Table 2.
Baseline characteristics of studies predicting adverse BGa events (N=19).
| First author (year), country | Data source | Sample size | Object; setting | Model | Time | Age (years), mean (SD)/range | Threshold | |||||
| Patients, n | Data points, n | Hypoglycemia, n | ||||||||||
| Pils (2014), United States [39] | CGMb device | 2 | 2518 | 152 | T1DMc; out | SVMd | All | —e | 3.9 | |||
| Seo (2019), Korea [15] | CGM device | 104 | 7052 | 412 | DMf; out | RFg, SVM, k-nearest neighbor (kNN), logistic regression (LR) | Postprandial | 52 | 3.9 | |||
| Parcerisas (2022), Spain [29] | CGM device | 10 | 67 | 22 | T1DM; out | SVM | Nocturnal | 31.8 (SD 16.8) | 3.9 | |||
| Stuart (2017), Greece [30] | EHRsh | 9584 | — | 1327 | DM; in | Multivariable logistic regression (MLR) | All | — | 4 | |||
| Bertachi (2020), Spain [31] | CGM device | 10 | 124 | 39 | T1DM; out | SVM | Nocturnal | 31.8 (SD 16.8) | 3.9 | |||
| Elhadd (2020), Qatar [32] | — | 13 | 3918 | 172 | T2DM; out | XGBoosti | All | 35-63 | — | |||
| Mosquera-Lopez (2020), United States [33] | CGM device | 10 | 117 | 17 | T1DM; out | SVM | Nocturnal | 33.7 (SD 5.8) | 3.9 | |||
| Mosquera-Lopez (2020), United States [33] | CGM device | 20 | 2706 | 258 | T1DM; out | SVM | Nocturnal | — | 3.9 | |||
| Ruan (2020), England [34] | EHRs | 17,658 | 3276 | 703 | T1DM; in | XGBoost, LR, stochastic gradient descent (SGD), kNN, DTj, SVM, quadratic discriminant analysis (QDA), RF, extra tree (ET), linear discriminant analysis (LDA), AdaBoost, bagging | All | 66 (SD 18) | 4 | |||
| Güemes (2020), United States [35] | CGM device | 6 | 55 | 6 | T1DM; out | SVM | Nocturnal | 40-60 | 3.9 | |||
| Jensen (2020), Denmark [36] | CGM device | 463 | 921 | 79 | T1DM; out | LDA | Nocturnal | 43 (SD 15) | 3 | |||
| Oviedo (2019), Spain [37] | CGM device | 10 | 1447 | 420 | T1DM; out | SVM | Postprandial | 41 (SD 10) | 3.9 | |||
| Toffanin (2019), Italy [38] | CGM device | 20 | 7096 | 36 | T1DM; out | Individual model-based | All | 46 | 3.9 | |||
| Bertachi (2018), United States [47] | CGM device | 6 | 51 | 6 | T1DM; out | NNMk | Nocturnal | 40-60 | 3.9 | |||
| Eljil (2014), United Arab Emirates [48] | CGM device | 10 | 667 | 100 | T1DM; out | Bagging | All | 25 | 3.3 | |||
| Dave (2021), United States [56] | CGM device | 112 | 546,640 | 12,572 | T1DM; out | RF | All | 12.67 (SD 4.84) | 3.9 | |||
| Marcus (2020), Israel [57] | CGM device | 11 | 43,533 | 5264 | T1DM; out | Kernel ridge regression (KRR) | All | 18-39 | 3.9 | |||
| Reddy (2019), United States [58] | — | 55 | 90 | 29 | T1DM; out | RF | — | 33 (SD 6) | 3.9 | |||
| Sampath (2016), Australia [59] | — | 34 | 150 | 40 | T1DM; out | Ranking aggregation (RA) | Nocturanl | — | — | |||
| Sudharsan (2015), United States [60] | — | — | 839 | 428 | T2DM; out | RF | All | — | 3.9 | |||
aBG: blood glucose.
bCGM: continuous glucose monitoring.
cT1DM: type 1 diabetes mellitus.
dSVM: support vector machine.
eNot applicable.
fDM: diabetes mellitus.
gRF: random forest.
hEHR: electronic health record.
iXGBoost: Extreme Gradient Boosting.
jDT: decision tree.
kNNM: neural network model.