Skip to main content
. 2023 Nov 20;11:e47833. doi: 10.2196/47833

Table 4.

Relative ranks of MLa models for predicting BGb levels in PHc=30 minutes.

ML model SUCRAd Relative rank
NNMe 52.0 14.4
ARMf 39.6 17.9
ARJNNg 79.5 6.8
RFh 6.9 27.1
SVMi 73.3 8.5
One symbolic model (SAX) 0.4 28.9
Recurrent neural network (RNN) 19.0 23.7
One neural network model (NARX) 3.9 27.9
Jump neural network (JNN) 36.0 18.9
Delayed feed-forward neural network model (DFFNN) 15.8 24.6
Gradually connected neural network (GCN) 41.1 17.5
Fully connected (FC [neural network]) 58.1 12.7
Light gradient boosting machine (LGBM) 69.3 9.6
DRNNj 99.1 1.2
Autoregressive moving average (ARMA) 54.3 13.8
Autoregressive integrated moving average (ARIMA) 46.6 16.0
Feed-forward neural network (fNN) 86.3 4.8
Long short-term memory (LSTM) 69.1 9.7
GluNet 96.4 2.0
Latent variable with exogenous input (LVX) 75.2 7.9
Neural network–linear prediction algorithm (NN-LPA) 60.0 12.2
Convolutional recurrent neural network multitask learning (CRNN-MTL) 77.5 7.3
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 77.2 7.4
Convolutional recurrent neural network transfer learning (CRNN-TL) 71.8 8.9
Convolutional recurrent neural network single-task learning (CRNN-STL) 52.0 14.4
k-Nearest neighbor (kNN) 26.0 21.7
DTk 16.2 24.5
AdaBoost 18.0 24.0
XGBoostl 29.2 20.8

aML: machine learning.

bBG: blood glucose.

cPH: prediction horizon.

dSUCRA: surface under the cumulative ranking.

eNNM: neural network model.

fARM: autoregression model.

gARJNN: ARTiDe jump neural network.

hRF: random forest.

iSVM: support vector machine.

jDRNN: dilated recurrent neural network.

kDT: decision tree.

lXGBoost: Extreme Gradient Boosting.