Skip to main content
. 2023 Nov 20;11:e47833. doi: 10.2196/47833

Table 7.

Relative ranks of MLa models for predicting BGb levels in PHc=45 minutes.

ML model SUCRAd Relative rank
Convolutional recurrent neural network multitask learning (CRNN-MTL) 52.1 5.8
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 41.8 6.8
Convolutional recurrent neural network transfer learning (CRNN-TL) 31.6 7.8
Convolutional recurrent neural network single-task learning (CRNN-STL) 27.5 8.2
SVMe 32.0 7.8
k-Nearest neighbor (kNN) 61.4 4.9
DTf 26.3 8.4
RFg 70.3 4.0
AdaBoost 34.1 7.6
XGBoosth 73.5 3.7
NNMi 99.4 1.1

aML: machine learning.

bBG: blood glucose.

cPH: prediction horizon.

dSUCRA: surface under the cumulative ranking.

eSVM: support vector machine.

fDT: decision tree.

gRF: random forest.

hXGBoost: Extreme Gradient Boosting.

iNNM: neural network model.