last decades, neuroscience research has made important advances in gaining a better 

understanding of the mechanisms that could give rise to such disorders.

In this review, we provide an overview of the literature to answer three central questions 

about disease states in the brain:

1. What accounts for the brain’s ability to shift from a healthy to a diseased state?

2. How does this shift affect how stimuli are processed?

3. Which physical neural-dynamic changes drive this shift?

To address these questions, we draw from David Marr’s analytical model to propose 

a three-level computational-algorithmic-implementational framework centered around the 

hypothesis that shifts in top-down (TD) and bottom-up (BU) processing occur to produce 

anxiety and depression as distinct disease states.4 First, we describe how changes in the 

computational landscape (attractor state dynamics) account for these shifts in processing 

(Figure 1). Then, at the algorithmic level, we describe how stimulus and valence processing 

maintain these states and become disrupted (Figure 2). Lastly, we identify and summarize 

findings on key brain structures, including the amygdala and the prefrontal cortex (PFC) as 

representative centers of BU and TD processing, respectively, which at the circuitry level 

contribute to the biological implementation of these changes (Figure 3). Integrating research 

within each of these fields can allow us to come to a deeper understanding of mental health 

disorders and provide a path toward more efficacious treatments. Anxiety and depression 

are complex diagnoses; manifestations of anxious and depressive pathologies are diverse, 

as reflected in the diagnostic criteria specified in the most recent edition of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-V). To define anxiety and depression 

as we discuss them in this review, we outline common symptomatic criteria delineated in 

the DSM-V, categorized by psychosocial and physiological deficits (Box 1).5 Other reviews 

on anxiety and depression discuss the dysfunction of dopaminergic valence circuits,6,7 the 

biological variable of sex,8 and the dysfunction of threat-related circuitry.9,10 It is worth 

noting that multifaceted disorders require multifaceted frameworks and thus we endeavor 

in our model to incorporate the collective computational, psychodynamic, and biological 

investigations into these illnesses (see Box 1).

ATTRACTOR STATES ARE REPRESENTATIVE OF NEURAL NETWORK 

ACTIVITY

The brain is a dynamic system that depends on multiple hidden variables, of which we can 

only observe a minority. The ongoing activity of a single cell is governed by the combination 

of inputs: their amplitude, location, timing, and regulation of ion channels combined 

with slower signals from neuromodulation. On a larger scale, a cell receives inputs from 
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tens of thousands of other neurons, whose connections and activity are unknown. Such 

a vast number of hidden variables in neural activity demand computational models that 

can represent biological activity accurately—understanding the brain as a dynamic system 

accounts for these hidden variables that cannot be observed.11–13 Such models contain 

“attractor states,” which represent states that a system gravitates toward regardless of initial 

conditions.11 As Antonio Damasio argues in his work, The feeling of what happens: Body 
and emotion in the making of consciousness, motivational senses of self emanate from 

a proto-self—a collection of patterns that summate and map the momentary homeostatic 

needs of an individual in many dimensions.14 Attractor states manifest as the computational 

foundations of the brain, upon which we construct our psychosocial identity. Attractor states 

are often likened to a bowl: if network activity was a ball, the ball would gravitate toward 

the deepest, or most stable, part of the bowl. Moreover, the deeper the bowl, the more 

energy it would require for the ball to roll out. This concept from mathematical systems can 

also be applied to biological systems, and this framework has been used in the context of 

mental health and disease.12,15–18 To advance our understanding of neural dynamics in the 

context of mental health, viewing the brain as an attractor state network allows us to make 

predictions based on past activity.

Mounting evidence suggests that neural ensembles demonstrate activity that is similar to 

attractor state models.11,18–22 An attractor network (distinct from the attractor state) is a 

type of dynamic network that evolves toward stability over time. To return to the bowl, an 

attractor state creates a malleable bowl, which can be deepened or otherwise augmented 

with significant, persistent changes in activity.23 For example, foam can be easily depressed 

with force, while removing your hand and pushing down on another area will change 

the location and depth of the depression. Many networks with continuous dynamics will 

develop attractor states that minimize energy in the system and are thus hyperstable.11,13,24 

Population activity can and will deviate from an attractor state while processing different 

stimuli (noise in the network system); however, network activity will ultimately converge 

back to a stable state. The minimum level of energy in a system at which network 

activity converges is known as the basin of attraction.23,25 In neural populations with strong 

excitatory connections, multiple stable states can exist, all with basins of attraction.25 To 

classify the relative stability of mental states, we can use an attractor network to model the 

brain’s ability to transition between different forms of processing. Attractor states represent 

the first, computational level in our framework, in which the transition probabilities of 

network activity influence biological and behavioral phenotypes. We illustrate a multipoint 

attractor manifold to focus on specific components of anxious/depressive disease states in 

the brain. This framework does not invalidate the possibility for other attractor networks and 

their potential influence on network activity.

Patients with diagnosed anxiety and depression reveal different brain states as represented by 

functional MRI (fMRI) readouts, suggesting that anxiety and depression exist in separate 

attractor states.26 When comparing the response to sad facial expressions in patients 

with major depressive disorder (MDD) and generalized anxiety disorder, PFC activity is 

positively correlated with depressive symptoms, whereas it is negatively correlated with 

anxious symptoms. Human imaging studies indicate a significant relationship between 

anxious arousal and increased amygdalar–subcortical activity. In humans experiencing 
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anhedonia, researchers observe increased limbic–paralimbic activity.26–28 Interestingly, 

areas with increased activity in anxiety had decreased activity in patients with depression 

and areas with decreased activity in anxiety had increased activity in patients with 

depression. The existence of these separate brain states supports the theory that there 

are bistable attractor states that can represent anxiety and depression (Figure 1A–E). As 

individuals exhibit an increased tendency toward TD or BU processing, attractor states 

reflect a similar geometry—the depth of one attractor state represents the increased 

likelihood that network activity will gravitate toward that type of processing.12 As we 

illustrate in Figure 1, healthy individuals can smoothly alternate between TD and BU 

processing states to modulate behavior appropriately. In pathologic conditions, the depth of 

the attractor states increases such that network activity is heavily biased toward either TD (in 

depression) or BU (in anxiety) (Figure 1B,C).

The concurrence of both anxiety and depression (comorbid anxious-depression) is very 

common, occurring in roughly half of cases and presenting an even greater challenge for 

treatment.2,29–31 It is possible that when the energy dynamics of one attractor state is 

disrupted, other states can be either compensatory or decompensatory. In our model, both 

attractor states are hyperstable in comorbid anxious-depression, leading to concentrated 

switching between pathological levels of TD and BU processing (Figure 1D–F). However, 

maladaptive stability may occur with different transition probabilities (Figure 1F). These 

differences in transition probability are termed in this review as a “slow-switching” 

comorbid state, where a person may be diagnosed with anxiety and depression over the 

course of their lifetime (Figure 1D), and “fast-switching” comorbid state, wherein a rapid 

state leads an individual to perceive symptoms of anxiety and depression simultaneously 

(Figure 1E).

PLASTICITY MODIFIES THE ARCHITECTURE OF ATTRACTOR STATES

Changes in the geometry of an attractor state may represent neural dynamic changes in 

firing rate or synaptic strength. Increased depth of attractor states has been biologically 

described by excitatory glutamatergic ion receptor function and spine concentration (Figure 

1G).12 Experimental evidence demonstrates that reduced N-methyl-D-aspartate receptor 

(NMDAR)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) function 

in a given brain region influences processing capabilities, such as in associative learning 

and memory.32 To achieve an attractor state, neurons must retain a level of stability while 

being flexible enough to receive and transmit new information. This dynamic version of 

stability is achieved by neural plasticity, mechanisms by which neurons change in sensitivity 

and strength. Neural plasticity is generally described as two opposing mechanisms, Hebbian 

and homeostatic plasticity.33 Hebbian plasticity deviates neural activity from homeostasis 

and homeostatic plasticity encourages neural activity back to a predetermined setpoint34 

(Figure 1G). These two types of plasticity happen on different timescales, Hebbian plasticity 

changes neurons acutely, whereas homeostatic plasticity occurs over a longer timescale 

(Figure 1G). Hebbian plasticity occurs when NMDARs in the synapse are activated, 

resulting in a signaling cascade wherein AMPAR density increases and the synapse becomes 

more sensitive to stimulation.35 Homeostatic plasticity is a form of metaplasticity, which 

affects neurons’ ability to undergo further synaptic changes based on previous plasticity. 
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Homeostatic plasticity can consist of scaling receptors to different synapses, which in turn 

alters the sensitivity of the neuron.33 In the context of attractor networks, plasticity is the 

way that attractor states can change and stabilize their geometry. While the depth of attractor 

states is dependent on plasticity, changes in plasticity probability can be induced through 

long-term enhancement or depression of excitability via homeostatic plasticity.36

The mechanisms of Hebbian and homeostatic plasticity biologically influence the strength 

and identity of further plasticity.37 Hebbian plasticity modifies synaptic strength in the 

same direction of a given stimulus. For example, strong stimulation leads to an increase 

in synaptic strength resulting in long-term potentiation (LTP); conversely, low-frequency 

stimulation weakens synaptic strength and causes long-term depression.38,39 Homeostatic 

plasticity operates in contrast to Hebbian plasticity, such that the threshold for further 

Hebbian plasticity is modified. Because homeostatic plasticity intends to maintain a 

homeostatic setpoint for a neural network, it utilizes biological mechanisms to (A) acutely 
return activity to a baseline and (B) chronically modify a baseline to adapt to periods of high 

activity. As we illustrate in Figure 1G, a period of activity deviating from baseline increases 

the threshold for induction of LTP by methods of synaptic scaling or genetic augmentation 

of neuronal activity.34,37 The conclusion of homeostatic plasticity is thus a modification of 

thresholds for Hebbian plasticity and maintenance of a new setpoint following a period of 

high activity.

Homeostatic plasticity is capable of developing therapeutically beneficial setpoints as well 

as pathologic setpoints.3 Because plasticity is largely experience-dependent, changes in 

the external environment can dramatically modify the activity of a neural network and its 

consequent attractor network. One example of this potential is a change in social network 

and support. Individuals experiencing poor quantity and quality of social interaction also 

report large deteriorations in mental health.40 On a circuit level, social isolation acts 

with circuits historically correlated with depression in a parallel manner.40,41 These data 

suggest that social isolation encourages a new homeostatic setpoint, altering neural network 

activity, and hyperstabilizing a pathological attractor state. With this new setpoint, acute 

improvements of one’s social network would do little to permanently modify the firing rate 

at a population level in these circuits. Thus, acute intervention with no chronic effect will not 

improve mental health long-term. With improvements in the quantity and quality of social 

stimuli on a chronic scale, a new homeostatic level of firing rate is established, thus shifting 

a pathological attractor state into a salubrious one.

STIMULUS PROCESSING INVOLVES A BALANCE OF TOP-DOWN AND 

BOTTOM-UP

Changes in attractor state dynamics can result in major shifts in how stimuli are processed. 

At the algorithmic level, we distinguish between two feedback loops that, when balanced, 

allow for appropriate assessment and response to stimuli. The rapid and unidirectional BU 

feedback loop allows for immediate responses to sensory stimuli, whereas the slow and 

convoluted TD feedback loop allows for more complex assessments of the environment and 
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fine-tuned behavior (Box 2). These loops proceed in three main steps: sensory detection, 

processing, and output (Figure 2A).

Sensory detection

The first task of the system is to appropriately identify relevant information from an 

overwhelmingly stimulus-filled environment. Input signals, composed of both external (e.g., 

sounds from the environment) and internal cues (e.g., hunger), are detected by sensory 

processes in the body in a preattentive, automatic phase.42,43 Here, the brain must determine 

what is salient enough to bring to the forefront of attention and potentially act upon. For 

instance, studies have indicated that individuals have a latency bias toward identifying 

fearful stimuli among a background of nonfearful stimuli when compared to the reverse.44 

Salient stimuli will meet an attention threshold at the first BU node: association (Figure 2A). 

Associative processes, both learned and innate, allow for valence assignment of the stimulus 

as positive (appetitive or rewarding), negative (threatening or aversive), or neutral.45 At the 

same time, input cues are sent to the central node of the TD loop: cognition, involved in 

conscious, goal-directed thinking.42,46

Processing

Integration receives inputs from both BU and TD centers to contextualize and assess 

relevant information about the stimulus. The BU loop allows for information concerning 

the valence and intensity of the stimulus to be transmitted directly to the arousal node 

to bring the body into a state of psychological and physiological alertness. The TD loop 

may counteract these efforts by filtering out stimuli that are irrelevant or unnecessary for 

goal-oriented behavior.47–49 This allows for disengagement from the stimulus to prevent 

an inappropriate response. The TD loop continuously incorporates new information from 

changing environments and involves multiple iterative, inner feedback loops to continue 

amending cognitive assessments of stimuli. A loud barking sound, for example, might 

initially prompt a startle response, triggered by BU processing, but as more relevant 

information surrounding this sound is integrated by TD processes, one would notice the 

dog is safely held by an owner on the leash.

Output and feedback

Action selection is again informed by a balanced interplay of both loops: arousal and 

cognition. Once the action has been selected, a behavioral response is produced, to move 

toward or away from an external stimulus (e.g., moving away from a spider) or to change an 

internal state (e.g., eating food). Action selection feeds back into the cognitive node allowing 

for future strategization and goal orientation. These actions reconfigure the set of stimuli 

presented to the system, completing the loop.

In a healthy state, these parallel processes allow for appropriate and evolutionarily adaptive 

behavioral responses that can change depending on the valence, intensity, and relevance of 

stimuli. The BU loop, driven by reflexive, innate, emotional responses to stimuli, allows for 

rapid, immediate processing to respond to very threatening or very rewarding stimuli (Figure 

2). As stimuli valence intensifies (more positive or negative), arousal generally increases,45 

resulting in a higher likelihood of a behavioral response. The TD loop prevents unnecessary 
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increases in arousal levels by filtering out stimuli that are neutral and irrelevant (Figure 

2A).9

MALADAPTIVE STIMULUS PROCESSING AND VALENCE 

DESTABILIZATION RESULT IN DISEASE STATES

Although there is heightened negative affect and bias toward evaluating stimuli as negative 

in both anxiety and depression,42,47,50 the manifestation of these diseases is often quite 

different. For instance, the prospect of interacting with a peer may provoke negative 

nervous or threatening feelings for someone experiencing anxiety, whereas for someone 

with depression, the same prospect, though also negatively evaluated, might induce feelings 

of fatigue. In Clark and Watson’s tripartite model of anxiety and depression, negative 

affect is the common link between anxiety and depression, and contributes to anxious-

depressed comorbid states.50 In such comorbid states, increased attractor state depth results 

in maladaptive behavior and increased negative affect. In this review, we focus on the 

phenotypes identified in the tripartite model that distinguish these two disease states: 

increased physiological arousal in anxiety, and anhedonia and disengagement from the 

environment in depression.50 We propose that an imbalance in the two processing modes 

leads to these distinct disease phenotypes.

As reviewed in detail by Mogg and Bradley, in an anxious state, the system shifts 

overwhelmingly toward BU processing, without enough regulation from TD, disrupting 

goal-oriented behavior.51 This leads to excessive physiological and psychological arousal 

and increased sensitivity to environmental stimuli, prompting stimuli to be biased as 

threatening9,42,51,52 (Figure 2B). Stimuli that would commonly be perceived as neutral 

might trigger psychological symptoms associated with anxiety, including hypervigilance 

and worry, as well as physiological symptoms, such as increased heart rate, sweating, and 

muscle tension (Box 1). In depression, TD cognitive processes take control over emotional, 

reflexive ones, and overinhibit the BU loop. This can lead to the inability to engage 

appropriately with the environment or reach the arousal threshold to act upon relevant 

stimuli (Figure 2C),47,50,51 manifesting as a lack of motivation and anhedonia (Box 1). 

Within this model, bidirectional overcompensation in individuals with comorbid anxious-

depression leads to a maladaptive alternation between BU- and TD-biased processing 

(Figure 1D–F).

Human studies show that emotion and attention processing activate distinct patterns 

of activity in the brain depending upon whether a TD- or BU-eliciting stimulus is 

presented.53,54 BU-inducing stimuli, such as images that can quickly provoke an automatic 

emotional response, have been shown to activate brain regions, such as the amygdala, 

whereas TD-inducing stimuli (words and imaginative activities) have implicated the 

PFC.53,54 We focus on the amygdala and PFC as representatives of BU and TD processing, 

respectively, and elucidate how the biological mechanisms implement chronic changes on 

the computational and algorithmic level.
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ANXIETY DISORDERS CAN ORIGINATE FROM HYPERACTIVITY IN 

BOTTOM-UP REGIONS

BU processing at homeostatic levels is necessary for an animal to remain vigilant and 

cautious; however, pathological increases of activity in areas associated with adaptive 

anxiety processing can lead to maladaptive anxiety symptoms and behavior.9 Within the 

context of BU processing, the amygdala is a critical region in the brain for associative 

learning, BU processing, and arousal.44,54–56 The amygdala is also involved in processing 

changes in the internal state as an important interoception axis.57,58 What must be noted 

is the theorized bidirectional relationship between interoception and emotional arousal. As 

internal states change, emotions may arouse through conscious or subconscious evaluation 

of these homeostatic deviations.59 This interplay between internal state and emotional 

response reflects classic theories of emotion59,60 and illustrates how amygdala activity can 

simultaneously reflect interoceptive and emotional status.54,58 As evidenced by experiments 

in humans, patients with amygdalar insults struggle to generate physiological responses in 

anticipation of risky behavior or in response to losing in a gambling task.61 Further human 

behavior experiments show that associative processing related to emotion is also impaired—

patients with amygdala lesions fail to recognize fearful emotions in faces, although they 

can decipher personal identity.62 Amygdala volume correlates positively with fearfulness 

in human subjects while conversely, bilateral damage to the amygdala is associated with 

decreased anxiety and fearfulness.63 The basolateral amygdala (BLA) specifically is a 

driving factor in anxiety,64 composing one-third of a tripartite group of regions with 

reciprocal connections that are heavily involved in emotional processing, including the 

ventral hippocampus, and the medial PFC (mPFC).65–67 We will focus specifically on the 

relationship between the mPFC and the BLA, due to their theorized roles in our algorithmic 

processing model and their respective involvement in emotional processing.

In human fMRI studies, the functional connectivity between the BLA and the mPFC 

has been correlated with higher levels of anxiety.68,69 Human fMRI investigations into 

different biotypes of mood disorders have elucidated that dysfunctional connectivity 

between the PFC and the amygdala increases anxiety.70 Rodent studies have specifically 

illustrated that the directionality between the BLA and the mPFC is relevant in mediating 

fear and anxiety-like behavior. From a processing perspective, amygdala projections to 

the mPFC encode motivational and arousal information, which can be modulated and 

filtered by the mPFC. These data are bolstered from rodent studies using imaging,71 

electrophysiological,72,73 and optogenetic66,74 techniques, which have elucidated that BLA 

input to the mPFC is necessary for anxiety behaviors. Theta oscillations between the BLA 

and the mPFC synchronize in anxiogenic environments; oscillatory stimulation is sufficient 

to induce anxiety-like behaviors in rodents.66,75,76 Excitation of BLA projections to the 

mPFC produces anxiogenic effects, freezing responses, reduction in social interactions, and 

attenuation in cue-associated fear in mice; inhibition of BLA–mPFC projections facilitates 

social interaction and reduces freezing.74,77 The role of the BLA in fear learning fits the role 

of the association node, projecting rapid associative information to the integrative mPFC. 

Amygdala inputs drive feedforward inhibition of mPFC neurons by targeting parvalbumin 

(PV)-positive interneurons.72 These results suggest the associative information from the 
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BLA impacts on neural ensembles in the mPFC, possibly by reducing background activity 

and allowing for appropriate neurons to integrate and direct behavior. When considering 

these results together, hyperexcitability in the BLA biases the BU pathway and represents an 

entrenched BU attractor state in anxiety disorders.

DEPRESSION MAY EMERGE FROM HYPERACTIVITY IN TOP-DOWN 

REGIONS

The mPFC has been historically linked to mood disorders and connectivity within this 

region has been implicated in depression. Encoding in the mPFC is attributed to reward 

learning,78 emotional memory,56 decision making,79 and moral assessment.80 Patients 

with vmPFC lesions exhibit impaired strategic decision making61 and intuitive moral 

judgment,81 suggesting that the mPFC plays a critical role in TD processing.82 Activity 

in the frontal cortices, specifically the anterior cingulate cortex, is associated with increased 

optimism and likelihood to imagine positive future outcomes, suggesting that the mPFC 

is required for long-term mediation that is characteristic of TD processing.83 Experimental 

and functional imaging studies have demonstrated dramatic changes focused on the PFC 

in depression.79,84,85 MDD has been associated with hyperactivation of the mPFC and 

reduced activation in reward-processing dopaminergic neurons in the nucleus accumbens 

(NAc).85–87 Deep brain stimulation targeting the PFC, namely, the subgenual cingulate 

region, resulted in profound antidepressant effects; however, others have struggled to 

replicate these results.88,89 What is also of importance are the connections between the 

mPFC and other regions, namely, the ventral tegmental area (VTA) and lateral habenula 

(LHb).90–93 The VTA is highly associated with reward and motivated behavior, whereas 

chronic inhibition of VTA–dopamine (DA) neurons induces depressive-like symptoms.94 

Activity in the VTA is also susceptible to stress on different timescales—acute stress 

increases VTA neurons projecting to the mPFC, while chronic stress depresses VTA–mPFC 

activity.90,95

The LHb also regulates reward-prediction responses and has recently been implicated in 

regulating negative associations.92 Because of this unique signaling pattern, the LHb has 

been referred to as the brain’s “anti-reward center” and receives input from a diverse 

set of neurotransmitters.6,69 Increasing excitability of LHb neurons via optogenetic96 and 

genetic97 methods is sufficient to induce avoidance behavior, anhedonia, and other core 

depressive symptoms6,98 in rodent models. In contrast, clinical studies applying deep 

brain stimulation to inhibit the LHb observed antidepressive effects.99 The LHb receives 

primarily glutamatergic inputs from mPFC.92 Following the upstream encoding of reward 

and cognition, the mPFC–LHb circuitry is likely critical for behavioral control over negative 

affectation. Research investigating the mPFC, LHb, and VTA suggests a relationship 

in which decreasing transmission from the VTA leads to an excitation/inhibition (E/I) 

imbalance in the mPFC, which is reflected as hyperexcitability in projecting regions 

like the LHb (Figure 3C). Interestingly, the LHb projects back to the VTA, potentially 

constructing a TD processing loop that is hyperactive in negatively biased valence disorders 

like depression.99

LeDuke et al. Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2023 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OSCILLATORY ACTIVITY AS A DRIVER FOR TOP-DOWN/BOTTOM-UP 

BALANCE

Proper attention to stimuli relies on a healthy balance of TD and BU processing. In contrast, 

salient stimuli are processed in a BU fashion through sensory inputs, deliberate TD control 

of attention allows one to focus not only on vestibular senses but also on the long-term 

evaluation of these stimuli.100,101

Oscillatory activity in the brain refers to the rhythmic and synchronously phase-locked 

activity between brain regions.102 This synchrony allows for distant brain regions to 

communicate and hold long-term information for conscious problem-solving by linking the 

information in these regions via a temporal framework. In both humans and monkeys, local 

field potential (LFP) gamma frequency (25–140 Hz) coherence between the PFC and visual 

cortex drastically increases during attention to a visual stimulus, implicating a concerted 

role of the mPFC for driving long-term attention.103 This type of oscillatory activity also 

provides the PFC with the ability to represent a variety of distinct categories of information 

in concert, allowing for more complex working memory.104,105

Oscillatory synchrony between the amygdala and the mPFC may be critical for healthy 

emotional evaluation of stimuli and may help bias the brain into certain states. Theta 

(3–8 Hz) oscillations between these brain regions are enhanced during fear learning in 

both rodents and humans, and disruption of these theta rhythms affects fear extinction or 

recall depending on the theta phase.106–108 Similar frequencies between the PFC and the 

hippocampus regulate avoidance behaviors in rodents, and phase-locked stimulation at these 

frequencies also enhances avoidance.109,110 These data imply that when signals are in phase, 

synchronous activity is amplified to bind certain inputs together and encourage attractor 

state transitions. Additionally, if these oscillatory dynamics are disrupted, it may lead to 

maladaptive emotional processing and brain states. For example, asymmetric alpha (8–12 

Hz) activity between the left and right prefrontal regions has been commonly found in 

patients with MDD.111–113 Reduced gamma and alpha activity is also found in patients 

with euthymic bipolar disorder, characterized by a lack of mood disturbances, suggesting 

a shift in oscillatory brain states during certain emotional phases.114,115 Enhancing certain 

rhythms may also aid in the transitions to healthier attractor states. Disrupting the mPFC 

through stress can lead to the reduced amygdala and VTA synchrony and increase emotional 

pathologies found in anxiety and depression.116 Recently, work has been done to map 

how oscillatory activity propagates throughout the brain rather than through a simple pair-

wise comparison between two brain regions. The collection of factors (spectral power, 

synchrony, and phase directionality) as observed through LFPs comprises the conceptual 

“electome” framework. These electome factors describe how oscillatory activity may shift 

brain dynamics into system-wide states and how certain states have been shown to predict 

vulnerability to depression.117 These data suggest that oscillatory synchrony may be integral 

for healthy brain states, and disruption of this synchrony may lead to unstable transitions 

between these states.

Dysfunctions in oscillatory activity may lead to maladaptive transitional patterns between 

these states, leading to conditions that may either be stuck in one attractor versus the 
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other, or with very shallow attractors enabling high transition probability manifesting 

as comorbidity with anxiety-related and depressive symptoms. As oscillatory activity in 

attention suggests an upper limit to how much information the brain can attend to at one 

time;104,105 such may be the case when patients experience symptoms related to both 

anxiety and depression. It may be difficult to imagine feeling both anxious and apathetic to 

a stimulus at once, but imbalanced oscillatory activity may lead to rapid transitions between 

these states, which is perceived as these symptoms being experienced at the same time in 

comorbidity.

NEUROTRANSMITTER BALANCES DRIVE ATTRACTOR AND MENTAL 

STATE STABILITY

Glutamate and gamma-aminobutyric acid (GABA) are the primary neurotransmitters 

involved in the excitation and inhibition of activity, respectively. Metabolically, glutamate 

acts as a precursor for GABA, which contributes greatly to controlling neural network 

dynamics through inhibitory action.118,119 GABAergic interneurons can be identified by 

their expression of somatostatin (SST) and PV, among other markers. Postmortem studies of 

patients with depression have shown a reduction of SST/PV interneurons in the PFC.120,121 

Treatments with various antidepressants, electroconvulsive therapy, and cognitive behavioral 

therapy restore GABA levels in depressed subjects.122

While glutamate and GABA drive excitation and inhibition post-synaptically, they also 

contribute to and are subjected to changes in plasticity. GABAergic transmission in 

the mPFC constrains LTP, depending on the presence of either GABA-A or GABA-

B receptors.123,124 GABA-A receptor (GABA-AR) mutant mice have significantly less 

surface expression of NMDAR and AMPARs and exhibit anhedonia and behavioral 

inhibition.125,126 Chemogenetic inhibition of GABAergic neurons in the mPFC is 

not only sufficient but necessary for antidepressant responses.127 Because GABAergic 

interneurons are responsible for controlling E/I within the cortex and excitatory projections, 

hyperactivation of GABAergic interneurons supports a model in which E/I imbalances cause 

anhedonia and other depressive symptoms119,128,129 (Figure 3C).

The E/I balance in the mPFC can be disrupted by a dearth of inhibitory GABAergic 

neurons. Our model hypothesizes that unregulated excitatory activity in the mPFC can lead 

to excitotoxicity in the region (leading to observed structural changes) and hyperexcitability 

in downstream projections like the LHb causing aversive behaviors.92 This hypothesis is 

further supported by human imaging studies that demonstrate a biotype of depression in 

which frontostriatal networks have pronounced hyperconnectivity in patients with more 

severe anhedonia and motor retardation.70 The consequences of this regional specificity are 

reflected in the differential effects of anxiety and depression drugs, specifically ketamine; 

recent studies have demonstrated that ketamine preferentially increases LTP in GABAergic 

interneurons in the mPFC, potentially rectifying the E/I imbalance.130 Glutamate causes 

the excitation of neurons, and excessive glutamate may drive excitotoxicity in the mPFC 

in the case of depression.124,131,132 Patients with MDD and postpartum depression have 

marked elevations of glutamate in the mPFC.124,132 Reciprocally, increased glutamatergic 
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signaling from the BLA to the mPFC causes anxiety-like behavior. Glutamate intake at 

excitatory synapses can attune the polarity and magnitude of long-term plasticity changes, 

demonstrating that chronic increases in glutamate release can manipulate the basal setpoint 

of circuits, leading to hyperreactive neuronal populations.133 In both anxiety and depression, 

human and rodent studies demonstrate that increased glutamate is present in either the 

BLA or the mPFC, respectively. These tonic changes in glutamate can represent deepened 

attractor states and, thus, one can use neurotransmitter levels to model TD- and BU-biased 

processing modalities.

NEUROMODULATION IN TOP-DOWN AND BOTTOM-UP PROCESSING 

CIRCUITS INFLUENCES PLASTICITY AND MENTAL STATE

Fast ionic signals represent the movement of the brain state, but to shape the manifold 

upon which our activity travels, the brain must operate on other timescales, including using 

long-term affective signaling like neuromodulation. While an animal acutely responds to 

stimuli, the strategies by which it responds, and the lasting effect of cumulative stimuli 

must have a longer-term effect. The mood reflects the summative impact of expectations 

and reward outcomes.20 The metaphorical narrative surrounding mood is akin to the 

geometry of attractor state landscapes.134 Where the processing is how the ball moves across 

energy landscapes, mood describes the energetic limitations of the said landscape, or the 

dimensions of an attractor state. Experiences affect mood, which in turn is integrated to 

affect subsequent experience through neuromodulation and plasticity alterations.

There is a strong relationship between the level of expression of given neuromodulators and 

mental state. Neuromodulator release in the brain has been linked to anxiety and depression 

and provides insight into how mental illness is encoded.127 As computational theorists of 

attractor states argue, the stability of an attractor state is analogous to the level of plasticity 

in the region. Thus, the presence and identity of neuromodulators inform our model through 

an explanation of how selective changes in plasticity alter attractor state stability. We will 

be specifically focusing on the role of serotonin (5-HT), norepinephrine (NE), and DA, 

and their role in plasticity in TD and BU regions. We suggest a model in which regional 

dysfunctions of modulation drive anxiety and depression symptoms, entrenching hyperstable 

attractor states. In our model, we argue that anxiety is caused by a hyperstable attractor 

state entrenching BU-biased processing.135 This state is due to the hyperexcitability of the 

BLA and its glutamatergic projections, namely to the mPFC.72 Conversely, depression is 

caused by a hyperstable TD-biased attractor state landscape, in which an E/I imbalance is 

maintained by disordered neuromodulation in the mPFC.

DISORDERED NEUROMODULATION: SEROTONIN

5-HT has been historically linked to emotional behaviors, with a likely role in TD/BU 

processing motifs. In the amygdala, infusions of serotonin influence fear learning in mice. 

Microdialysis studies demonstrate that inescapable shock enhances 5-HT levels in the 

BLA from both conditioned stimulus and unconditioned stimulus presentations.136 Further 

investigations on fear learning demonstrate that 5-HT signaling is positively correlated with 

fear memories. Mice that overexpress 5-HT transporter (5-HTT), a protein that clears 5–
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HT from the extracellular space, demonstrate impaired fear learning, whereas the 5-HTT–

underexpressed counterparts have impaired fear extinction. In primates, manipulations of 

5-HT receptors affect trait anxiety-like phenotypes.137

The role of 5-HT in fear learning in the amygdala supports the hypothesis that 5-HT causes 

changes in plasticity. 5-HT release in the BLA depresses excitatory postsynaptic currents 

from outside inputs, likely via inhibitory GABAergic neurons.138,139 Simultaneously, the 

application of 5-HT increases the excitability of BLA pyramidal neurons—suggesting that 

5-HT release increases excitability within the BLA.140 Activation of 5-HT2A receptors 

(5-HT2ARs) enhances NMDAR-mediated potentials, demonstrating that 5-HT2ARs facilitate 

NMDAR-dependent synaptic plasticity in the BLA.141 This model has been fortified by 

results demonstrating that chronic administration of selective serotonin reuptake inhibitors 

(SSRIs; e.g., fluoxetine) increases plasticity by decreasing the number of PV+ interneurons 

in the BLA.138,141 Establishing a 5-HT–induced hyperplastic state in the amygdala led 

to the elimination of fear memories—suggesting that 5-HT likely influences excitability 

in the amygdala, and increases in 5-HT or 5-HT-receptor sensitivity modulate anxiety 

states and likely emotional processing in general.136,140–142 In our TD/BU processing 

model, increases in amygdala sensitivity cause a BU processing bias. Our model would 

thus hypothesize that increases in 5-HT levels would cause a BU processing bias and 

increase spontaneous emotional processing. Indeed, SSRIs have historically been used to 

treat disorders of negative affect, including depression and anxiety.143 In both healthy and 

depressed individuals, chronic SSRI administration leads to a positive shift in valence 

processing, possibly via amygdalar circuits.139,144 Further studies investigating SSRI 

administration demonstrate that SSRI treatments (increasing levels of 5-HT in the synaptic 

cleft) enhance LTP from BU regions communicating to the mPFC.141 These results suggest 

that excess 5-HT signaling acutely mediates plasticity in mPFC.

While 5-HT facilitates excitability in the BLA, the mPFC both receives 5-HT inputs and 

exerts TD control of 5-HT expression in downstream regions. 5-HTergic inputs from the 

mPFC are complicated by the heterogeneous encoding of different 5-HT receptors.140 

Human blood-oxygen-level-dependent (BOLD) fMRI studies reveal a positive relationship 

between 5-HT2A receptor activity and amygdala reactivity to anxious stimuli, which is 

inversely moderated by 5-HT1A receptor activity.145,146 5-HT1A and 5-HT2A receptors 

are localized in a relevant orientation–the inhibitory 5-HT1A receptor is located on the 

axon hillock, whereas the excitatory 5-HT2A receptors are located on the dendrites of 

glutamatergic neurons.145 Given this orientation, 5-HT1A receptors can effectively gate 

5-HT2A receptor activity and PFC output, suggesting that 5-HT signaling in part modulates 

TD control from the mPFC to the amygdala.147 Thus, disordered localizations of 5-HTergic 

signaling could deleteriously influence the inhibitory brakes on fast, associative BU 

processing.

Studies investigating the dynamic changes in 5-HT signaling in the mPFC provide more 

insight into how 5-HT can mediate TD processing and plasticity. 5-HT2A receptor activation 

enhances NMDAR-dependent plasticity, strengthening associative memory.141 Rodent 

studies comparing responses to stressful experiences demonstrate that 5-HT sensitivity 

significantly increases as a response to stress in the mPFC, and high increases in DA efflux 
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follow.136 Interestingly, 5-HT1A agonism decreases both 5-HT and DA release, further 

suggesting that low 5-HT1A receptor binding is required for TD mPFC processing.145 

Whole-life knockout of 5-HT1A receptors in mice leads to a depression phenotype, 

suggesting that without the needed gating of 5-HT2A signaling, the mPFC exerts excessive 

TD control, leading to a phenotype that is hyporesponsive to stress.148,149

The relationship between 5-HT and DA signaling is supported by developmental studies, 

which show that lesioning of 5-HTergic projections to the mPFC increases DA release.150 

These data and the aforementioned receptor data together suggest a model for 5-HT control 

of stress responses in the amygdala which projects excitatory input to the mPFC. Agonism 

of 5-HT1A receptors enhances DA signaling in the mPFC, suggesting a broader involvement 

between 5-HT and DA release.151 5-HT signaling likely encompasses a modulatory role in 

the mPFC, flattening attractor state transition probabilities and selectively altering plasticity, 

depending on the activated receptor (Figure 3A). Disordered localization of the 5-HT signal 

could disrupt this system and lead to pathological entrenchment of mental states like anxiety 

or depression.

DISORDERED NEUROMODULATION: DOPAMINE

Whereas 5-HT could flatten attractor state landscapes, DA signaling plays a role in the 

entrenchment of salient behaviors. DA computationally controls behavior in the mPFC by 

gating sensory input, manipulating memories, and relaying motor commands.152,153 This 

gating of activity has led to models that also suggest that DA modulates response to 

the saliency of reward.154,155 DA release has been theorized to reflect reward prediction 

errors (RPEs) in the mPFC.153 Inactivation of the mPFC in classical conditioning tasks 

with a differing probability of reward affects DAergic signaling when the reward is not 

guaranteed.78 DA signaling in the NAc core does conflict with RPE, as experimental results 

cannot replicate RPE in practice.155 Dysfunctional DA activity is correlated with problems 

in processing motivation, pleasure, and reward.95,152,156 Imaging studies in patients with 

social anxiety reflect a positive correlation between symptom severity and DA transporter 

proteins (DAT) availability in the amygdala and hippocampus.157,158 Moreover, 5-HT and 

DAT coexpression was significantly increased in the amygdala of patients with anxiety, 

suggesting that DA may also play a role in the progression of anxiety.

Patients with depression report difficulties with motivation (anhedonia) and reward 

processing, both of which DA is intimately involved in encoding in the mPFC. What is 

of relevance is the relationship between the mPFC and the VTA, a circuit that is historically 

linked to depression.95,159 Phasic stimulation of VTA-DA inputs to the mPFC also increases 

conditioned place preference.160 Alongside evidence that VTA-DA neurons lack activity 

in patients with depression, these data support a model in which a dearth of DA input to 

the mPFC enhances depressive symptoms. In mice with chronic stress-induced anhedonia, 

decreased levels of DA release have been measured from the VTA projections to the 

mPFC. In social defeat stress models of depression, mice initially exhibit a hyperexcitability 

of VTA-DA neurons, as compared to resilient mice that exhibit stable firing.95 What 

provides more insight into how DA signaling influences mPFC activity is the role of DA 

inputs in plasticity. Experimental enhancement of VTA-DA neuron excitability achieved 
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an antidepressant effect through homeostatic plasticity.95 These results support a model in 

which homeostatic plasticity interacts with DA neurons in the brain to modulate depression 

states. Anxiety circuits can be similarly altered via chronic stimulation, altering excitability 

levels to a healthier homeostatic setpoint.161

DA exerts influence through D1-like (type 1/5) and D2-like (type 2–4) receptors, which 

causes increases and decreases in levels of the messenger molecule cyclic adenosine 

monophosphate (cAMP), respectively.162,163 Changes in cAMP retroactively recruit or 

inhibit NMDAR signaling; thus, DA signaling can bidirectionally alter plasticity. DA 

release, therefore, plays an important role in the modulation of GABA/glutamate signaling 

in the mPFC.163 Inactivation of DA release is sufficient to eliminate reinforcement learning 

behaviors normally attributed to GABA/glutamate signaling.163 These data ultimately 

support a theory of regional-specific alterations in DA signaling in the states of depression 

and anxiety.

5-HT and DA both mediate NMDAR recruitment and LTP in the amygdala, encouraging 

greater sensitivity in the BLA. Behaviorally, D1 agonism in the amygdala elicits anxiogenic 

effects, whereas antagonism elicits anxiolytic effects.164,165 D2 agonism/antagonism 

illustrates more mixed results, suggesting that D1 receptors in the BLA encode rapid 

associative processing in the BLA, whereas D2 signaling develops adaptive responses. D1 

receptor activation in the BLA further dampens mPFC-induced inhibition, suggesting that 

the mPFC regulation of BLA activity is inversely dependent on DA levels in the BLA.165,166 

These data suggest that excess D1 signaling could drive BLA excitability and, given the 

role of D1 receptors in increasing NMDAR conductance, deepens a BU-biased attractor state 

landscape.

The contributions of DA signaling in the mPFC are necessary for motivation and emotional 

processing; thus, our model attributes a lack of DA signaling to an imbalance between 

excitatory and inhibitory neurons in the mPFC, leading to anhedonia.167 DAergic control 

of the E/I balance in the mPFC is influenced upstream by 5-HTergic signaling, possibly 

causing an increase in inhibitory signaling and plasticity in the mPFC.167,168 Whereas 

5-HTergic signaling seems to flatten attractor state landscapes, DAergic signaling defines 

and entrenches them.12 Recent rodent studies have shown that DA-dependent plasticity is 

occluded in the mPFC of rats susceptible to chronic mild stress, although this effect is 

reversed following the administration of ketamine.167 Following our tri-level model, these 

DAergic data suggest that disordered DA inputs to the mPFC would deleteriously increase 

the depth of a point attractor state, leading to excess TD control over other regions and 

depressive symptoms.

DISORDERED NEUROMODULATION: NOREPINEPHRINE

Functional DAergic signaling in the mPFC is not possible without intact NE release.169 DA 

and NE interact to regulate excitatory and inhibitory firing in the mPFC and maintain a 

delicate balance; too little DA/NE influence leads to memory impairment, whereas excess 

agonism of DA/NE receptors leads to excitotoxicity and dysfunction.169,170 Much like DA, 

NE is released in the amygdala and the mPFC in response to acute stimuli like anxiety or 
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reward and is involved in sleep/wake cycling, stress, and fear responses171 (Figure 3B). Due 

to its involvement in processes that are so often disordered in anxiety and depression, human 

studies have found correlative links between disordered NE release and mental illness. NE 

transporter and 5-HTT polymorphisms are related to increased susceptibility for anxiety in 

human subjects.137,172,173 NE neuronal cell groups can activate the hypothalamic–pituitary–

adrenal axis in stress responses, consolidate negative emotional memory through amygdalar 

and hippocampal projections, and control reward evaluation in the PFC.174,175 In the cortex, 

NE inhibits cAMP, prolonging potassium currents and stabilizing attractor state networks.176 

In the amygdala, the release of NE has a similar role to 5-HT in regulating brain-derived-

neurotrophic-factor-positive neurons, suggesting that it strengthens synaptic plasticity in 

BU processing regions as well.177 While NE release is necessary for processing reward in 

the mPFC, continuous NE release from chronic stress causes deleterious effects in cortical 

processing.

DA and NE affect the behavior of E/I neurons by reducing feedforward GABA inhibition 

and enhancing LTP.119 Increased levels of DAT and NE in patients with anxiety disorders 

bolster this interpretation that excess monoamine release causes downstream dysregulation 

of GABA.158 Injection of corticosterone into the amygdala induces anxiety-like behavior, 

imitating depressed GABAergic tone in the lateral amygdala.121 In addition to inducing 

a hypervigilant state, corticosterone increases the release of DA178 and NE179,180 in BU 

regions. Bidirectionally, the inhibition of GABA pyramidal neurons in the BLA promotes 

fear learning.181 Because GABAergic interneurons innervate and modulate glutamatergic 

outputs from the amygdala, reduction of GABA release triggered by dysfunctional 

neuromodulation may cause hyperexcitability of glutamatergic neurons.

Chronic release of NE via repeated traumatic stress can cause the consolidation of a lasting 

negative affective bias.182 Human subjects describe acute systemic infusions of NE as 

hyperarousal and later describe a “numbing” experience (when circulating NE is much 

lower, potentially representing NE “burnout”)175 (Figure 3B). As NE and 5-HT interact 

in anxiety, they also have a relationship in depression. When drug-naïve patients with 

depression were treated with an NE reuptake inhibitor (NRI) versus an SSRI, patients 

given SSRIs experienced a relapse of symptoms, whereas NRI patients did not.183 These 

data together with data demonstrating the role of NE in plasticity suggest a powerful 

effect of dysfunctional NE release, which acutely deepens attractor states. Following 

behavioral data in humans and rodents, it is possible that excessive NE release due to 

chronic stress could promote dysfunction in the mPFC and the amygdala, leading to 

an anxious-depressive model with two hyperstable attractor states.25 This model predicts 

behaviors that are typically seen in cases of unstable NE, DA, and 5-HT firing, including 

impairments in cognitive flexibility, working memory, hypervigilance, and negative valence 

bias. Recent research into the role of neurotensin demonstrates that it encodes valence 

assignment in the BLA by exerting a modular influence over synaptic plasticity in a 

valence-dependent manner.184 Given that patients with anxiety and depression suffer from 

negative valence bias, neurotensin signaling may be impaired in these mood disorders.184,185 

Reciprocally, neurotensin inhibits DA-mediated suppression of VTA neurons,186 suggesting 

that disordered neurotensin modulation could impact VTA–DA signaling to the mPFC, 

causing disordered DAergic firing.
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CONCLUDING REMARKS AND FUTURE PERSPECTIVES

While attractor state modeling argues how anxious and depressive states persist, the question 

still stands: how do these disease states develop, and what causes a transition into these 

states? Modeling of other natural phenomena, such as earthquakes, nuclear chain reactions, 

forest fires, and avalanches, all exhibit activity that can be described by power laws; 

neural activity can be modeled the same way.187,188 Neuronal processing requires the 

integration and redistribution of thousands of inputs with dynamics described as neuronal 

avalanches.187 This theory suggests that as a population nears a critical threshold, the 

observable behavior does not change until one unit exceeds threshold and causes many 

other units to do so in turn.189 This dynamism is described in the critical brain hypothesis, 

which suggests that neuron populations operate in the vicinity of the critical point of a phase 

transition, allowing for variable dynamics (through neuronal avalanches) from rest.190 While 

attractor states explain the stability and perpetuation of a given state, neuronal avalanches 

and the broader critical brain hypothesis explain the passage from one attractor state to 

another. In a healthy system, neuronal avalanches can elicit state transitions; however, in 

an unhealthy system, neuron populations would struggle to reach the criticality necessary 

for state transition. Neuronal avalanches have been observed in cortical populations using 

ex vivo microelectrode array recordings187 and in vivo electrode recordings;189 suggesting 

a role of brain criticality in TD processing, but it has yet to be investigated if neuronal 

avalanches are observed in subcortical regions.

As a class, mental health disorders present the largest economic burden to our society 

as well as being the least well-understood in terms of biological mechanisms. Many 

disparate subfields interface with mental health disorders, from computational psychology 

to neuropharmacology to modern circuit neuroscience, yet they are poorly integrated. Here, 

we have linked the computational, algorithmic, and implementational levels of investigation 

to connect the conceptual frameworks posited by each field. On a computational level, 

the function of the mind in health and disease can be compared to attractor states, 

analogous to brain states. On an algorithmic level, we explore how TD or BU brain states 

represent psychological processing pathways that are mediated by neural circuits. On an 

implementational level, we can probe the way synaptic changes can alter neural dynamics 

and shift brain states along multiple distinct parameters. Our review presents a framework 

through which to understand and decipher the differences observed in anxious and depressed 

subjects based on behavioral and neural readouts. Future studies should test the idea 

of a shift in processing modalities in more depth by directly measuring and comparing 

neural processes implicated in these two modes of anxious and depressed individuals while 

responding to various stimuli. Additionally, computational analyses of brain states in animal 

models may reveal the attractor networks mediating anxiety and depression.

To forge a path forward amidst the last frontier of our understanding—ourselves—we must 

integrate and synthesize the diverse perspectives for investigating psychiatric disease. This 

conceptual model is largely speculative and subject to evolution. Directed and focused 

investigation along multiple levels will enable the diagnosis of brain-based diseases using 

both behavior and brain activity as readouts.
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BOX 1

Generalized Anxiety Disorder (GAD) Major Depressive Disorder (MDD)

• Physiological: Restlessness, fatigue, 
muscle tension, sleep disturbances, 
irritability, and hypervigilance. 
Symptoms are unrelated to the 
effects of a substance or medical 
condition.

• Psychosocial: Persisting excessive 
apprehension, expectation of danger, 
and worry about a number of life 
events or activities.

• Physiological: Diminished interest 
and pleasure (anhedonia). Low 
energy, or a decrease in efficiency 
to complete routine tasks. Significant 
changes in appetite.

• Psychosocial: A sense of 
worthlessness or excessive guilt. 
Impaired ability to concentrate 
or make a decision (rumination). 
Recurrent suicidal ideation, or suicide 
attempts.
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BOX 2

Bottom-up is the initial, rapid mode of 
processing that relies heavily on an immediate, 
less conscious, and more emotional reaction 
to salient stimuli from the environment. This 
type of processing is adaptive, allowing these 
to be rapidly and easily identifiable (e.g., being 
startled by a dog barking)

Top-down is a slow mode of processing that relies on 
a cognitive, context, prior-knowledge, and goal-driven 
approach to assessing stimuli. This type of processing 
acts as a filter to identify which of the initially 
perceived salient stimuli are relevant and deserving of 
attention and behavioral responses (e.g., recognizing 
the dog is behind a fence)
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OUTSTANDING QUESTIONS

• What happens on a chronic scale when you have a hyperstable state? Why 

are changes in homeostatic or metaplasticity not rebalancing attractor state 

geometry?

• How do TD and BU attractor states interact with each other? Do these 

attractor states represent a part of a greater energy landscape in the brain, 

and what shape does that broader landscape take in health and disease?

• How can we leverage our understanding of attractor states to develop 

individual treatments and/or predict disease biotypes?

• How can we better model comorbid types of anxious-depression to further 

investigate neuromodulatory influence and plasticity change?

• Are there shared circuits or a divergent point in processing that account for 

negative affective states in both anxiety and depression?

• Major life changes in specific developmental periods make individuals highly 

susceptible for the development of mental illness. How does stress in specific 

developmental periods (e.g., childhood, adolescence) uniquely alter plasticity 

in cortical and limbic regions?

• Are the changes in plasticity that we see in patients with anxiety and 

depression indicative of a genetic susceptibility to these illnesses?
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FIGURE 1. 
Attractor state dynamics of bottom-up, top-down processing. Bottom-up (orange) and top-

down (blue) processing in (A) healthy, (B) anxious, (C) depressed, (D) slow-switching 

comorbid, and (E) fast-switching comorbid states are represented through attractor state 

dynamics (upper), where the ball indicates population activity at a given state with arrows 

showing average range of motion, and through the transition probability between states 

(lower), where the thicker arrows indicate higher transition probabilities. (F) Disordered 

transition probabilities result in different phenotype presentations. When the transition 

probability between TD/BU states is critically low, patients present anxiety, depression, 

or slow-switching comorbidity. When the transition probability between TD/BU states is 

critically high, patients present fast-switching comorbidity. (G, upper) Attractor state depth 

can change from Hebbian (purple) and homeostatic (green) plasticity changes. (G, lower) 

Plasticity changes are altered on different timescales; whereas Hebbian plasticity deviates 

from the basal setpoint, homeostatic plasticity resolves plastic deviations and, if needed, 

re-establishes the basal setpoint. Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic receptor; BU, bottom-up; TD, top-down.
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FIGURE 2. 
Interaction of bottom-up and top-down feedback loops during stimulus processing. (A–C, 

left) Flow of stimulus and valence processing in (A, left) healthy, (B, left) anxious, and (C, 

left) depressed states. Larger, thicker arrows indicate increased bias or activation. Dashed, 

thinner arrows indicate decreased activation. (A–C, right) Valence processing curves. (A, 

right) In a healthy state, valence processing corresponds appropriately to increases in arousal 

and positive–negative valuations of valence. The dashed line indicates the threshold of 

responding to a given stimulus. (B, right) In an anxious state, arousal is increased with a 

negative valence bias. (C, right) In a depressed state, arousal is decreased with a negative 

valence bias.
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FIGURE 3. 
The effects of neuromodulation on the depth of attractor states and synaptic plasticity. 

(A) As neural populations receive higher bouts of 5-HT1A/B receptor activity and/or 

increased DA2–4 receptor activity, the depth of an attractor state decreases. As neural 

populations experience higher levels of DA1/5 receptor activity and/or increased levels of 

5-HT2A receptor activity, the depth of an attractor state increases. (B) Variable release 

of neuromodulation across time after receiving a given stimulus. DA (blue) and NE 

(yellow) exhibit short encoding of stimulus. 5-HT (pink) imposes a slower, sustained 

release onto synapses. (C) In healthy mPFC synapses, 5-HT2A receptors (pink), D1-like 

receptors (dark blue), and AMPARs (red) interact to encourage NMDAR externalization. 

These receptors additionally recruit glutamatergic neurons (red). D2-like receptors (blue) 

internalize surface NMDARs and recruit GABAergic neurons (orange). Under unhealthy 

conditions in the mPFC, increased pressure from 5-HT2A and D2-like receptors (in addition 

to decreased pressure from D1-like receptors) causes increased externalization of NMDARs 

and glutamatergic neuron recruitment. The consequence of this synaptic change is an 

excitatory/inhibitory imbalance in the mPFC. Abbreviations: 5-HT, serotonin; AMPAR, 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor; DA, dopamine, E, excitation; 

GABA, gamma-aminobutyric acid; I, inhibition; mPFC, medial prefrontal cortex; NE, 

norepinephrine; NMDAR, N-methyl-D-aspartate receptor; POST, postsynaptic neuron; PRE, 

presynaptic neuron.
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