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HECW1 induces NCOA4-regulated ferroptosis in glioma
through the ubiquitination and degradation of ZNF350
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Tumor suppression by inducing NCOA4-mediated ferroptosis has been shown to be feasible in a variety of tumors, including
gliomas. However, the regulatory mechanism of ferroptosis induced by NCOA4 in glioma has not been studied deeply. HECW1 and
ZNF350 are involved in the biological processes of many tumors, but their specific effects and mechanisms on glioma are still
unclear. In this study, we found that HECW1 decreased the survival rate of glioma cells and enhanced iron accumulation, lipid
peroxidation, whereas ZNF350 showed the opposite effect. Mechanistically, HECW1 directly regulated the ubiquitination and
degradation of ZNF350, eliminated the transcriptional inhibition of NCOA4 by ZNF350, and ultimately activated NCOA4-mediated
iron accumulation, lipid peroxidation, and ferroptosis. We demonstrate that HECW1 induces ferroptosis and highlight the value of
HECW1 and ZNF350 in the prognostic evaluation of patients with glioma. We also elucidate the mechanisms underlying the
HECW1/ZNF350/NCOA4 axis and its regulation of ferroptosis. Our findings enrich the understanding of ferroptosis and provide

potential treatment options for glioma patients.
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INTRODUCTION

Gliomas are characterized by their highly invasive nature and high
fatality rate [1, 2]. Despite substantial advances in surgical
interventions and chemoradiotherapy, the median survival time
of patients with glioma remains poor, prompting the need for
novel strategies for the treatment of glioma in humans [3].

Cell death is key to maintaining the stability of cell populations;
thus, research on regulated cell death has contributed important
advances to tumor treatment [4, 5]. Ferroptosis, a new type of cell
death, has become an increasingly popular topic of research since
its discovery in 2012 [6]. Unlike other cell death mechanisms, the
accumulation of iron and reactive oxygen species (ROS), reduction
or disappearance of mitochondrial ridges are unique features of
ferroptosis [7-9]. Nuclear receptor coactivator 4 (NCOA4) binds to
ferritin heavy chain 1 and transports it to lysosomes for
degradation, which enables it to induce ferroptosis in cells
[10-12]. Growing evidence elucidates that ferroptosis has complex
regulation on the biological process of tumor [5]. A variety of
ferroptosis inducers, including both laboratory agents (erastin and
RSL3) and approved drugs, exhibit promising tumor inhibition
effects [5]. Therefore, the strategy of inducing ferroptosis to treat
tumors has considerable research potential.

Ubiquitination describes the widespread post-translational
modification of proteins in eukaryotes that regulates numerous
biological processes [13, 14]. ATP, ubiquitin-activating enzyme(E1),
ubiquitin-coupling enzyme(E2) and ubiquitin ligasethe(E3) are
indispensable for the ubiquitination and degradation of proteins
[15-17]. E3 determines the specificity of ubiquitin-substrate
binding, which makes it a hot topic in the study of ubiquitination

regulation [18-21]. E3 ubiquitin protein ligase 1 containing the
HECT, C2, and WW domains (HECW1), belongs to the HECT family,
was first identified in brain tumors [22, 23]. However, relatively
little research has been conducted on HECW1, despite the fact
that it enhances p53-mediated apoptosis in a manner indepen-
dent of ubiquitin ligase activity [24]. Low expression of HECW1 is
related to unfavorable prognosis, higher tumor staging, and
stronger resistance to targeted drugs in patients with renal clear
cell carcinoma [25]. In contrast, HECW1 promotes the progression
of malignant behavior in non-small cell lung cancer by mediating
the ubiquitination and degradation of Smad4 [26]. However, the
study of HECW1 in glioma has not been reported.

Zinc finger protein 350 (ZNF350) is a typical KRAB-containing
zinc finger protein identified in a yeast two-hybrid analysis of
BRCA1 (breast cancer type 1 susceptibility protein)-related
proteins [27]. ZNF350 has been identified as a transcriptional
suppressor that can either form complexes with other proteins or
play a direct transcriptional suppressive role in a single-factor form
[28-32]. ZNF350 therefore plays an important role in the
development of various tumors [31, 33, 34]. However, the
potential effect and mechanism of ZNF350 in glioma have not
yet been clarified.

In the study, we found that HECW1 blocked the progression of
glioma cells and enhances iron accumulation and lipid peroxida-
tion (LPO), which is caused by inducing NCOA4-mediated
ferroptosis. Through screening and verification, we confirmed that
ZNF350 mediated the positive regulation of HECW1 on NCOAA4. In
detail, The protein stability of ZNF350 was disrupted by HECW1-
induced ubiquitination. ZNF350 inhibits the transcriptional activity
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of NCOA4 by directly binding to the transcriptional initiation site.
Here, we demonstrated the regulatory mechanism of the HECW1/
ZNF350/NCOA4 pathway on ferroptosis in gliomas, which might
provide a novel strategy for glioma treatment.

MATERIALS AND METHODS

Data sources

Expression data and the clinical data of corresponding patients were
downloaded from the Chinese Glioma Genome Atlas (CGGA) and The
Cancer Genome Atlas Research Network (TCGA) databases [35, 36]. Gene
expression boxplots were downloaded from the gene expression profiling
interactive analysis (GEPIA) [37]. Transcription factors were predicted using
the HumanTFDB database [38] and ubiquitination substrates were
predicted using the UbiBrowser database [39].

Cell culture

The cell lines were purchased from the Chinese Academy of Sciences
(Shanghai, China) and ScienCell Research Laboratories (Carlsbad, CA, USA).
Glioma cells (U87MG-Cat No.TcHu138, U251-Cat No.TcHu58) were cultured
in Dulbecco’s modified Eagle’s medium (HyClone, UT, USA), while Normal
human astrocytes (HA-Cat No. 1800) were cultured in astrocyte medium
(ScienCell). The medium was supplemented with 10% fetal bovine serum
(Gibco, NY, USA) and 1% penicillin-streptomycin solution (ScienCell). An
incubator containing 5% CO, at 37 °C provides a suitable environment for
the cells.

Human tissue samples

Shengjing Hospital of China Medical University provided us with human
tissue samples. The samples comprised normal brain tissue (n =9), low-
grade glioma tissue (n=9), and glioblastoma tissue (n=9). All samples
were collected after obtaining the signed consent of patients.

Quantitative real-time PCR

Total RNA was extracted from cells or tissues using TRIzol reagent
(Beyotime, Shanghai, China), and the concentration was measured using a
Nanodrop Spectrophotometer (Thermo Fisher Scientific, USA). HiScript IlI
RT SuperMix for qPCR and ChamQ Universal SYBR gPCR Master Mix
(Vazyme, Nanjing, China) were used to detect RNA levels(using GAPDH as
the internal reference). The primer sequences were listed in Supplemen-
tary Table 1.

Western blot analysis

Total protein was harvested by cracking cells or tissues using RIPA and
PMSF (Beyotime, Shanghai, China). The protein concentration was
measured and balanced among different samples. Protein samples were
subjected to SDS-PSGE (Beyotime, Shanghai, China) for electrophoretic
separation and transferred onto PVDF membranes. Next, antibodies were
added. A chemiluminescence imaging analysis system was used to
measure spot intensity(Bio-Rad Laboratories, USA). Details of antibodies
were listed in Supplementary Table 2.

Cell transfection

When the growth density of the cells inoculated into the 24-well plates
reached approximately 70%, we added the plasmid and Lipofectamine
3000 reagent. After incubation for 24 h, cells containing plasmid vectors
were screened by adding the corresponding antibiotics according to the
plasmid characteristics. The transfection efficiency was determined by
quantitative real-time PCR (qPCR) and western blot analysis (WB). Full-
length HECW1, ZNF350, JUND, and NCOA4 plasmids were constructed
using the pcDNA 3.1. Small hairpin(sh)-HECW1, sh-ZNF350, sh-NCOA4
silencing plasmids were constructed using the pGPU6. The plasmids were
purchased from Shanghai GenePharma. The plasmid sequences were
listed in Supplementary Table 3.

Chemicals

Ferrostain-1 (fer-1,), liproxstatin-1 (Lip-1,), erastin, RSL3, Z-VAD-FMK (Z-
VAD), necrosulfonamide (NSA), necrostatin-1 (Nec-1), and MG-132 were
purchased from GlpBio (Montclair, CA, USA). Cycloheximide (CHX) was
purchased from Sigma-Aldrich (St. Louis, MO, USA). To induce ferroptosis,
the concentration of erastin was diluted to 5 pmol/L and RSL3 to 2 pmol/L.
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The incubation time was 72 hours [40]. To inhibit apoptosis, ferroptosis,
pyroptosis, or necroptosis, We treated the cells using Z-VAD (10 pmol/L),
Fer-1 (1 umol/L), Lip-1 (0.2 umol/L), NSA (0.5 umol/L), or Nec-1 (2 umol/L)
for 72 h [10, 41-43].

Cell migration and invasion assay

In all, 200 pL serum-free medium containing 4 x 10* cells was inoculated
into the upper chamber of a polycarbonate membrane(Corning, New York,
USA) with pore size of 8 um, and 600 ul medium containing 10% fetal
bovine serum(Gibco, California, USA) was added to the lower chamber. The
cells were incubated for 48 h. Finally, after methanol fixation and 20%
Jimsa staining, 5 randomly selected regions were counted and photo-
graphed under the microscope.

Cell proliferation

Cell proliferation was measured using cell proliferation kit (BeyoClick™ EdU
Cell Proliferation Kit; Beyotime, Shanghai, China). Cells were incubated at
10 um EdU for 2 h and fixed with 4% paraformaldehyde. After washing off
the fixative, PBS containing 0.3% Triton X-100 was added and incubated at
room temperature for 10-15 min. CLICK reaction solution was added and
incubated for 30 min in an environment protected from light. Hoechst
33342 was used for nuclear staining. Finally, fluorescence images of the
EdU-incorporated samples were obtained using a fluorescence
microscope.

Cell viability assay

The CCK-8 kit was purchased from Beyotime (Shanghai, China). The glioma
cells were seeded in 96-well plates at a density of 10,000 cells per well,
10 uL of CCK-8 solution was added to each well, and the plates were
incubated for 1 h. Absorbance was then measured at 450 nm.

lactate dehydrogenase measurements

Cell death was quantified by lactate dehydrogenase (LDH) release with an
LDH assay kit (Abcam, Cambridge, UK). After centrifugation, the super-
natants of cells were collected from the different treatment groups.
Absorbance was measured at 450 nm.

Lipid peroxidation measurements

Cellular LPO was quantified by measuring malondialdehyde (MDA) and
hydrogen peroxide (H,0,) levels [10, 44]. The MDA assay kit and H,0,
assay kit were purchased from Beyotime (Shanghai, China). After the cells
in each treatment group were completely lysed, the supernatant was
collected(centrifugation: 12,000 x g /10 min). An appropriate amount of
standard product was diluted with distilled water to 1, 2, 5, 10, 20, and
50 uM for the subsequent production of standard curves. The supernatant
was mixed with the MDA working solution and heated at 100 °C for 15 min.
After complete cooling, The mixture was centrifuged at 1000 xg for 10 min.
Finally, the absorbance was measured at 532 nm. We also measured the
H,0, levels, and the cells in each treatment group were harvested by
centrifugation. The sample to be measured was obtained by adding the
cracking solution and performing centrifugation again. After calibrating
the reference standard of H,0O, and setting the standard curve, the
absorbance at 560 nm was measured.

Iron assay

Intracellular ferrous iron levels were quantified by colorimetric iron assay
kit (Abcam). The supernatant was extracted by centrifugation after the cells
from each treatment group were lysed using iron assay buffer. The iron
probe was then added and incubated for 1h. The absorbance was
measured at 593 nm and the iron concentration was calculated.

Protein degradation assay

CHX at a concentration of 10umol/L was used to inhibit protein synthesis
[45]. Cells were harvested after 0, 2, 4, and 6 h to extract proteins for WB
analysis.

Co-immunoprecipitation

The supernatant was extracted from the cells treated with NP-40 cell lysis
buffer (Beyotime, Shanghai, China) after incubation, ultrasonic crushing,
and centrifugation. The protein concentration of each group was
measured and recorded. Cell lysates after antibody incubation were then
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incubated with A/G agarose beads(Santa Cruz, CA, USA). The immunopre-
cipitate was centrifuged to remove the supernatant and retain the beads.
After adding 2xSDS-PAGE sample loading buffer (Beyotime, Shanghai,
China) to the beads and boiling for 10 min, the prepared immune
complexes were analyzed by WB.

Ubiquitination assay

Cells were treated with 10 uM MG132 (Sigma-Aldrich, St. Louis, MO, USA)
for 4-6 h. Immunoprecipitation was performed using whole-cell lysates.
Lysis buffer containing phosphatase inhibitors (Beyotime, Shanghai, China),
protease, and 10 mM N-ethylmaleimide (Sigma-Aldrich, St. Louis, MO, USA).
Finally, the level of ZNF350 ubiquitination was detected by WB using an
anti-Ub antibody.

Chromatin immunoprecipitation

We purchased the EZ-ChIP™ kit for ChIP assay(Millipore, MA, USA). Proteins
and DNA were crosslinked in 1% formaldehyde at room temperature for
10 min. The crosslinked chromatin was decomposed by ultrasound into
DNA fragments of approximately 600 bp before adding normal rabbit IgG
antibody or anti-ZNF350 antibody and incubating at 4 °C. After purification,
the DNA fragments were amplified using 2X Tap Master Mix for PAGE
(Vazyme, Nanjing, China), followed by agarose gel electrophoresis to verify
the binding sites. The PCR primers are listed in Supplementary Table 4.

Dual-luciferase reporter assays

The promoter region of NCOA4 was amplified from human genomic DNA
by PCR, and the PCR products were subcloned into the pGL3 vector
(Promega, Madison, WI, USA). Full-length human ZNF350 was constructed
using the pEX3 (pGCMV/MCS/Neo) plasmid (GenePharma, Shanghai,
China). The constructed vectors were transfected into HEK-293 T cells,
and the relative luciferase activity was quantified as the ratio of firefly
luciferase activity to Renilla luciferase activity.

Tumor xenografts in nude mice

We purchased 4-week-old BALB/C athymic nude mice as test subjects. To
exclude the influence of individual differences, U87 cells stably transfected
with oeHECW1 were injected into the left underarm of nude mice, and U87
cells stably transfected with oeNC were injected into the right underarm of
the same nude mice. After the tumor was clearly identified, the tumor
volume (volume (mm?3) = length x width 2/2) was regularly recorded on a
3-day cycle. After 42 days, all nude mice were sacrificed. The tumors were
separated and weighed. In addition, tumor cells were implanted into the
right striatum of mice through stereotaxis, and the survival number of
nude mice was recorded. Finally, survival analysis was determined using
Kaplan—-Meier survival curve.

Statistical analysis

GraphPad Prism8 and R Studio software were used for data analysis. Analysis
of variance and Student’s t-tests were used to detect the differences in the
results between groups. All values were presented as the mean + standard
deviation (S.D.) from at least three independent experiments N°p > 0.05,
*P < 0.05, **P < 0.01, ***P < 0.001 (In the study, “n” was used to represent the
sample size or the number of experiments repeated)).

RESULTS

HECW1, a potential prognostic biomarker, inhibited glioma
cells progression

Bioinformatics analysis indicated that HECW1 was mainly enriched
in normal tissues (Fig. 1A) and decreased with the increase of
glioma grade (Fig. 1B). The gPCR results revealed that HECW1
mMRNA levels in human astrocytes (HA) were distinctly higher than
those in U251 and U87 cells (Fig. 1C). Moreover, HECW1
expression was highest in peritumoral normal brain tissues and
was significantly negatively correlated with the degree of tumor
malignancy (Fig. 1D). Survival analysis (n =325, data sources:
CGGA) showed that high HECW1 expression predicted a more
favorable prognosis for patients with glioma (Fig. 1E). Another
survival analysis (n=693; data source: CGGA) confirmed the
predictive effect of high HECW1 expression on longer survival
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times in patients (Fig. 1F). WB analysis confirmed that HECW1
expression trend in the same cells and tissues was approximately
consistent with the qPCR results (Fig. 1G, H). We constructed
stable transfected cells and measured HECW1 protein levels by WB
analysis (Supplementary Fig. 1A). Figure 11 confirmed that the
proliferation capacity of HECW1-deficient cells was greatly
enhanced. Furthermore, HECW1 knockdown significantly
enhanced glioma cell activity (Fig. 1J, K). This decrease in LDH
release confirmed that HECW1 knockdown reduced glioma cell
death (Fig. 1L, M). Transwell assays demonstrated that HECW1-
deficient cells acquired stronger migration and invasion ability
(Supplementary Fig. 1B). According to these results, we conclude
that high HECW1 expression predicts better prognosis and more
favorable tumor grading in patients with glioma. The deficiency of
HECW1 accelerates the malignant progression of glioma cells.

HECW1 exerts tumor-suppressive function by inducing
ferroptosis in glioma cells

To uncover the mechanism by which HECW1 plays a role in cancer
inhibition, we treated glioma cells with different cell death inhibitors.
Firstly, we determined the protein level of HECW1 in cells
transfected with oeHECW1 by WB analysis (Supplementary Fig.
2A). HECW1 overexpression markedly reduced glioma cell growth
(Fig. 2A, B). Interestingly, this effect was reversed by ferroptosis
inhibitors (Fer-1; Fig. 2A, B). Moreover, overexpression of HECW1
significantly increased glioma cell death, which was largely reversed
by Fer-1 treatment (Fig. 2C, D). In further experiments, we verified
that the overexpression of HECW1 markedly improved MDA,
intracellular ROS (H,0,), and ferrous iron levels (Fig. 2E-J). These
three are the major factors that lead to LPO and ferroptosis in cells.
Next, we revealed the effect of HECW1 knockdown on ferroptosis. As
expected, ferroptosis inducers (erastin, RSL3) significantly inhibited
glioma cell growth and accelerated cell death; however, this effect
was largely offset by HECW1 silencing (Fig. 2K-N). The three key
inducers of ferroptosis also decreased significantly after
HECW1 silencing (Fig. 20-T). Our results indicated that HECW1
causes iron accumulation, LPO, and ferroptosis in glioma cells.

HECW1 activates ferroptosis by positively regulating NCOA4
We explored the mechanism by which HECW1 regulates
ferroptosis. HECW1, an E3 ubiquitin ligase, likely plays a role in
regulating the ubiquitination and degradation of target proteins.
Therefore, we screened for ferroptosis-related proteins and
observed changes in their expression in HECW1-silenced cells.
WB analysis revealed that only NCOA4 protein expression was
significantly altered in HECW1-silenced glioma cells (Fig. 3A). Next,
we examined whether NCOA4 acts as a tumor suppressor in
gliomas by eliciting ferroptosis. Similarly, we measured protein
levels of NCOA4 in stable transfected cells (Supplementary Fig. 3A,
B). Compared with that in the negative control group, the growth
of glioma cells in the NCOA4 overexpression group was greatly
inhibited, whereas cell death was notably increased (Fig. 3B-E).
However, the cancer-inhibiting effect of NCOA4 overexpression
was severely disrupted by ferroptosis inhibitors (Fig. 3B-E). As
shown in Fig. 3F-l, NCOA4 silencing largely counteracts the
toxicity of ferroptosis inducers to glioma cells. Therefore, we
conclude that NCOA4 acts as a driver of ferroptosis in glioma cells.
Supplementary Fig. 3C, D demonstrated that overexpression of
HECW1 could not exert tumor inhibitory effect in NCOA4-deficient
glioma cells. As shown in Fig. 3J-O, under the premise of not
interfering with the expression of NCOA4, the three indexes of
ferroptosis in HECW1-overexpressed cells were distinctly boosted,
which was consistent with our previous experimental results.
Encouragingly, after NCOAA4 silencing, we observed no significant
difference in the three ferroptosis indexes between the HECW1
overexpression group and negative control groups (Fig. 3J-0).
These findings suggest that HECW1 induces ferroptosis through
the positive regulation of NCOA4.
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ZNF350, a potential predictor of glioma prognosis, mediates

the positive regulation of NCOA4 by HECW1

An interesting phenomenon is observed whereby the protein
expression of NCOA4 decreased after HECW1 silencing (Fig. 3A).
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Similarly, HECW1 knockdown significantly downregulated the mRNA
level of NCOA4 (Fig. 4A). Therefore, we speculate that HECW1
regulates NCOA4 not by directly mediating NCOA4 ubiquitination,
but by influencing the transcription level of NCOAA4. Figure 4B shows
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Fig. 3 HECW1 overexpression promoted NCOA4-mediated ferroptosis. A Change of candidate protein expression after HECW1 knockdown
determined by WB (n = 3). B-E Cell activity and LDH release levels measured 72 h after the addition of ferroptosis inhibitors (Fer-1,Lip-1; n = 6).
F-1 Tolerance of NCOA4-deficient cells to ferroptosis inducers was determined by CCK8 and LDH release levels(n = 6). J, K Quantification of
MDA levels(n = 6). L, M Intracellular H202 levels(n = 6). N, O Determination of ferrous iron levels in glioma cells. All values are presented as the

mean = S.D., P> 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

the intersection of the potential ubiquitination substrate protein of
HECW1 with the transcription factors that regulate NCOA4 expres-
sion. Protein levels of both ZNF350 and JUND were upregulated in
HECW1-deficient glioma cells (Fig. 4C). However, the overexpression
of ZNF350 significantly downregulated the mRNA and protein levels
of NCOA4, unlike JUND treatment (Fig. 4D-F). Our experiments
demonstrated that HECW1 knockdown notably inhibited the
transcription and translation of NCOA4. However, this effect
disappeared after ZNF350 silencing (Fig. 4G, H). The supplementary
Fig. 4B suggested that ZNF350 overexpression completely blocked
the positive regulation of NCOA4 by HECW1 overexpression. We
found that ZNF350 was enriched in GBM and LGG tissues (Fig. 4l).
Survival analysis involving a large number of glioma samples
revealed that ZNF350 low expression group had higher survival rate

SPRINGER NATURE

(Fig. 4J, K). Subsequent experiments demonstrated that ZNF350
expression was highest in U87 cells and lowest in HA cells (Fig. 4L, N).
Similarly, ZNF350 expression was significantly higher in glioma
tissues than in normal brain tissues and higher in HGGTs than in
LGGTs (Fig. 4M, N). Figure 40 demonstrated that overexpression of
ZNF350 significantly promoted the proliferation of glioma cells.
Transwell assay indicated that ZNF350 overexpressed cells had
stronger migration and invasion ability(Supplementary Fig. 4A). Our
experiments also showed that ZNF350 overexpression promoted
glioma cell viability and inhibited cell death (Fig. 4P-S). These results
suggested that ZNF350 is a potential predictor of poor prognosis in
patients with glioma, greatly promotes the growth of glioma
cells in vitro, and mediates the positive regulation of HECW1 on
NCOA4.
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B). When protein synthesis in the cells was inhibited by CHX, we
detected changes in ZNF350 protein levels at four different time
points. Specifically, the degradation rate of ZNF350 increased
noticeably after HECW1 expression was enhanced (Fig. 5C, D).
However, the proteasome inhibitor MG132 reversed this decline

HECW1 acts as a ferroptosis inducer by controlling
ubiquitination and degradation of ZNF350

Next, we investigated the specific mechanism by which HECW1
negatively regulates ZNF350 expression. As a transcription factor,
ZNF350 did not affect HECW1 expression in glioma cells (Fig. 5A,
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Fig. 4 ZNF350 accelerated glioma cells growth and mediated the positive regulation of NCOA4 by HECW1. A NCOA4 expression in
HECW1-silenced cells and control cells determined by gqPCR (n=6). B Intersection of HECW1 ubiquitination substrates predicted by the
UbiBrowser database (top 150 genes in descending order of confidence score) and transcription factors regulating NCOA4 predicted by the
HumanTFDB database (P < 0.05). C Expression of candidate proteins detected by WB (n = 3). D, E Effect of ZNF350 and JUND overexpression
on the transcription level of NCOA4 detected by qPCR (n = 6). F Effect of ZNF350 and JUND overexpression on the translation level of NCOA4
detected by WB (n = 3). G NCOA4 expression detected by qPCR (n = 6). H Protein levels of NCOA4 detected by WB analysis (n = 3). I ZNF350
expression in bulk RNA sequencing data, which contained 163 GBM (TCGA), 518 LGG (TCGA), and 207 normal (GTEx) samples.
J, K Kaplan-Meier survival analysis. Data were downloaded from the CGGA database. CGGA325 and CGGA693 are two separate data sets.
L, N ZNF350 expression in HA, U251, and U87 cells detected by qPCR (n =6) and WB (n=4). M, N ZNF350 expression in NBTs, LGGTs, and
HGGTs detected by qPCR (n = 6) and WB (n =4). O EDU kit was used to detect cell proliferation (n = 3). P-S Cell viability and LDH levels of
ZNF350 overexpression cells and control cells (n = 6). All values are presented as the mean +S.D., “*P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

and enhanced the stability of ZNF350 (Fig. 5E, F), suggesting that
ZNF350 was degraded by the ubiquitin-proteasome pathway.
Quantification of ubiquitin levels confirmed this finding. After the
immunoprecipitation of ZNF350 from MG132-treated cells,
ZNF350 was heavily ubiquitinated and degraded in the HECW1-
overexpression group, whereas ZNF350 ubiquitination was
severely inhibited and ZNF350 stability was greatly enhanced in
the HECW1-knockdown group (Fig. 5G-J). To determine the
association between ZNF350 and ferroptosis, glioma cells that
were stably transfected with 0eZNF350 and oeNC were treated
with Erastin or RSL3. As expected, overexpression of ZNF350 not
only substantially downregulated cell loss caused by ferroptosis
inducers, but also counteracted the inhibitory effect of ferroptosis
inducers on cell viability (Fig. 5K-N). In addition, we demonstrated
that ZNF350 overexpression reversed the HECW1-induced accu-
mulation of MDA, ROS, and Fe?" in glioma cells (Fig. 50-T). These
data imply that high ZNF350 expression can help glioma cells
escape ferroptosis and that HECW1-mediated ubiquitination and
degradation of ZNF350 is a crucial mechanism for HECW1-induced
ferroptosis.

ZNF350 directly inhibits NCOA4 transcription to resist
ferroptosis

The chromatin immunoprecipitation (ChIP) assay demonstrated
that ZNF350 bound to the NCOA4 promoter region at sites 138
and 123 (Fig. 6A). The fluorescence activity of pEX3-ZNF350 was
markedly decreased in luciferase reporter assays (Fig. 6B). We
further verified the inhibitory effects of ZNF350 on ferroptosis. We
observed that the two independent ferroptosis inhibitors blocked
cell death and decreased cell viability induced by ZNF350
knockdown (Fig. 6C-F). According to these results and those in
Fig. 5K-N, we concluded that ZNF350 acts as a ferroptosis
suppressor in glioma cells. To confirm that ZNF350 resistance to
ferroptosis depends on the transcriptional inhibition of NCOA4,
we constructed ZNF350 and NCOA4 double-transfected cells. As
shown in Fig. 6G-L, the overexpression of NCOA4 completely
reversed the downregulation of MDA, ROS, and Fe?" levels caused
by the overexpression of ZNF350. Similarly, knocking down
NCOA4 eliminated the upregulatory effect of ZNF350 silencing
on MDA, ROS, and Fe®", and even maintained the levels of these
three indexes at low levels (Supplementary Fig. 6A-F). These
findings demonstrate that ZNF350 can inhibit the transcription of
NCOA4 by directly binding to the promoter region of NCOA4,
acting as a ferroptosis suppressor in glioma cells. Taken together,
we confirmed that HECW1, ZNF350, and NCOA4 form an integral
pathway involved in the regulation of ferroptosis in gliomas.

HECW1 functions as a novel tumor suppressor in vivo

To investigate the biological effects of HECW1 in vivo, We
constructed xenograft tumor model in nude mice. The result
indicated that the tumor volume in o0eHECW1 group was
significantly smaller than that in 0eNC group (Fig. 7A). Figure 7B,
C suggested that the tumor weight and growth rate of oeHCEW1
group were effectively inhibited. Survival analysis confirmed that
nude mice in the oeHECW1 group had a longer survival time (Fig.
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7D). These findings confirmed that HECW1 exerted a powerful
tumor suppressant effect in vivo.

DISCUSSION

Glioma is an aggressive brain tumor that accounts for 80% of
central nervous system malignancies [2, 46]. Despite tremendous
efforts, the overall survival time of patients with glioblastoma is no
longer than two years [47].

Ubiquitination is a complex mechanism of post-translational
protein modification involving a large number of biological
processes, including proteasome degradation, protein—protein
interactions, DNA repair, and gene transcription [48, 49]. The
binding of ubiquitin to its substrate, mediated by E3 ubiquitin
ligase, is the most critical process in ubiquitination [50]. Various E3
ubiquitin ligases play important roles in the development and
progression of tumors by regulating the degradation of onco-
genes or their interactions with tumor suppressors [51]. Therefore,
ubiquitination signal targeting based on E3 ubiquitin ligase is a
promising strategy for tumor treatment. HECW1, an E3 ubiquitin
ligase, is involved in the regulation of non-small cell lung cancer,
breast cancer, and thyroid cancer by mediating the ubiquitination
and degradation of target proteins [23, 26, 52]. In this study,
HECW1 expression was severely downregulated in glioma cells
and tissues. Higher HECW1 expression was associated with longer
overall survival in patients with glioma. Cells with HECW1
deficiency showed significantly increased proliferation, migration,
invasion, and activity and markedly decreased mortality, which is
consistent with the characteristics of the tumor suppressor gene.
Through the use of cell death inhibitors and ferroptosis inducers,
as well as the determination of intracellular ferrous and LPO
indices, we demonstrated that HECW1 is involved in intracellular
iron metabolism and ferroptosis.

Drug resistance has always been a major obstacle to the success
of tumor-targeted therapy [53]. However, resistant cells, especially
those in the mesenchymal and dedifferentiated states of tumor cells,
are susceptible to ferroptosis, which underscores the potential of
ferroptosis in eradicating tumors [54, 55]. Intracellular iron mediates
the generation of toxic lipid-based ROS through the Fenton reaction
and induces ferroptotic cell death [56-58]. Therefore, dysregulation
of iron homeostasis is a key metabolic marker of cellular ferroptosis.
Transferrin (TF), an important iron transport protein, binds to the
membrane protein transferrin receptor (TFR) to form a complex [59].
Iron absorption in most cells occurs via endocytosis, which is
triggered by the TF/TFR complex [60]. Moreover, heme oxygenase-1
can change the distribution of iron in cells by catalyzing the
degradation of heme to release free iron [61, 62]. The only known
iron-exporting protein in mammals, ferroportin1, exports iron across
the basolateral membrane [63, 64]. Therefore, the downregulation of
ferroportin1 can induce ferroptosis by promoting iron accumulation
[63]. Furthermore, IREB2 plays an important role in cellular iron
homeostasis by regulating the stability of iron transporters via post-
transcriptional mechanisms [65]. Lastly, NCOA4 acts as a cargo
receptor to mediate the selective autophagic degradation of ferritin,
known as ferritinophagy, which results in the leakage of Fe** into

Cell Death and Disease (2023)14:794



Y. Lin et al.

A G U251
NS N_S. 19G ZNF350
LS k) P —
8210 C ©
>
[} 8 2150 - 0eNC E
O _uest P = 0eHECW1
5505 0eNC _ 0eHECW1 & 100 ;
o5 02460 2 46 CH(hous) 5 50 HECW1 + - + ol ub »
(O] - - ZNF350 N MG132 - - +
F 8 -=——HECW1 2 0 -
0.0 - e D 0 ) 4 6 ZNF350 -
ShNC + - + - - ey an G e e e = -
ShZNF350 - + - + & Time after CHX(hours) GAPDH i = ZNF350 -h =
U251 U8s7 » Input lysate
B D 5150 « 0eNC F HECW1 e o= W%
us7 o = oeHECW1
U251 us7 5eNC __ oeHECWA 9 HECW1 + - + ZNF350 s e
> ww w= e HECW1 0246024 6 CHX(hours)% MG132 - -+ GAPDH == e= w==
S éamic ron ™ S ﬁgg:\g/s? 0 ZNF350 s e —§ 0eNC o . .
i = GAPDH o= o= e= -
(Z) C% g § - o - GAPDH % oeHECW1 +
=L oL o Time after CHX(hours)
"8 &
@ % K 2
310
8
=
H us7 I U251 J us7 88,
IP IgGZNF350 P I1gGZNF350 IP 1gGZNF350 e
T " %
w ; & 0.0
b DMSO
L Bl L LSS Sxrasss
oeNC - -+--+- o0eNC == s
0eZNF350 - - - + - - + ©0eZNF350 - - - + - - +
NF350| . o= NF350 s s ZNF350  wem w= M SEs ms N g mEm e
Input lysate Input lysate Input lysate 100 10
HECW1 = v wee  HECWT g ows HECW1 e e - 2 o e 3280
n = © =
ZNF350 [ s ZNF350 == ZNF350 - 2 52 ig
GAPDH essememm CAPDH wee & &= /0D qup e e = = 5
0eNC - + - SshNC - + - ShNC - + - = =
oeHECW1.- - 4+ shHECW1- - & shHECW1- - 4
MSO +------ PMSO 4 - - - - - -
Erastin makab o= == Erastin - oEob ek = osoe
RSLZ ~—--++% RGl3 =~~~ ~++4
oeNC ci=m#EE #E  0eNC oG B S
0eZNF350 - - - + - - + 08ZNF350 - - - + - - +
O uzst P ug7 Q  uzs R ug7 S U251 T ug7
= NS S = NS o = NS & = NS % NS + = NS
D 6 —_— D 6 —_ ON ON 4 _ == « e &
£ 3 £ T s T 3 &L
2, 2, 5 53 5 52
= (= o 2 o o o
= s > 92 > > °
0] 0] Q < ) Q@ 1
82 82 21 2 21 2
< < T © © T
a a ° o T -
S0 So & 0 @0 e 0 € 0
oeNC + -+ - + - o+ - + - o+ - + -+ - + -+ - + - o+ -
0eHECW1 - + - + -+ -+ -+ - 4+ -+ -+ - 4+ -+ -+ -+
O '560 N\C ,5630 Y ,560 O ,566 O ,550 O ,560
@ @ ) Q @ @
o 061)\? o g 61/\*? o . e’L&/ o o 6’1§? o 051}? o 061/\*?

Fig. 5 HECW1 mediated ubiquitination and degradation of ZNF350 to induce ferroptosis. A, B HECW1 expression detected by qPCR (n = 6)
and WB (n = 6). C, D The protein levels of ZNF350 at different time periods were determined by WB analysis (n = 3). E, F ZNF350 protein levels
quantified by WB (MG132 is a proteasome inhibitor n=3). G-J Ubiquitination level of ZNF350 measured after HECW1 knockdown and
overexpression (n = 3). K-N Tolerance of ZNF350 overexpression cells to ferroptosis inducers was determined by CCK8 and LDH release
levels(n = 6). O, P Quantification of MDA levels (n = 6). Q, R Intracellular H202 levels (n = 6). S, T Determination of ferrous iron levels in glioma
cells (n = 6). All values are presented as the mean * S.D., “*P>0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

the cytoplasm, leading to ferroptosis [66, 67]. Here, we found that
only NCOA4 protein expression was significantly downregulated
after HECW1 silencing, whereas the expression of TF, TFR, heme
oxygenase-1, ferroportin1, and IREB2 did not change. NCOA4

Cell Death and Disease (2023)14:794

knockdown blocked ferroptosis induced by HECW1 overexpression.
Interestingly, after HECW1 silencing, the transcription level of NCOA4
was also dramatically downregulated. Therefore, we hypothesized
that HECW1 induces iron accumulation, LPO, and ferroptosis, not
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directly through the ubiquitination and degradation of NCOA4, but
by affecting the transcription of NCOA4. Specifically, we demon-
strated that ZNF350 mediates the positive regulation of NCOA4
by HECW1.

ZNF350, a transcriptional suppressor, binds to BRCA1 and CtIP to
form a transcriptional suppressor complex that inhibits angiogenesis
in breast cancer [33]. BRCA1 and ZBRK1 then form a complex that
inhibits breast cancer cell proliferation [27]. Several studies have
shown that ZNF350 can inhibit transcription as a monomer. For
example, ZNF350 inhibits cervical cancer progression by directly
binding to the MMP9 promoter region and inhibiting its transcrip-
tion [30]. In this study, we found that ZNF350 was upregulated in
gliomas and predicted a shorter survival time in patients. We also
confirmed that ZNF350 not only promotes glioma cell proliferation,
migration, invasion, and activity but also reduces cell death. The
main reason for this phenomenon was ferroptosis inhibition by
ZNF350 in glioma cells. As expected, protein degradation and
ubiquitination assays revealed that HECW1, an E3 ubiquitin ligase,
controlled the ubiquitination and degradation of ZNF350. ChIP and
dual-luciferase gene reporter assays confirmed that ZNF350
inhibited NCOA4-mediated iron accumulation, LPO, and ferroptosis
by downregulating NCOA4 transcription levels through direct
binding to the promoter region of NCOA4 in the monomer form.

In summary, this study is the first to reveal the influence of
HECW1 and ZNF350 on gliomas and their potential value in
evaluating patient prognosis. More importantly, we explore and
demonstrate the role and mechanism of the HECW1/ZNF350/
NCOA4 pathway in regulating ferroptosis and identify new
molecular targets for glioma therapy.
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