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Abstract 

Background  Physiological and pathological cardiomyocyte hypertrophy are important pathophysiological pro-
cesses of adult congenital heart disease-associated ventricular hypertrophy. Glutamic oxaloacetic transaminase (GOT) 
is a vital marker of myocardial injury. This study aimed to investigate the changes in GOT levels during physiological 
and pathological cardiomyocyte hypertrophy in rats.

Methods  RNA-seq analysis and colorimetric methods were used to evaluate the changes in GOT mRNA and activity, 
respectively. GOT2 protein expression was detected by western blotting and immunofluorescence. Hematoxylin-
eosin and wheat germ agglutinin methods were used to observe changes in rat cardiomyocyte morphology.

Results  In juvenile rat hearts, GOT mRNA expression and activity, and GOT2 protein level increased with age-related 
physiological cardiomyocyte hypertrophy; however, GOT2 protein level was reduced in hypoxia-induced pathological 
cardiomyocyte hypertrophy.

Conclusions  GOT2 may regulate physiological and pathological myocardial hypertrophy in rats. We speculated 
that the low GOT2 level contributed to the rapid occurrence of pathological cardiomyocyte hypertrophy, causing 
strong plasticity of right ventricular cardiomyocytes in the early postnatal period and heart failure in adulthood.

Keywords  Physiological cardiomyocyte hypertrophy, Pathological cardiomyocyte hypertrophy, Glutamic oxaloacetic 
transaminase, Congenital heart disease

Background
Cardiomyocyte hypertrophy, including physiological 
and pathological cardiomyocyte hypertrophy, is a cru-
cial pathophysiological process of adult congenital heart 

disease (CHD)-associated ventricular hypertrophy [1–
4]. The most common adult CHD is atrial septal defect 
(ASD). The typical pathophysiological changes in ASD 
include right ventricular hypertrophy with less signifi-
cant alterations in the left ventricle. Previous studies have 
indicated greater plasticity of the right ventricular myo-
cardium in the early postnatal period. In previous studies, 
cardiomyocyte volume in the right ventricle increased 
remarkably in children with Tetralogy of Fallot (TOF) [5–
7]. A mouse model of pulmonary artery banding, used to 
simulate changes in the right ventricle of TOF, revealed 
that cardiomyocyte hypertrophy of younger mice is more 
evident than older ones further [8]. Recent studies on 
the regulation of cardiomyocyte hypertrophy unlocked 
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that methyltransferase (METTL) and Akt showed oppos-
ing changes during physiological and pathological car-
diomyocyte hypertrophy [9–12]. However, the molecules 
involved in both physiological and pathological cardio-
myocyte hypertrophy are complex and diverse, and their 
roles have not been still fully elucidated.

Glutamic oxaloacetic transaminase (GOT or AST), 
closely related to myocardial function, is an essential 
myocardial injury biomarker [13–15]. GOT isozymes, 
GOT1 and GOT2, are located in the cytoplasm and 
mitochondrial matrix respectively, and participate in 
nicotinamide-adenine dinucleotide phosphate (NADPH) 
oxidative phosphorylation to produce ATP through the 
malate-aspartate shuttle in cardiac energy metabolism 
[16, 17]. A clinical study indicated that the activity ratio 
of serum GOT/alanine transaminase was negatively cor-
related with the incidence of cardiovascular disease in a 
healthy Japanese population [18]. The excessive increase 
in serum GOT activity was associated with a decline in 
the survival rate of children with cyanotic CHD and right 
ventricular hypertrophy, such as TOF [14]. In adult ani-
mal experiments, angiotensin II (Ang II)-induced patho-
logical cardiomyocyte hypertrophy was associated with 
decreased GOT2 protein expression, but not with GOT1. 
Notably, the experimental cardiac hypertrophy may act 
as a specific stimulus for GOT during myocardial malate-
aspartate shuttle [19, 20]. Moreover, hypoxia is not only 
a typical symptom of cyanotic CHD but a critical cause 
of disease progression. The results of a perinatal mouse 
model confirmed that chronic hypoxia inhibited heart 
development, which presented as an increase in the 
heart-weight ratio [21, 22]. These studies suggested that 
GOT2 was correlated with right ventricular hypertrophy; 
however, GOT2 alterations in age-related physiological 
and hypoxia-induced pathological cardiomyocyte hyper-
trophy during childhood remain unexplored.

This study aimed to determine the changes in GOT2 
during physiological or hypoxia-induced pathological 
cardiomyocyte hypertrophy. To this end, we assessed 
age-related changes in GOT2 expression of juvenile rat 
hearts, the correlation between GOT activity and physi-
ological cardiomyocyte hypertrophy in rat right ventricle, 
and GOT2 expression changes in hypoxic cardiomyocyte 
hypertrophy to provide a novel idea and research target 
for promoting physiological cardiomyocyte hypertrophy, 
suppressing pathological cardiomyocyte hypertrophy, 
and accelerating the heart’s transition to left ventricular 
dominance after birth.

Methods
Day‑age choice and tissue processing in immature rats
Previous studies have reported a transition in the rat 
heart from cardiomyocyte proliferation to cardiomyocyte 

hypertrophy between the 3rd and 4th days following 
birth. Subsequently, cytokinesis decreases, and car-
diomyocytes primarily grow in a hypertrophic manner. 
However, the myocardial nuclear division of Sprague 
Dawley (SD) rats decreased significantly on the 10th day 
[23]. Compared with previous studies, the positive rates 
of ki-67, a nuclear division biomarker, were similar in 
humans within 0–3 months and in SD rats within 28 days 
(0.55% vs. 0.5%) after birth; thereafter, the ki-67 almost 
disappeared in humans and rats [8]. In addition, γ- lino-
lenic acid, a type of fatty acid in breast milk, is crucial for 
the metabolic maturation in the heart development of 
suckling mice [24]. Therefore, as indicated in Supplemen-
tary Fig.  1, we selected 5-, 10-, and 20-day-old suckling 
mice to represent the three turning points.

Juvenile male SD rats in the 5-, 10-, and 20-day-old 
groups (n = 3–5 each) were purchased from Beijing Vital 
River Laboratory Animal Technology Co., Ltd. The juve-
nile rats were sacrificed under pentobarbital sodium 
(5.4 g/kg) treatment [25, 26]. We quickly dissected and 
opened the abdominal and chest cavities; collected the 
heart, lung, and liver; and washed them with phosphate-
buffered saline (PBS) at 4 °C. After absorbing excess PBS 
with filter paper, the freshly collected tissues were stored 
at − 80 °C or fixed in 4% paraformaldehyde solution for 
24 h to prepare paraffin sections.

Gene database search
Using the National Center for Biotechnology Information 
(NCBI) gene database, we obtained the RNA-seq data for 
GOT1 and GOT2 in 11 organs of female and male Fis-
cher 344 rats aged 2, 6, 21, and 104 weeks old, wherein 
each week-old group (n = 8) corresponds to infancy, ado-
lescence, adulthood, and old age, respectively [27]. We 
selected RNA-seq data from the heart, liver, brain, kid-
ney, adrenal gland, and lung for statistical analysis.

GOT2 protein expression levels evaluated by western 
blotting
Lysis buffer was used to obtain proteins from the tis-
sues and H9C2 cell. Denatured proteins were isolated 
by an 8% precast gel (Beyotime, China) and transferred 
onto nitrocellulose membranes. Nitrocellulose mem-
branes were incubated with the specific primary anti-
bodies (anti-GOT2 antibody produced in rabbit, 1:3000, 
SAB5701225, Sigma-Aldrich; anti-GAPDH antibody pro-
duced in mouse, 1:4000, TA-08, ZSGB-BIO) overnight at 
4 °C and with secondary antibodies (1:2000) conjugated 
with horseradish peroxidase for 1 h at 25 °C. Finally, as 
previously described [28], protein bands were scanned 
using the FluorChem M MultiFluor System (ProteinSim-
ple, USA).
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GOT activity determined using the colorimetric method
The rat tissues stored at − 80 °C were accurately weighed, 
and physiological saline and magnetic beads were added 
for homogenization. Subsequently, the homogenized 
solution was frozen three times at − 80 °C and centri-
fuged at 4 °C, and the supernatant was isolated for con-
ducting tests. Following the instructions of the aspartate 
aminotransferase assay kit (Nanjing Jiancheng Bioen-
gineering Institute, China) [29], we divided the samples 
into test and control wells, and simultaneously prepared 
standard concentration wells. After 30 min of reaction 
with the substrate solution, 20 min with the 2,4-dinitro-
phenylhydrazine solution, and 15 min with NaOH, the 
absorbance values were measured using a microplate 
reader at a wavelength of 510 nm.

Hematoxylin‑eosin (HE) staining
The rat heart tissue slices were sequentially placed 
in xylene and ethanol for dewaxing in water, and the 
hydrated slices were immersed in HE staining solution 
for 5 min. Subsequently, the stained slices were dehy-
drated with ethanol and made transparent with xylene. 
Finally, neutral resin was used to seal the slices. The slides 
were observed under a light microscope; the nuclei were 
blue, and the cytoplasm was red [30, 31]. The size of car-
diomyocytes indirectly evaluated by counting the num-
ber of nuclei in images with the same magnification and 
area.

H9C2 culture
The rat embryonic myocardial cell line H9C2 and DMEM 
cell culture medium were purchased from Shanghai 
Fuheng Biotechnology Co., Ltd. The complete medium 
contains 93% basic medium, 5% fetal bovine serum, 1% 
L-glutamine, and 1% penicillin/streptomycin. H9C2 
cells were allowed to adhere for 24 h in the medium, fol-
lowing which the cells were placed in a closed chamber 
(2.5 L) with a bag of Anaeropack-anaero2.5 (AnaeroPack-
Anaero, Japan) for 24 h (oxygen concentration: 1%) to 
simulate hypoxia [32]. The hypoxic model experiment 
included the control and hypoxic groups.

Wheat germ agglutinin (WGA) for visualizing H9C2 
morphology
After a 24-h exposure to hypoxia, the culture medium 
was removed by washing the cells with PBS. Next, the 
cells were fixed with paraformaldehyde, a drop of WGA 
(Sigma-Aldrich, USA) dye solution was added, and the 
cells were incubated in the dark for 20 min. Finally, an 
anti-fluorescence quenching agent containing DAPI (Ser-
vicebio, China) was used for sealing [33]. Fluorescence 
microscopy showed that the nuclei were blue and the 
WGA was green.

In situ detection of GOT2 protein expression in H9C2 cells 
using immunofluorescence assay
As previously described [28], after rinsing with PBS, 
H9C2 cells were fixed with 4% paraformaldehyde solu-
tion for 20 min. Then, a 5% bovine serum albumin (BSA) 
blocking solution (0.5 g BSA, 30 μL TritonX-100 and 
10 mL 0.01 M PBS) was used to block and perforate cells. 
After removing the excess blocking solution, H9C2 cells 
were incubated with the primary antibody GOT2 (1:200, 
Sigma-Aldrich, USA) at 4 °C overnight. The next day, 
the H9C2 cells were incubated with a rabbit-derived red 
fluorescent secondary antibody (1:500, Thermo Fisher 
Scientific, USA) in the dark for 90 min. All sections 
were restained with DAPI. Finally, immunofluorescence 
microscopy was used for observation and comparison. 
We used ImageJ to quantitatively evaluate the red immu-
nofluorescence intensity of GOT2 in images with similar 
cell densities.

Data analysis
GraphPad Prism software (version 8.0.2, USA) was 
used for statistical processing. Data were expressed as 
mean ± standard deviation (mean ± SD). An independent 
sample t-test was used to compare means between two 
groups. The means among multiple groups were com-
pared by one-way analysis of variance (ANOVA) and the 
Sidak method when the data were normally distributed 
or the nonparametric Kruskal-Wallis test when the data 
were not normally distributed. p values < 0.05 were con-
sidered statistically significant [28].

Results
GOT expression in juvenile rat hearts was rapidly increased 
and GOT2 mRNA level was higher than that of GOT1
Considering the close correlation between GOT and 
myocardial function, we obtained RNA-seq data from 
different rat tissues at different ages (in weeks) by 
searching the gene database [27] and found that GOT1 
and GOT2 mRNA levels in juvenile (< 6-week-old) rat 
hearts rapidly increased. Moreover, the GOT2 mRNA 
(74–110 RPKM) level was significantly higher than that 
of GOT1 (17–35 RPKM) in the rat myocardium (Fig. 1a). 
The GOT2 protein expression results detected through 
western blotting were consistent with the RNA-seq find-
ings in juvenile rat hearts. Compared with the 5-day-old 
group, the protein level of cardiac GOT2 was dramati-
cally enhanced in the 20-day-old group (Fig. 1b). In addi-
tion, GOT1 and GOT2 mRNAs were widely distributed 
in multiple organs, including rat hearts, livers, brains, 
kidneys, adrenal glands, and lungs, but GOT1 and GOT2 
mRNAs in the different tissues other than the rat heart 
exhibited no significant changes and maintained low 
levels among the juvenile, adult (21-week-old) and aged 
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(104-week-old) groups (Fig. 1a). These results suggested 
that the expression and function of GOT (particularly 
GOT2) were tightly linked to heart development in juve-
nile rats.

GOT activity increased with the right ventricle 
cardiomyocyte volume in juvenile rat hearts
GOT primarily participates in NADPH oxidative phos-
phorylation to supply energy via transaminase activity. 
To study the relationship between GOT function and 
physiological cardiomyocyte hypertrophy in juvenile rats, 
we further used a colorimetric method to determine the 
GOT activity in rat heart, liver, and lung tissues and HE 
staining to observe the normal age-related physiological 
cardiomyocyte hypertrophy in the rat right ventricle after 
birth. The results showed that the GOT activities in rat 
lungs and livers at the ages of 5, 10, and 20 days differed 
insignificantly; however, compared with the 5-day-old 
group, the cardiac GOT activity in the 20-day-old group 
rats was significantly increased (Fig.  2a), while the size 
of cardiomyocytes and heart volume were significantly 
increased, and hearts gradually shifted towards the left 
ventricular dominance (Fig.  2b and c). The above-men-
tioned results indicated an association between increased 
GOT activity and juvenile rat heart right ventricular 
cardiomyocyte volume, highlighting the role of GOT 

transaminase activity in rat age-related physiological car-
diomyocyte hypertrophy.

Reduced GOT2 protein expression in hypoxia‑induced 
hypertrophic cardiomyocytes
Hypoxia is vital in the pathological hypertrophy of the 
right ventricular myocardium in patients with cyanotic 
CHD [21, 34]. By building a hypoxic cell model, using 
WGA staining, immunofluorescence, and western blot-
ting, we found that compared with the control group, the 
surface area of H9C2 cells exposed to hypoxia increased 
by 2-fold (Fig.  3a), while the red fluorescence intensity 
representing the GOT2 protein decreased significantly 
in accordance with the results of western blotting (Fig. 3b 
and c). These results suggested that cardiomyocyte-
derived GOT2 protein expression was inhibited dur-
ing hypoxic pathological cardiomyocyte hypertrophy. In 
other words, the reduction in GOT2 protein may be a key 
factor contributing to the hypoxia-induced pathological 
cardiomyocyte hypertrophy.

Discussion
In this study, we initially found a positive correlation 
between myocardial GOT2 and age in juvenile rats 
through the lens of GOT, a hallmark of myocardial 
injury. Under physiological conditions, GOT2 may 

Fig. 1  Changes in rat GOT expression in multiple tissues. a Age-related changes in GOT mRNA expression in different rat tissues by RNA-seq (n = 8). 
b GOT2 protein expression detected by western blotting in rat heart tissue (n = 5), full-length blots were presented in Supplementary Fig. 2. GOT: 
glutamic oxaloacetic transaminase. Data were expressed as mean ± SD, *p < 0.05
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inhibit excessive cardiomyocyte hypertrophy in juve-
nile rats by continuously enhancing its mRNA and 
protein expression. Hypoxia-induced GOT2 reduction 
in CHD may contribute to pathological cardiomyocyte 
hypertrophy in children and adults with CHD.

In previous studies, the right ventricle myocardium of 
children with cyanotic CHD in the early postnatal period 
demonstrated strong plasticity [5–8]. Although some 
studies have shown that METTL can simultaneously 
regulate physiological and pathological hypertrophy, 

Fig. 2  Changes in GOT activity and cardiomyocyte volume in juvenile rat hearts. a The colorimetric method was performed to detect the GOT 
activities in rat heart, liver and lung tissues (n = 3–5). b, c HE staining was used to observe the age-related physiological cardiomyocyte hypertrophy 
in the juvenile rat right ventricle. (n = 3–5). GOT: glutamic oxaloacetic transaminase; HE: hematoxylin-eosin staining. Data were expressed 
as mean ± SD, **p < 0.01, scale bar: 50 μm
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leading to significant cardiomyocyte hypertrophy [9–12], 
the related regulatory molecules about physiological and 
pathological cardiomyocyte hypertrophy of the right 
ventricle in the early postnatal period require further 
exploration. Recent studies have revealed that GOT2 was 
related to Ang II-induced pathological cardiomyocyte 
hypertrophy in adult mice. To clarify GOT2 changes in 
age-related physiological cardiomyocyte hypertrophy, we 
first observed changes in GOT during rat normal heart 
development. RNA-seq results showed that unlike the 

stable GOT mRNA expression in other organs, GOT 
mRNA in juvenile rat hearts increased rapidly but was 
relatively stable in adulthood. These results suggested 
that GOT played a basic and common role in rat heart, 
liver, brain, kidney, adrenal gland and lung cell activities 
and was tightly linked to heart development in juvenile 
rats. Moreover, GOT2 mRNA expression was higher 
than that of GOT1 in rat hearts. In addition, Rat heart 
GOT mRNA was highly expressed at all ages, which was 
consistent with clinical research results. GOT derived 

Fig. 3  Cell surface area and GOT2 protein expression in myocardial cell line H9C2. a WGA staining was used to outline the edges of H9C2 cells 
(N = 3, n = 3), scale bar: 50 μm. b In situ immunofluorescence detection of GOT2 protein expression in H9C2 cells; red fluorescence represents 
GOT2 protein, scale bar: 200 μm. c Western blotting was employed to detect the GOT2 protein expression in H9C2 cells (N = 3, n = 3), full-length 
blots were presented in Supplementary Fig. 3. WGA: wheat germ agglutinin, a specific cardiomyocyte membrane dye; GOT2: glutamic oxaloacetic 
transaminase 2. N: the number of independent experiments, n: the number of duplicates. Data were expressed as mean ± SD, **p < 0.01
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from acute injured myocardium in children after CHD 
surgery can cause a sharp increase in serum GOT activ-
ity [14]. Western blotting experiments further confirmed 
that the expression pattern of myocardial GOT2 protein 
was similar to that of GOT2 mRNA in juvenile rats.

To further explore the relationship between GOT 
function and physiological cardiomyocyte hypertrophy, 
we compared the changes in GOT transaminase activ-
ity and age-related physiological cardiomyocyte hyper-
trophy in rats and found that GOT activity increased 
with physiological cardiomyocyte hypertrophy. These 
results suggested that GOT2 may regulate physiological 
cardiomyocyte hypertrophy or the rapid GOT2 change 
in juvenile rat hearts may be related to the plasticity of 
cardiomyocytes.

Finally, we explored the relationship between GOT2 
expression and hypoxic pathological cardiomyocyte 
hypertrophy. The results of cell experiments showed that 
hypoxia induced a decrease in GOT2 protein expres-
sion of rat myocardial cell line H9C2 and an increase in 
the myocardial cell surface, which was familiar with Ang 
II-induced GOT2 reduction in adult mice with cardiac 
hypertrophy [19]. Similarly, Romanowicz et al. found that 
chronic hypoxia inhibited juvenile mouse heart develop-
ment, characterized by increased cardiac mass [21]. The 
above-mentioned results indicated that the inhibition 
of GOT2 expression may be a mechanism underlying 
hypoxia-induced pathological cardiomyocyte hypertro-
phy in cyanotic CHD. Some researchers found reactive 
oxygen species (ROS), could potentially modulate car-
diac maturation. Considering that GOT2 is distributed in 
mitochondria, which are the chief consumers of oxygen 
and the potential source of ROS induced by hypoxia, we 
hypothesized that the increased ROS induced by hypoxia 
may be the underlying mechanism for the reduction in 
GOT2 expression [35–37].

Conclusions
Based on the results of the present study, we preliminary 
explored GOT2 changes in age-related physiological and 
hypoxia-induced pathological cardiomyocyte hypertro-
phy in rats, providing new insights and research targets 
for promoting physiological and inhibiting pathological 
cardiomyocyte hypertrophy. Considering that physiologi-
cal and pathological hypertrophy is controlled by distinct 
cellular signaling pathways [3], further animal experi-
ments should be performed to delineate the specific 
criteria used to determine physiological and pathologi-
cal hypertrophy. Further, GOT2 expression intervention 
experiments should be conducted to confirm the protec-
tive effect of GOT2 on cardiomyocyte hypertrophy and 
to provide a novel theoretical basis for the treatment of 
cyanotic CHD in children and adults.
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