Skip to main content
. 2023 Nov 20;11:e47833. doi: 10.2196/47833

Table 5.

Relative ranks of MLa models for predicting BGb levels in PHc=60 minutes.

ML model SUCRAd Relative rank
ARMe 41.0 10.4
Gradually connected neural network (GCN) 14.2 14.7
Fully connected (FC [neural network]) 55.7 8.1
Light gradient boosting machine (LGBM) 56.0 8.0
RFf 59.7 7.5
GluNet 97.8 1.4
NNMg 59.9 7.4
SVMh 49.5 9.1
Latent variable with exogenous input (LVX) 85.9 3.3
Convolutional recurrent neural network multitask learning (CRNN-MTL) 61.4 7.2
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 54.2 8.3
Convolutional recurrent neural network transfer learning (CRNN-TL) 44.5 9.9
Convolutional recurrent neural network single-task learning (CRNN-STL) 32.5 11.8
k-Nearest neighbor (kNN) 42.5 10.2
DTi 4.5 16.3
AdaBoost 24.1 13.1
XGBoostj 66.5 6.4

aML: machine learning.

bBG: blood glucose.

cPH: prediction horizon.

dSUCRA: surface under the cumulative ranking.

eARM: autoregression model.

fRF: random forest.

gNNM: neural network model.

hSVM: support vector machine.

iDT: decision tree.

jXGBoost: Extreme Gradient Boosting.