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Editorial 

Current and future developments of synthetic computed tomography generation 
for radiotherapy 

The literature on generation of synthetic computed tomography (CT) 
based on magnetic resonance imaging (MRI) or cone-beam CT (CBCT) 
has been rapidly increasing over the last years [1–4]. Recently, also 
commercial solutions for synthetic CT generation have been introduced, 
advancing adaptive radiotherapy workflows [5–11]. The interest in 
MRI-only workflows with synthetic CTs replacing the planning CT is also 
growing [12]. 

With the clinical introduction of synthetic CTs, there has been a shift 
in the literature. While the first papers in this field generally focused on 
image-based assessments only and mainly reported on CT number ac-
curacy [13,14], recent papers are focusing on evaluating the entire chain 
of the radiotherapy process [15,16]. Linked to this, the time it takes for 
these algorithms to perform the corrections also becomes an important 
part of the evaluation. Besides image quality and geometrical correct-
ness, a dose/volume-based evaluation by (re)calculation of treatment 
plans on synthetic CT scans is currently seen as one of the standard 
methods to quantify the accuracy of a synthetic CT generation [17,18]. 

With the aim of establishing a patient-specific method for quality 
assurance, Dal Bello et al. [15] in this ESTRO 2023 paper highlight 
collection compared four commonly used strategies to create a synthetic 
CT from the MRI; ranging from a very simplistic assumption of over-
riding the entire patient inside the body contour with water to advanced 
correction methods based on deformable image registration (DIR) or 
deep-learning based neural networks. Creating a separate synthetic CT 
based on an independent neural network was found to provide an effi-
cient and accurate validation method; however, for patients with metal 
implants the MR-based synthetic CTs were less reliable. 

In another ESTRO 2023 highlight paper, Texier et al. stressed the 
need for using multi-center data also in the training step of the deep- 
learning models [16]. They performed an investigation using data 
from four different centers to create a synthetic CT model for MRI. Here 
the generalizability was poor if the model was applied on scans from a 
different site that was not included in the model. This is important to 
realize when robust deep-learning synthetic CT models are intended to 
be used across multiple MRI scanners, protocols, or institutes. 

For CBCT based adaptive therapy, the synthetic CT has also shown to 
be a powerful tool in the evaluation of treatment quality. Typically, the 
image quality of CBCT is insufficient for accurate dose calculation. 
Synthetic CT approaches have shown to be able to allow for dosimetric 
assessment of treatment planning for example in the lung [19], head- 
and-neck [20], or simulating prostate motion [21]. Also, novel ap-
proaches using the diagnostic CT in combination with the CBCT in a 
palliative setting has been explored [22]. 

However, to be able to safely use synthetic CTs in an (online) 

adaptive workflow, it is important to ensure that the synthetic CTs 
represent the geometry of the patient correctly. With frequently used 
DIR-based algorithms, this geometrical accuracy could be investigated 
and steered by the regularization of the deformation vector field. 
Currently, many CBCT-based synthetic CT generation methods are based 
on deep-learning which are trained on both planning CT and CBCT scans 
which may not represent the same anatomy of the patient. It should 
therefore be evaluated if the synthetic CT method only improves the 
image quality of the CBCT without introducing anatomical differences. 
In a study by de Hond et al., it was found that among three deep-learning 
synthetic CT methods for CBCT conversion the method giving the best 
image quality performance, based on mean absolute error of CT 
numbers, was different from the method giving the best anatomical 
performance, based on organ-at-risk volumes and average surface dis-
tance [23]. 

Furthermore, for moving tumors the treatment plan is often based on 
a 4D-CT, whereas in the treatment room typically only 2D or 3D imaging 
is available. Deep-learning methods have been proposed to generate 3D- 
sCTs based on 2D radiographs [24], or even to generate 4D-sCTs based 
on 3D-CBCTs [25]. The integration in a clinical routine workflow is 
however not yet fully investigated. 

For proton therapy, MRI-only treatment planning is also advanta-
geous in order to bypass the MR-CT co-registration and to benefit from 
the improved soft tissue contrast. However, MRI alone cannot provide 
stopping-power ratio (SPR) information. Recognizing that dual-energy 
CT can estimate SPR better than single-energy CT, Liu et al. [26] 
demonstrated a new method using deep-learning to create synthetic 
dual-energy CT from MRI to calculate SPR. Hence, it is likely that syn-
thetic CTs will find their way into both photon- and proton therapy in 
the years to come, closely linked with development of novel artificial 
intelligence algorithms. 

The commercial synthetic CT solutions often originate from de-
velopments of in-house scripts, finally being translated to clinical 
innovation. It is yet another example of how physics-driven research 
result in new technological solutions for the benefit of further person-
alization and improvements of cancer treatment. It can be anticipated 
that the current hurdles with standardization and validation will be 
solved. At the moment, the preferred validation is ideally based on time- 
consuming collection of data from multiple institutions to make the 
models robust. In the future, either federated learning solutions, or other 
novel ways could be envisioned through an integrated approach of 
creating unlimited privacy-safe synthetic images for the purpose of 
validation. 
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