
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Chen et al. Lipids in Health and Disease          (2023) 22:216 
https://doi.org/10.1186/s12944-023-01982-1

Lipids in Health and Disease

*Correspondence:
Yanyan Huang
hyiwen94@hotmail.com

Full list of author information is available at the end of the article

Abstract
Background  A moderate intake of unsaturated fatty acids (UFA) is associated positively with improved insulin 
resistance. The aim of this study was to investigate the relationship between the dietary intake of unsaturated fatty 
acids/total fats (UFA/TF) and insulin resistance.

Methods  15,560 participants were selected from the National Health and Nutrition Examination Survey (NHANES) 
database enrolled between March 2017 and 2020, and excluded those under 20 years of age, pregnant, or with 
missing data for key research items. Finally, 7,630 participants were included in the study. R software was used for 
data analysis that included: (1) general descriptive statistics; (2) comparison of differences in baseline information of 
three UFA/TF groups, namely low, medium, and high ratios; (3) calculation of the correlation between the UFA/TF 
ratio and markers of insulin resistance: triglyceride-glucose index (TyG) and homeostatic model assessment for insulin 
resistance (HOMA-IR); (4) stratification of the study subjects into two groups, with or without insulin resistance, using 
a cut-off value of HOMA-IR ≥ 2, followed by logistic regression analysis to examine the relationship between UFA/TF 
and insulin resistance status in the two groups; and (5) further stratification of the subjects according to age, gender, 
body mass index (BMI), race, total energy intake, total protein, total carbohydrate, total sugars, total dietary fiber, total 
fat, alcohol consumption, diabetes, hypercholesterolemia to analyze the impact of UFA/TF on insulin resistance status 
in different subgroups.

Results  (1) A high UFA/TF level was associated with a low TyG index and HOMA-IR [β (vs. TyG index) = -0.559, 95% 
CI: (-0.821~-0.297), P < 0.001; β (vs. HOMA-IR) = -0.742, 95% CI: (-1.083~-0.402), P < 0.001]. This negative relationship 
became more pronounced when UFA/TF exceeded 57.9% (i.e., the higher group). (2) Logistic regression analysis 
showed that a higher UFA/TF level was associated with a lower risk of developing insulin resistance [Q3 vs. Q1: 0.838 
(95%CI: 0.709 ~ 0.991); P for trend = 0.038]. After adjusting for covariates such as gender, age, and BMI, this protective 
effect remained significant (P value < 0.05). (3) Analysis also showed that increased UFA/TF intake reduced the risk of 
developing insulin resistance (OR = 0.266, 95% CI: (0.075 ~ 0.946), P = 0.041). Subgroup analysis showed that although 
elevated UFA/TF intake showed no statistically significant difference in its effect in most subgroups, the large study 
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Introduction
Improvements in the standard of living and dietary pat-
terns have resulted in aggregation of the components of 
metabolic disorders and an increase in clinical symp-
toms such as central obesity, blood lipid disorders, glu-
cose metabolism disorders, hypertension, and vascular 
diseases. The etiology of the metabolic syndrome has 
received increasing attention in recent years. Insu-
lin resistance is now regarded as the central link in the 
mechanism for development of these metabolic disorders 
and is often associated with factors such as a long-term 
lack of exercise, excessive energy intake, and unhealthy 
dietary patterns. UFA is an important component of body 
fat and include monounsaturated and polyunsaturated 
fatty acids that are derived from foods such as vegetables, 
fruits, nuts, and fish. In vitro [1, 2] and in vivo [3, 4] stud-
ies have shown that UFA improve insulin sensitivity by 
regulating metabolic-related cellular pathways. Several 
cohort studies [5–7] have also reported that a moder-
ate intake of UFA improves insulin resistance. However, 
most of these studies were small-scale and conducted 
in single centers, lacked broad, cross-sectional data and 
did not thoroughly investigate how varying intake lev-
els of UFA related to insulin resistance. We hypothesize 
that a change in the dietary pattern of lipid nutrients may 
reduce insulin resistance and thus improve metabolic dis-
orders. The current study therefore analyzed data from 
the National Health and Nutrition Examination Survey 
(NHANES) to examine this relationship using the UFA/
total fat ratio (UFA/TF) and established markers of insu-
lin resistance. The study also compared the impact of dif-
ferent dietary UFA ratios on the risk of developing insulin 
resistance, and investigated the role of UFA/TF in differ-
ent subgroups of subjects stratified according to gender, 
age, body mass index (BMI), and presence of baseline 
diseases. This analysis allowed us to examine in detail the 
relationship between the proportion of UFA intake in the 
diet and insulin resistance.

Methods
Study population
NHANES is a cross-sectional survey of the American 
population, which combines self-reported survey data 
and physical examination data to measure the preva-
lence of major diseases and risk factors. The data in the 
NHANES database are divided into unrestricted pub-
lic data and limited access data. Under the NHANES 
Data Release and Access Policy (https://www.cdc.gov/
nchs/data/nhanes/nhanes_release_policy.pdf ), research-
ers have free access to unrestricted public data without 
the need for a license. In this analysis, NHANES unre-
stricted public data from 2017 to March 2020 has been 
used [8], collected prior to the coronavirus disease 2019 
(COVID-19) pandemic, that included a total of 15,560 
participants. Individuals aged ≥ 20 years were included 
and pregnant women and subjects without data on blood 
lipids, fasting blood glucose, insulin, total fat intake, and 
UFA intake were excluded (Fig.  1). 7,630 participants 
were finally analyzed using these selection criteria. The 
study was approved by the Institutional Review Board 
of the Centers for Disease Control and Prevention in the 
United States, and all participants signed informed con-
sent forms.

Independent variable
The independent variable used in this study was the 
UFA/TF ratio. The formula for calculating this vari-
able is: The sum of total monounsaturated fatty acids 
(MUFA) and polyunsaturated fatty acids (PUFA) 
divided by total fatty acids (i.e., the sum of satu-
rated fatty acids (SFA), MUFA, and PUFA. The UFA/
TF values were then divided into three groups based 
on size, with Q1: 0 ≤ Q1 < 0.552, X ± S = 0.501 ± 0.044; 
Q2: 0.552 ≤ Q2 < 0.612, X ± S = 0.582 ± 0.017; and Q3: 
0.612 ≤ Q3 ≤ 0.849, X ± S = 0.657 ± 0.035. Data regard-
ing dietary intake were obtained from the data sub-
set, “Dietary Data,“ that represented two 24-hour diet 
recalls that assessed the consumption of total mono 
and polyunsaturated and saturated fat. The first dietary 

population in this study provides valuable insights on potential changes. Increased UFA/TF intake may confer 
relatively greater benefits within specific subgroups, particularly among the elderly [Q3 age group, OR = 0.114, 95%CI: 
(0.012 ~ 1.078), P = 0.058], females [OR = 0.234, 95%CI: (0.041 ~ 1.333), P = 0.102], those with a BMI ≤ 25 kg/m²[OR = 0.191, 
95%CI: (0.016 ~ 2.344), P = 0.196], and individuals without hypercholesterolemia [OR = 0.207, 95%CI: (0.042 ~ 1.013), 
P = 0.0519]. The impact of high UFA/TF levels within subgroups based on the presence or absence of coronary heart 
disease and stroke displayed contrasting trends. In those without coronary heart disease, there was a significant 
protective effect against insulin resistance [OR = 0.254, 95% CI: (0.07 ~ 0.929), P = 0.0384], while in the stroke subgroup, 
a significantly protective effect against insulin resistance was observed [OR = 0.002, 95%CI: (0 ~ 0.695), P = 0.0376].

Conclusion  A high dietary intake of UFA relative to total fat consumption could be a protective factor against the risk 
of developing insulin resistance.

Keywords  Unsaturated dietary fats, Dietary formulations, Insulin resistance, Triglyceride-glucose index, HOMA-IR
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recall was conducted at the Mobile Examination Center 
(MEC), while the second recall took place via telephone 
between 3 and 10 days after the MEC visit. The dietary 
intake data allowed estimation of the type and quantity 
of food and beverages (including all types of fluid con-
sumed in the 24  h prior to the recall interviews). This 
information was then used to calculate the consumption 
of energy, nutrients, and other food components. A set 
of measuring tools (glasses, bowls, mugs, bottles, spoons, 
measuring cups, rulers, thickness sticks, bean bags, and 
circles) was provided in the dietary interview room to aid 
with the reports on food portions (NHANES measuring 
guides). After the in-person dietary interview, the par-
ticipants received measuring cups, spoons, a ruler, and a 
food model booklet containing 2D drawings of the mea-
suring tools. These drawings were used as an aid during 
the telephone interviews. Dietary data from the 2017-
March 2020 pre-pandemic sample were processed using 
USDA’s Food and Nutrient Database for Dietary Stud-
ies (FNDDS) 2017–2018. FNDDS 2019–2020 was used 
for intakes reported from 2019-March 2020, and then 
merged with the NHANES 2017–2018 data. The FNDDS 
contains comprehensive information on coded foods, 
portion sizes, and nutrient values. To account for poten-
tial differences in nutrient and calorie intake between 
weekdays and weekends, ratio-adjusted weights were 
applied to ensure the sample more accurately reflected 
the general intake levels of the participants [9].

Outcome variables
The following three indicators were used as outcome 
variables in the study: HOMA-IR index, triglyceride-
glucose (TyG) index, and insulin resistance status. 

HOMA-IR was calculated as fasting insulin (µU/mL) 
x fasting blood glucose (mmol/L) ÷ 22.5, while the TyG 
index was calculated as the natural logarithm of fasting 
triglycerides (mg/dL) x fasting blood glucose (mg/dL) ÷ 2. 
Based on the results of previous studies [10–14] insulin 
resistance was defined as a HOMA-IR value ≥ 2.0. The 
participants were classified into two groups according to 
their insulin resistance status. The laboratory test results 
used to calculate these outcome variables were obtained 
from the “Laboratory Data” subset.

Covariates
Several covariates were considered in this study, includ-
ing sex, age, race, BMI, intakes of total energy intake, 
total protein, total carbohydrate, total sugar, total dietary 
fiber, and total fat, alcohol consumption, diabetes, and 
hypercholesterolemia. Demographic variables (sex, age, 
race) were obtained from the “Demographic Variables” 
data subset, BMI from the “Body Measures” subset, and 
total energy and nutrient intakes from the “Dietary Data” 
subset. Information on alcohol consumption, diabetes, 
hypertension, and hypercholesterolemia were obtained 
from the “Medical Conditions” questionnaire subset. 
Blood pressure was measured three times and averaged 
to determine hypertension status. A participant was con-
sidered hypertensive [15] if their mean systolic blood 
pressure was ≥ 130 mmHg, or mean diastolic blood pres-
sure was greater ≥ 80 mmHg in the “Blood Pressure” data 
subset. Smoking status was not included as a covariate 
because of a large amount of missing data.

Fig. 1  The participant recruitment process for the experiment
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Statistical analysis
The data analyses for this study followed the guidelines 
of the official website of the the United States Centers 
for Disease Control (US CDC: https://wwwn.cdc.gov/
nchs/nhanes/tutorials/default.aspx). The study partici-
pants were categorized into three groups based on their 
UFA/TF status; low, medium, or high. Differences in the 
baseline data of the three groups were compared. Nor-
mally distributed continuous variables were expressed 
as mean ± standard deviation, variables with a skewed 
distribution as median (interquartile range, IQR), and 
categorical variables as n (%). The Mann-Whitney U test 
(continuous variables) and Chi-square test (categorical 
variables) were used to examine statistical differences 
between the different groups. The mean differences 
among the three quantile groups were further examined 
using Tukey post-hoc analysis. Then the study partici-
pants were categorized into two groups based on their 
insulin resistance status, i.e., presence or absence of insu-
lin resistance. Logistic regression analysis and inflection 
point analysis was used to determine the association 
between the UFA/TF ratio and insulin resistance status. 
Finally, the participants were stratified based on gender 
(male or female), age (tertiles), BMI (≤ 25 or > 25 kg/m2) 
[16], and baseline disease conditions (presence of hyper-
lipidemia or cardiovascular disease). The impact of the 
UFA/TF ratio on insulin resistance status in these differ-
ent subgroups was then analyzed. All the statistical anal-
yses were conducted using R software, version 4.2.2 (R 
Foundation for Statistical Computing, Vienna, Austria), 
with P-values < 0.05 considered statistically significant.

Results
Baseline characteristics of the subjects
As shown in Table 1, the study included 3745 males and 
3885 females with a mean age of 50.95 ± 17.34 years. 
Compared to patients in the Q1 and Q2 groups, the 
patients in the Q3 group had a higher mean age and 
higher high-density lipoprotein (HDL) levels, but lower 
mean values of BMI, waist-to-height ratio (WtHR), and 
levels of insulin, fasting blood glucose, triglycerides, total 
cholesterol (CHO), and low-density lipoprotein (LDL). 
The differences in BMI, WtHR, and levels of insulin, fast-
ing blood glucose, triglycerides, LDL, and HDL were 
statistically significant between the three groups. For 
smoking and alcohol consumption, the smoking rate was 
significantly higher in the Q1 and Q2 groups than in the 
Q3 group, although there was no significant difference in 
alcohol consumption between the three groups. There 
was also no significant difference in the presence of base-
line diseases between the three groups. However, there 
were significant differences in total daily energy and mac-
ronutrient (carbohydrate, fat, protein) intake between the 
three groups. Differences in insulin resistance markers 

among the groups were further compared, including 
HOMA-IR and TyG levels. As shown in Table  1,higher 
levels of UFA/TF are associated with lower insulin resis-
tance index (HOMA-IR) and TyG index, especially in the 
Q3 group, which had significantly lower levels compared 
to the other two groups.

Linear relationship between UFA/TF and the insulin 
resistance index
As shown in Fig. 2A and B, higher levels of UFA/TF are 
associated with lower levels of TyG and HOMA-IR indi-
cators. This negative correlation persisted after adjust-
ment for covariates and was statistically significant. In 
the adjusted model (Fig.  2C), UFA/TF in Model 1 cor-
related negatively with insulin resistance [β (vs. TyG 
index) = -0.678, 95% CI: (-0.953~-0.403), P < 0.001; β (vs. 
HOMA-IR) = -0.715, 95% CI: (-1.057~-0.373), P < 0.001], 
with this correlation remaining after excluding the influ-
ences of total energy and nutrient intakes, alcohol con-
sumption, and presence of metabolic diseases [β (vs. TyG 
index) = -0.436, 95% CI: (-0.704~-0.168), P = 0.001; β (vs. 
HOMA-IR) = -4.855, 95% CI: (-9.114~-0.595), P = 0.026]. 
The inflection point analysis also showed that the nega-
tive correlation with TyG became more apparent when 
UFA/TF exceeded 0.579, while the negative correlation 
with HOMA-IR became more apparent when UFA/TF 
exceeded 0.626.

The relationship between different levels of dietary UFA/TF 
and insulin resistance
Logistic regression analysis was used to examine the 
relationship between different levels of dietary UFA/TF 
and the risk of insulin resistance. As shown in Table  2, 
no significant difference was observed in the risk of IR 
between subjects with medium or low levels of dietary 
UFA/TF [ORQ2 vs. Q1 = 1.059; 95%CI: (0.895 ~ 1.253); P 
for trend = 0.507]. But when the level of UFA/TF in the 
diet was high (group Q3), the risk of IR was reduced 
significantly compared to that in subjects with a low 
dietary ratio [ORQ3 vs. Q1=0.838; 95%CI: (0.709 ~ 0.991); 
P for trend = 0.038]. This protective effect persisted 
after adjustment for covariates in Models 1 and 2, with 
the trends remaining statistically significant (p < 0.05). 
Although this significant difference weakened under the 
more comprehensive correction used in model 2.

Relationship between dietary UFA/TF and insulin 
resistance status in the different subgroups
For the subgroup analysis, the study participants were 
stratified according to age, gender, BMI, race, total energy 
intake, total protein, total carbohydrate, total sugars, total 
dietary fiber, total fat, alcohol consumption, diabetes, 
and hypercholesterolemia. Specifically, the participants 
were categorized by age into Q1 (30.72 ± 6.326  year), 

https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.aspx
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Q2 (51.47 ± 5.586  year), and Q3 (70.77 ± 6.686  year). 
As shown in Fig.  3, There was a significant correlation 
between increased UFA/TF intake and a reduced risk of 
insulin resistance (“Total” subgroup, P = 0.041). Although 

elevated UFA/TF intake showed no statistically signifi-
cant differences in its effect across most subgroups, it 
may confer relatively greater benefits within specific sub-
groups, particularly among the elderly (Q3 age group), 

Table 1  Baseline characteristics of the subjects
Variables Total (n = 7630) UFA/TF ratio Q1

(n = 2541)
UFA/TF ratio
Q2
(n = 2546)

UFA/TF ratio Q3
(n = 2543)

P value

Gender, n (%) 0.030

Male 3745 (49.1) 1280 (50.4) 1271 (49.9) 1194 (47)

Female 3885 (50.9) 1261 (49.6) 1275 (50.1) 1349 (53)

Age 50.95 ± 17.34 50.3 ± 17.83 50.39 ± 17.20 52.11 ± 16.93 < 0.001

Race, n (%) < 0.001

Mexican American 877 (11.5) 311 (12.2) 305 (12) 261 (10.3)

Other Hispanic 772 (10.1) 276 (10.9) 265 (10.4) 231 (9.1)

Non-Hispanic white 2737 (35.9) 1126 (44.3) 887 (34.8) 724 (28.5)

Non-Hispanic black 2046 (26.8) 501 (19.7) 707 (27.8) 838 (33)

Other Race
(Including multi-racial)

1198 (15.7) 327 (12.9) 382 (15) 489 (19.2)

BMI 30.12 ± 7.58 30.02 ± 7.37 30.51 ± 7.73 29.83 ± 7.62 0.005

WHtR 0.61 ± 0.10 0.61 ± 0.10 0.61 ± 0.11 0.60 ± 0.10 0.015

Energy (kcal) 2039.14 ± 865.06 2057.55 ± 902.47 2097.96 ± 864.36 1961.85 ± 821.14 < 0.001

Carbohydrate (g) 438.78 ± 217.54 445.07 ± 231.67 458.22 ± 218.86 413.03 ± 198.41 < 0.001

Sugars (g) 187.42 ± 124.88 202.23 ± 138.97 194.81 ± 123.70 165.21 ± 106.86 < 0.001

Dietary fiber (g) 30.17 ± 18.18 27.39 ± 16.51 30.47 ± 17.21 32.66 ± 20.22 < 0.001

Protein (g) 144.62 ± 70.84 145.31 ± 73.02 152.16 ± 71.12 136.38 ± 67.41 < 0.001

Total fat (g) 154.70 ± 82.10 151.43 ± 82.33 161.90 ± 81.58 150.76 ± 81.93 < 0.001

Total saturated fatty acids (g) 49.34 ± 28.90 58.14 ± 33.09 51.30 ± 26.81 38.59 ± 22.25 < 0.001

Total unsaturated fatty acids (g) 89.83 ± 49.12 76.41 ± 42.29 94.30 ± 47.62 98.76 ± 53.90 < 0.001

Insulin (µU/mL) 14.98 ± 24.22 15.54 ± 23.55 15.82 ± 27.84 13.55 ± 20.61 0.047

Fasting glucose (mmol/L) 6.31 ± 2.12 6.33 ± 2.26 6.34 ± 2.13 6.26 ± 1.95 0.545

Triglyceride (mmol/L) 1.24 ± 1.09 1.30 ± 1.24 1.28 ± 0.96 1.15 ± 1.05 0.001

Total cholesterol (mmol/L) 4.80 ± 1.05 4.82 ± 1.05 4.80 ± 1.05 4.78 ± 1.06 0.348

HDL cholesterol (mmol/L) 1.38 ± 0.42 1.36 ± 0.41 1.36 ± 0.40 1.42 ± 0.43 < 0.001

LDL cholesterol (mmol/L) 2.83 ± 0.92 2.86 ± 0.95 2.87 ± 0.89 2.76 ± 0.93 0.012

Current smoking, n (%) < 0.001

No 1849 (57.0) 631 (53.7) 589 (55) 629 (63)

Yes 1396 (43.0) 545 (46.3) 482 (45) 369 (37)

Alcohol drinking, n (%) 0.439

No 658 (8.9) 204 (8.3) 230 (9.3) 224 (9.1)

Yes 6761 (91.1) 2260 (91.7) 2254 (90.7) 2247 (90.9)

Diabetes, n (%) 0.064

No 6441 (84.4) 2176 (85.7) 2147 (84.4) 2118 (83.3)

Yes 1187 (15.6) 364 (14.3) 398 (15.6) 425 (16.7)

Hypercholesteremia, n (%) 0.592

No 4820 (63.6) 1619 (64.2) 1614 (63.8) 1587 (62.9)

Yes 2756 (36.4) 903 (35.8) 915 (36.2) 938 (37.1)

Coronary artery disease, n (%) 0.375

No 7264 (95.50) 2406 (95.14) 2435 (95.94) 2423 (95.43)

Yes 342 (4.50) 123 (4.86) 103 (4.06) 116 (4.57)

Stroke, n (%) 0.812

No 7223 (94.83) 2399 (94.64) 2412 (94.81) 2412 (95.04)

Yes 394 (5.17) 136 (5.36) 132 (5.19) 126 (4.96)

HOMA-IR, median (IQR) 2.66 (1.56, 4.80) 2.78 (1.63, 4.89) 2.75 (1.63, 5.03) 2.42(1.46, 4.47) 0.002

TyG index 8.68 ± 0.64 8.72 ± 0.65 8.72 ± 0.64 8.61 ± 0.62 < 0.001
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females, those with a BMI ≤ 25  kg/m², and individuals 
without hypercholesterolemia. Notably, in individuals 
without coronary heart disease, there was a significant 
protective effect against insulin resistance [OR = 0.254; 
95% CI: (0.07 ~ 0.929); P = 0.0384], while in the stroke 
subgroup, a significantly protective effect on insulin 
resistance was observed [OR = 0.002; 95% CI:(0 ~ 0.695); 
P = 0.0376]. The impact displayed contrasting trends.

Discussion
The metabolic syndrome is characterized by the develop-
ment of several metabolic disorders and mainly results 
from insulin resistance. The syndrome increases the risk 
of developing and dying from diabetes, dyslipidemia, or 
cardiovascular diseases, and has become a global crisis 
in clinical and public health. This study used NHANES 
data to investigate the relationship between the dietary 
intake of different proportions of UFA and the risk of 
developing insulin resistance. The baseline data showed 
that this population had a high prevalence of overweight 
and obesity, with 68.9% classified as overweight and 
31.1% as obese, raising the risk of chronic conditions like 

Table 2  Logistic analysis of the relationship between different 
levels of dietary UFA/TF and insulin resistance status

UFA/
TF 
ratio 
Q1

UFA/TF ratio 
Q2

UFA/TF ratio 
Q3

Crude OR (95%CI), Pvalue Ref 1.059 
(0.895 ~ 1.253), 
0.507

0.838 
(0.709 ~ 0.991), 
0.038

M1 OR (95%CI), Pvalue Ref 0.970 
(0.797 ~ 1.180), 
0.758

0.785 
(0.645 ~ 0.956), 
0.016

M2 OR (95%CI), Pvalue Ref 0.977 
(0.794 ~ 1.203), 
0.828

0.805 
(0.648 ~ 1), 
0.049

Note: The crude analysis did not include the effects of covariable. M1 (Model 
1) represents the analysis after adjusting for the influence of the following 
covariables: age, gender, and BMI. M2 (Model 2) represents the analysis adjusted 
for the effects of the following covariates: age, gender, BMI, race, total energy 
intake, total protein, total carbohydrate, total sugars, total dietary fiber, total fat, 
alcohol consumption, diabetes, and hypercholesterolemia

Fig. 2  The linear relationship between UFA/TF and insulin resistance index
Note: The crude analysis did not include the effects of covariables; M1 (Model 1) represents the analysis after adjusting for the influence of the following 
covariables: age, gender, BMI; M2 (Model 2) represents the analysis adjusted for the effects of the following covariates: age, gender, BMI, race, total energy 
intake, total protein, total carbohydrate, total sugars, total dietary fiber, total fat, alcohol consumption, diabetes, hypercholesterolemia
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cardiovascular diseases and diabetes. In addition, their 
diet included excessive intake of fat and sugar, along with 
unhealthy lifestyle choices such as a 43.0% smoking rate 
and 91.1% alcohol consumption. It is well known that 
poor dietary structure and unhealthy eating habits lead 
to excessive fat intake, high total energy, and an energy 
imbalance, resulting in a series of metabolic disorders. 
A post-hoc analysis was used to compare the mean val-
ues of various parameters in quartile groups of the UFA/
TF ratio (Q1, Q2, Q3) and showed significant differences 
between these groups. Individuals in Q3 had lower BMI 
and waist-to-hip ratio, suggesting a potentially reduced 
susceptibility to obesity-related diseases. Conversely, Q2 
had higher daily energy and carbohydrate intakes, possi-
bly increasing the risk of developing a metabolic disorder. 
Elevated triglyceride levels in Q2 also indicated a slightly 
higher risk of cardiovascular disease risk. In addition a 
higher median HOMA-IR index in Q2 indicated a certain 
degree of insulin resistance. These preliminary observa-
tions provide initial clues for further investigations into 
the risk of developing various diseases. Therefore, people 
at high risk of metabolic disorders should be protected 
through dietary intervention. Currently, relevant dietary 

guidelines emphasize the types and proportions of fats 
required in a healthy diet. In addition to reducing the 
total amount of fat, the proportion of each type of fatty 
acid intake also needs to be balanced [17]. Fatty acids are 
an effective biomarker of dietary fat intake, with their 
measurement now used as a supplementary tool in nutri-
tional epidemiology surveys to monitor fat intake and 
also study the development of various diseases.

The insulin resistance index, HOMA-IR and the tri-
glyceride glucose index, TyG have been shown to be 
reliable and direct markers for evaluating insulin resis-
tance, and are important for diagnosing and assessing the 
prognosis of metabolic-related diseases. For example, a 
survey of elderly patients with diabetes showed an asso-
ciation of HOMA-IR and TyG indices with metabolic 
disorders, oxidative stress, and increased risk of cardio-
vascular and metabolic-related diseases [18]. There is evi-
dence that HOMA-IR is also an independent risk factor 
for myocardial glucose uptake disorders [19], while the 
TyG index predicts the incidence of future cardiovascular 
adverse events in patients with diabetes complicated by 
acute coronary syndrome, independent of other known 
cardiovascular risk factors [20–22]. Similarly, a recent 

Fig. 3  The relationship between dietary UFA/TF and insulin resistance in different subgroups
Note: The subgroup analysis was adjusted for the effects of the following covariates: age, gender, BMI, race, total energy intake, total protein, total carbo-
hydrate, total sugars, total dietary fiber, total fat, alcohol consumption, diabetes, and hypercholesterolemia. Logistic regression model subgroup analysis 
was used with a statistical significance level of p < 0.05
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survey of healthy subjects reported that a greater intake 
of UFA and vegetables in the diet reduced fasting insu-
lin levels and HOMA-IR [23]. Our study showed that 
when the proportion of UFA intake in the diet was higher 
than half of the total fat intake, HOMA-IR and TyG lev-
els decreased and showed a negative correlation with 
the UFA/TF ratio. Therefore, the subjects were further 
divided into two groups using a cut-off level of HOMA-
IR ≥ 2.0 and showed that a high proportion of dietary 
UFA could the risk of insulin resistance.

MUFA are found primarily in olive oil, avocados, nuts, 
and seeds, while PUFA are sourced mainly from fatty 
fish, flaxseeds, chia seeds, walnuts, and vegetable oils 
such as sunflower and corn oil. Most MUFA and n-3 
PUFA, such as alpha-linolenic acid (ALA), eicosapentae-
noic acid (EPA), and docosahexaenoic acid (DHA) have 
a protective effect on human metabolism and physi-
ological processes, including the inflammatory response 
[24]. International studies have suggested that a high 
intake of PUFA affects glucose and lipid metabolism, 
anti-inflammatory responses, and immune regulation, 
thereby reducing the risk of cancer [25, 26]. Miyamoto 
and coworkers [27] reported that PUFA affected energy 
regulation in obese mice and reduced their body weight, 
CHO, insulin resistance, and glucose tolerance to levels 
lower than that measured in obese mice eating a regu-
lar diet. Furthermore, population-based studies have 
shown that dietary interventions that change fatty acid 
intake and composition reduce the risk of developing 
type 2 diabetes [28]. In a double-blind clinical trial, Liu 
et al. [29] evaluated the different effects of n-3 PUFA on 
glucose and lipid metabolism in patients with diabetes. 
After a six-month follow-up, patients in the intervention 
group who received additional n-3 PUFA showed signifi-
cant reductions in insulin and C-peptide levels. Patients 
in this treatment group also had significant decreases in 
CHO, apolipoprotein A1, and interleukin-6 levels [29]. In 
our study, the results also demonstrated that individuals 
with a higher proportion of UFA in their diet had a lower 
BMI and WtHR, higher levels of HDL, and lower levels of 
triglycerides, cholesterol, and LDL. In terms of blood glu-
cose metabolism, their insulin and blood glucose levels 
were lower than those who consumed fewer UFA. These 
results therefore confirm earlier studies that reported 
increasing the proportion of UFA in the diet helped opti-
mize human glucose and lipid metabolism.

Abnormal blood lipid metabolism is a significant risk 
factor for atherosclerosis, while insulin resistance causes 
increased vascular fibrosis and stiffness that results in 
the progression of cardiovascular diseases [30]. On the 
other hand, increased levels of plasma free fatty acids 
promote insulin resistance, further exacerbating beta-
oxidation of fatty acids and leading to a vicious cycle 
[31–33]. Therefore, reducing blood lipid levels, especially 

non-high-density lipoprotein-cholesterol (non-HDL-
C), and correcting insulin resistance are essential goals 
for controlling atherosclerosis and preventing coronary 
heart disease and stroke. While both MUFA and PUFA 
improve lipid profiles, their relevance to clinical car-
diovascular events appears to be somewhat dissimilar 
[34, 35]. Evidence supporting the cardiovascular ben-
efits of MUFA remain relatively limited [36]. In addi-
tion, in terms of improving glycemic control, substituting 
PUFA for carbohydrate or SFA intake is associated with 
enhanced insulin secretion, reduced fasting blood glu-
cose, and lowered glycosylated hemoglobin (HbA1c). 
In contrast, when compared to PUFA, while replacing 
carbohydrate or SFA intake with MUFA shows a trend 
towards improved fasting blood glucose and HbA1c, 
these changes are not statistically significant [37]. Fur-
thermore, for anti-inflammatory properties, although 
MUFA activate beneficial anti-inflammatory mecha-
nisms, thereby reducing chronic inflammation and sub-
sequently improving overall metabolism, elevated MUFA 
levels in the body do not consistently have a positive 
impact on inflammation. For example, it has been shown 
in patients with chronic kidney disease that an increased 
MUFA/SFA ratio in blood lipids is associated with ele-
vated circulating levels of CRP, suggesting the potential 
for exacerbation of inflammation [38]. The Reduction of 
Cardiovascular Events with Icosapent EthylIntervention 
Trial (REDUCE-IT) [39], a large randomized controlled 
trial also investigated the impact of n-3 PUFA on the 
occurrence of cardiovascular events. The results showed 
a 25% reduction in the risk of major cardiovascular events 
and a 20% reduction in the risk of cardiovascular death. 
Another randomized controlled trial [40] also reported 
that dietary alpha linolenic acid (ALA) lowered the lev-
els of CHO, LDL, and triglycerides, while also exhibit-
ing anti-inflammatory effects. Tindall et al. [41] used a 
sample population to assess the impact on established 
cardiovascular risk factors of adjusting the proportion 
of UFA in the diet whilst maintaining a constant daily 
caloric intake. Their results suggested that substitution 
of saturated fatty acids with monounsaturated and PUFA 
in the diet significantly reduced already established car-
diovascular risk factors, including triglycerides, LDL, and 
non-HDL-C. However, the study also pointed out that 
after six weeks of UFA substitution therapy, there was 
no improvement in the extent of arterial hardening in 
the study subjects. Similarly, the statin residual risk with 
epanova in high cardiovascular risk patients with hyper-
triglyceridemia (STRENGTH) randomized clinical trial 
conducted by Nicholls et al. [42] showed that additional 
intake of n-3 PUFA in combination with standard back-
ground therapy did not have a significant impact on the 
composite outcome of primary adverse cardiovascular 
events. The current study shown that the impact of high 
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UFA/TF levels within subgroups based on the presence 
or absence of coronary heart disease and stroke displayed 
contrasting trends. This disparity may be attributable 
to potential confounding factors influencing study out-
comes or actual differences in the effects of UFA on car-
diovascular and cerebrovascular health, which suggested 
that further specialized studies are warranted to investi-
gate these findings. It also found that a higher proportion 
of UFA intake had a protective effect against the devel-
opment of insulin resistance in the general population, 
and that this protective effect was particularly evident in 
females, older individuals, and those without hypercho-
lesterolemia or coronary artery disease. While increas-
ing UFA/TF intake did not exhibit statistically significant 
differences in its effects across most subgroups, higher 
levels of UFA/TF did have a positive impact by improv-
ing insulin resistance within the overall population. This 
effect remained consistent regardless of the participants’ 
gender, age, daily energy and macronutrient intake, or 
underlying medical conditions. For individuals at high 
risk of developing insulin resistance, in addition to con-
trolling the total daily caloric intake and the proportion 
of carbohydrates, total fat, and total protein in their diets, 
increasing the proportion of UFA in their fat consump-
tion may also had a positive effect.

Strengths and limitations
In the past, dietary recommendations for improving 
insulin resistance and metabolic disorders have often 
focused only on controlling the total intake of nutrients. 
The results of the current study suggest that the balance 
of fatty acids consumed is also important for improv-
ing metabolic disorders. For patients who have difficulty 
strictly controlling their dietary intake, adjusting the pro-
portion of nutrients initially and then gradually achiev-
ing a controlled dietary intake plan may help to improve 
compliance, thereby promoting a continuous improve-
ment in insulin resistance.

There were several limitations in this study. Different 
types of fatty acids have different biological effects in the 
human body. Previous studies [43] have shown that n-3 
PUFA rich in fish oil induce the production of pro-resolv-
ing lipid mediators that have anti-inflammatory proper-
ties targeted at cardiovascular risk. In contrast, n-6 PUFA 
primarily produce thromboxane A2, thereby promoting 
atherosclerosis and thrombus formation. Another study 
[44] has shown that n-6 PUFA may increase insulin sensi-
tivity, whereas n-3 PUFA do not. Although we compared 
the relationship between the intake of total UFA in the 
diet and the level of insulin resistance, we did not carry 
out further investigations on different types of fatty acids. 
Studies [45, 46] have shown that smoking is related to 
insulin resistance and metabolic abnormalities, although 
due to the lack of data, smoking status was not included 

as a covariate in this study. This represents another limi-
tation of the study. In addition, as the primary use of the 
NHANES database is to evaluate the health and nutri-
tional status of the U.S. population, the sample popula-
tion in this study was comprised mainly of White and 
Black individuals, with a proportionally smaller repre-
sentation of other ethnic groups. Apart from the inher-
ent limitation of cross-sectional studies in establishing 
causation, there are potential confounding factors and 
measurement errors that contribute to residual bias. 
Therefore, validation of our findings necessitates further 
investigation in populations from other countries and 
regions, as well as prospective randomized controlled tri-
als with independent samples.

Conclusions
The results of this study suggest that a higher level of 
dietary intake of unsaturated fats is associated with lower 
blood lipid and glucose levels, and that increasing the 
proportion of dietary unsaturated fat intake may improve 
glucose and lipid metabolism. Based on these results, 
we suggest that higher levels of unsaturated fat in the 
diet may be a protective factor associated with a lower 
risk of developing insulin resistance. This study provides 
informations for clinical practice on on more effective 
dietary interventions for improving insulin resistance in 
high-risk populations. For individuals who may find it 
challenging to strictly manage their caloric and macro-
nutrient intake from the outset, initiating a dietary inter-
vention plan that emphasizes increasing the proportion 
of UFA-rich foods in the diet to alleviate insulin resis-
tance and subsequently improve metabolic disturbances 
is a worthwhile consideration.
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