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Abstract

Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. 

Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options 

and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly 

metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-

deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced 

PCa treatment. The homeostatic process of bone remodeling – produced by concerted actions of 

bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes — may also be 

subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and 

homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated 

by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive 

mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to 

investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa 

from origin, presentation, and clinical treatment to bone composition and structure and molecular 
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mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to 

team science across multiple disciplines that focuses on PCa and metastatic bone disease. We 

also introduce concepts of tissue engineering as a novel perspective to model, capture, and study 

complex cancer-microenvironment interactions.
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Introduction

Prostate cancer (PCa) is a highly prevalent health problem in the developed world. As an 

age-related disease that is exacerbated by Western diets and lifestyles, the global burden of 

PCa will only continue to rise as lifespans increase and diets converge. Localized PCa can 

be treated through combinations of surgery, radiotherapy, and systemic therapies to yield 

a 97% 5-year survival rate (Siegel et al. 2023). In contrast, advanced PCa that escapes 

its local environment and travels to distant sites results in markedly increased morbidity 

and mortality (Siegel et al. 2023, Ottewell et al. 2014, Sweeney et al. 2015, Hu et al. 

2017a). While PCa can metastasize to lung, liver, and lymph nodes, metastasis to bone 

dominates clinically. Of nearly 3600 patients presenting with metastatic PCa from 1991 to 

2009, the vast majority (>90%) demonstrated metastatic bone disease and markedly lower 

incidence of metastasis to lymph nodes (8.7%) or liver (4.5%) (Gandaglia et al. 2015). 

Site-specific metastasis associates with survival: men with liver metastasis have shorter 

median overall survival (13.5 months) compared to men with bone-only metastases (21.3 

months) (Halabi et al. 2016). Thus, the fundamental nature, composition, and anatomy of 

the skeletal microenvironment present as an area of mechanistic and clinical interest for PCa 

metastasis, treatment, and prevention.

Advances in therapeutic approaches for preventing or treating skeletally metastatic PCa 

may be achieved through engaging the diverse perspectives of a team of researchers from 

multiple disciplines. Insight from new perspectives may elucidate previously unconsidered 

mechanisms or offer different techniques to interrogate scientific questions. However, cross-

disciplinary collaborations present challenges in communicating nuances and pathways 

key to cancer or bone biology. Consequently, this review synthesizes the knowledge and 

perspectives on PCa of several disciplines, beginning with bone structure and function, 

clinical presentation, and molecular mechanisms of cancer biology. We then introduce a 

final perspective – that of biomedical engineering – to highlight opportunities to better 

model, capture, and study complex metastatic cancer–bone interactions in a 3D context that 

captures native in vivo geometry. Through this review, we aim to harmonize the language 

and perspectives of different disciplines of biology to promote engagement in collaborative 

research, effective communication across disciplines, and minimize barriers to team science.

The bone microenvironment

The skeleton is the most common metastatic site for PCa. The structure and composition of 

bone, and the cells responsible for building, remodeling, and maintaining bone, all provide 
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putative mechanisms wherein the bone is a permissive soil for disseminated tumor cells. 

Thus, by introducing the bone microenvironment, we may uncover mechanisms of PCa 

metastatic organotropism.

Bone function in homeostasis

Bone is a multifunctional organ (Moreira et al. 2000, Robling et al. 2006, Clarke 2008). 

The structural and protective roles of the skeleton are readily apparent, providing attachment 

sites for muscles and ligaments and shielding organs from damage. The skeleton also houses 

bone marrow (BM), providing the site for blood cell production and maturation, and resorbs 

and rebuilds itself to maintain mineral homeostasis.

Bones are composites of proteins, minerals, and water. Bone is grossly arranged into 

cortical or trabecular microarchitecture depending on structure and location. Cortical (or 

compact) bone forms the dense, protective outer shell, whereas trabecular (or cancellous or 

spongy) bone is a network of struts and rods inside the ends of long bones and throughout 

the interior of flat and irregular bones (Fig. 1A). Cortical and trabecular bone work in 

concert to provide biomechanical strength and flexibility to withstand applied loads without 

breaking. Bone strength originates from its arrangement and composite architecture. Type I 

collagen fibrils within bone are intercalated with the mineral hydroxyapatite (Ca10 (PO4)6 

(OH)2) (often abbreviated HA) which provides resistance to compression and confers 

biomechanical strength to the skeleton. The careful arrangement of collagen fibrils and 

HA into lamellar sheets further increases strength. Acidification of bone by bone-resorbing 

osteoclasts (OCLs) promotes HA hydrolysis into calcium and phosphate, which maintains 

serum calcium and phosphate levels within a narrow physiologic range.

The central cavity of long bones is termed the medullary cavity (Fig. 1A). BM and stromal 

cells lie within the medullary cavity to support and protect hematopoietic stem cells (HSCs) 

that give rise to red blood cells and leukocytes. Some blood cells such as B cells remain and 

mature in the BM, egressing once fully differentiated. Other cells such as neutrophils and 

monocytes can be mobilized from the BM quickly in response to physiological challenges 

such as infection (Swirski et al. 2009).

Remodeling and the role of skeletal effector and regulatory cells

Bone strength and resistance to fracture paradoxically require that microscopic packets of 

bone tissue are routinely degraded and replaced. This process, termed remodeling, removes 

specific regions of the mineralized matrix that has accumulated damage; thus, remodeling 

improves bone strength and reduces fracture risk. OCLs resorb areas of matrix damage, 

which is followed by the deposition of new matrix and minerals by osteoblasts (OBs). The 

activity of OBs and OCLs is regulated by osteocytes (OCYs), which perceive mechanical 

stimuli and drive OB and OCL activity via secreted factors or direct cell–cell engagement to 

generate suitable bone for the mechanical environment (Fig. 1A) (Regard et al. 2012, Hart et 

al. 2020).

Remodeling is a cyclical process employed to maintain bone strength throughout the 

lifespan. Bone remodeling is induced by myriad factors, including traumatic fracture, 

hormone signaling, or tissue-level strain. In fracture repair, disorganized woven bone is 
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deposited quickly and irregularly to provide immediate strength; over time, woven bone 

is remodeled into organized, biomechanically superior lamellar bone. Hormones such as 

parathyroid hormone (PTH) or sex steroids influence remodeling by activating or inhibiting 

OBs and OCLs, causing net gain or loss of bone based on the dose and duration of the 

hormone signal (Dobnig & Turner 1995, Dempster et al. 2001, Jilka 2007, Jilka et al. 2009). 

Bone experiences tissue-level strain continuously from daily activity: exercise, walking, and 

even standing all exert force on bone tissue. Tissue strains are converted into biophysical 

stimuli like fluid shear stress or matrix deformation at the cellular level, which then drive 

adaptive or reparative processes. Repetitive activities damage the mineralized matrix which 

accumulates in the form of microcracks (Martin 2003); these must be remodeled before 

coalescing into tissue-level damage. Thus, remodeling allows for continuous, piecewise 

repair of bone by coupling osteoclastic resorption of the damaged bone to osteoblastic 

deposition of new bone. The cyclical nature of remodeling allows for tissue repair without 

the need for the individual to discontinue the daily activity. Instead, the newly synthesized, 

undamaged bone matrix provides biomechanical strength to the tissue while damaged and 

biomechanically inferior tissue is resorbed and replaced. Thus, remodeling is critical to bone 

health and is driven by the proper coupling of OB and OCL activity, which is regulated 

through OCYs.

Osteoclastic bone resorption removes bone and liberates mineral from the matrix

OCLs resorb segments of bone. OCLs develop from the differentiation and fusion of 

macrophages into a single multinucleated cell which dissolves the mineralized HA matrix by 

generating a low pH environment directly onto bone surfaces; the organic matrix is dissolved 

through OCL-secreted enzymes and proteases like tartrate-resistant acid phosphatase, 

collagenases, and matrix metalloproteinases (MMPs). Liberated minerals are transcytosed 

from the apical membrane and secreted at the basolateral membrane to maintain serum 

calcium and phosphate levels. In contrast, degraded organic components remain in the 

vicinity of bone resorption and are released to the local environment upon cessation of 

resorption (Bruzzaniti & Baron 2006). OCL formation and activity are tightly regulated 

by local cytokine presentation, often from bone-forming cells. OBs, OCYs, and BM cells 

produce the cytokine Receptor Activator of NF-κB Ligand (RANKL; Tnfsf11) which 

binds to the cognate receptor RANK on macrophages and thereby drive OCL formation 

or activity. Similarly, OBs and OCYs produce a decoy receptor, osteoprotegerin (OPG; 

Tnfrsf11b), which sequesters RANKL to limit RANKL-RANK interactions. Thus, the 

relative availability of RANKL to OPG directs OCL formation and localization to specific 

bone segments.

Osteoblasts build bone by depositing and mineralizing the extracellular matrix

The counterpart to the OCL is the OB, the cell responsible for building bone (Robling 

2012). Derived from mesenchymal stem cells, cuboidal OBs synthesize and secrete proteins 

that make extracellular matrix, such as collagen type 1; further, OBs secrete HA which 

intercalates in type 1 collagen fibrils to mineralize and thus strengthen bone matrix. OB 

differentiation and activity – and thus bone deposition – is regulated by myriad growth 

factors and cytokines, including bone morphogenetic proteins (BMPs) and Wnts. Canonical 

Wnt/β-catenin signaling drives bone deposition through Wnt ligands binding to membrane-
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bound Frizzled receptors and Lrp co-receptors on OBs. Restraint of Wnt signaling occurs 

through the secretion of direct antagonists of Wnt receptors, like Sclerostin and Dkk1, or 

secreted decoy receptors like secreted frizzled-related proteins. The robust contribution of 

Wnt signaling in skeletal anabolism has led to the development of monoclonal antibodies 

such as romosozumab (Evenity™; anti-sclerostin antibody) which neutralize Wnt signaling 

inhibitors to stimulate bone deposition (Sharifi et al. 2015, Reid 2022).

Osteocytes maintain skeletal and mineral homeostasis through mechanosensation and 
diverse signaling

As OBs generate new bone matrix, a subset of OBs become entrapped in the matrix 

and differentiate into a new cell, the OCY (Donahue et al. 2020, Buettmann et al. 2022, 

Delgado-Calle & Bellido 2022). Within the calcified matrix, OCYs have a distinct stellate 

morphology: dendritic processes extend from the cell body and thread throughout the 

mineralized matrix in the lacuno-canalicular system. These processes allow for extensive 

crosstalk with neighboring OCYs or other cells in bone through gap junctions or Notch 

signaling or indirect means such as secretion of cytokines or exosomal vesicles. OCYs have 

a limited capacity to directly resorb or deposit bone and instead direct the formation and 

activity of OBs and OCLs in response to hormonal signals or mechanical loads. Historically, 

systemic calcium and phosphate demands were considered primary drivers of bone mass; 

postnatal changes in bone mass or diameter or length were attributed to variations in 

hormonal milieu or serum ion concentration, rather than as adaptive responses to biophysical 

forces (Frost 2000). Yet, observations such as trabecular alignment in the femoral neck and 

estimated principal stress suggested a third mechanism – applied forces – in controlling 

the bone size and strength (Martin et al. 1998). As the most abundant cell type in bone 

and due to their network of direct and indirect engagement with other cell types, OCYs 

are recognized as orchestrators of bone remodeling. For example, genetically engineered 

mice that lack OCYs fail to alter bone mass under disuse conditions, demonstrating 

their obligate role as mechanosensory cells (Tatsumi et al. 2007). Distinct and convergent 

signaling pathways are activated in OCYs in response to mechanical loads, signals which 

are transduced to OBs and OCLs or their progenitors. Mechanical loading occurs with 

locomotion. OCYs promote OB activity by reducing OCY secretion of Wnt antagonists like 

Sclerostin and Dkk1 while promoting OCL formation by increasing RANKL production. 

Thus, OBs, OCLs, and OCYs collectively and concertedly work to develop and maintain 

bone tissue through tightly coordinated activity.

OCY contribution to tissue and organ homeostasis exceeds skeletal impact. OCYs interact 

with myriad tissues and organs including the kidney, BM, blood vessels, nerves, and muscles 

via both direct and paracrine signaling. The first description of the OCY as a paracrine 

cell stemmed from the observation that OCY-derived Fgf23 regulates phosphate homeostasis 

in the kidney (Feng et al. 2006). This observation shifted the view on OCYs as local 

orchestrators of remodeling to the bone as an endocrine organ. Although osteocalcin was 

once proposed to be another bone-derived hormone that established a role for OCYs in 

regulating energy metabolism, male fertility and cognition, such findings are under scrutiny 

(Lee et al. 2007, Oury et al. 2011, Diegel et al. 2020, Dasgupta et al. 2021).
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Bone-lining cells in the bone marrow microenvironment and remodeling

Though OBs, OCLs, and OCYs are prioritized in the literature for their roles in remodeling, 

other cells in bone participate in this process. The periosteal and endosteal surfaces 

of cortical bone are also covered by fibroblasts, osteoprogenitors, and bone-lining cells 

(BLCs). BLCs represent a different fate for OBs, a fate in which cell size and metabolism 

decrease and shapes convert from cuboidal to squamous. BLCs reside on the periosteal 

and endosteal bone surfaces that undergo neither modeling nor remodeling and, in doing 

so, maintain ionic differences between the bone fluid compartment and interstitial fluid 

(Talmage 1970). Recent advances reveal that endosteal fibroblasts and BLCs maintain the 

BM microenvironment and actively participate in remodeling, respectively. Fibroblasts aid 

OBs in maintaining the HSC niche through CXCL12, which directs HSC homing to the 

BM (Sugiyama et al. 2006). When bone is remodeled, BLCs form a canopy which separates 

the bone remodeling unit from BM and non-remodeling (Hauge et al. 2001). Further, BLCs 

can de-differentiate in response to mechanical loading (Pead et al. 1988), PTH (Dobnig & 

Turner 1995), or romosozumab (Kim et al. 2017) to directly participate in bone formation.

Bone marrow

BM fills the medullary cavity. BM contains heterogeneous populations of cells involved 

in myelopoiesis, hematopoiesis, mesenchymal progenitors, and supportive reticular cells 

(Dolgalev & Tikhonova 2021). BM adipose tissue (BMAT) exerts endocrine and 

energy storage functions and, in doing so, participates in central and local metabolism, 

osteogenesis, and hematopoiesis (Zhang et al. 2021a). BMAT burden reflects chronologic 

age, diet, and treatment decisions (Hotte & Saad 2010, Martin et al. 2017). BMAT volume 

inversely relates to bone mass and skeletal health (Devlin et al. 2010, Cohen et al. 2013, 

Li et al. 2022), signaled through the release of adipokines and pro-inflammatory cytokines 

which contribute to senescence and low-grade systemic inflammation (Aaron et al. 2022).

Bone vascularization

Bone is highly metabolic and requires efficient oxygen transport, sources of cellular 

energy, and removal of metabolic waste. Correspondingly, it is intricately and thoroughly 

vascularized. The necessity of skeletal vascularity often indicates the functional coupling of 

angiogenesis with osteogenesis. For example, vascular endothelial cells (ECs) promote bone 

growth through Notch-mediated angiocrine signaling (Ramasamy et al. 2014) and secretion 

of the osteoinductive factor bone morphogenetic protein-2 (BMP-2) (Willette et al. 1999). 

Ultimately, the rich vascular network on and within bone that is necessary for its survival 

and function may also enrich metastasis, perhaps through changes in fluid flow and local 

oxygen tensions. Here, we focus on the vascular network supplying the medullary cavity and 

BM sinusoids, as bone metastases are most often found within the medulla as opposed to the 

periosteal surface (Roudier et al. 2008).

Nutrient arteries supplying the cortical bone enter the cortex near the diaphysis, then branch 

proximally and distally along the long axis of the bone through holes known as Haversian 

canals (Fig. 1B). Haversian blood vessels are bridged via perpendicular canals known as 

Volkmann canals (Bilezikian et al. 2019). Trabecular bone employs a different vascular 

organization, with nutrient arteries passing through the cortical bone near the ends of 
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the bone supplying the growth plate with highly oxygenated blood, next supplying the 

medullary cavity with less oxygenated blood, and finally exiting the bone through a large 

central vein in the diaphysis (Ramasamy et al. 2016) (Fig. 1B).

Trabecular bone vascularity is well described in the long bones, where arteries pass through 

the cortex near the metaphysis (Kusumbe et al. 2014, Ramasamy et al. 2016). Arteries feed 

oxygen-rich blood to capillaries near the metaphysis of the bone where longitudinal growth 

takes place in youth. Metaphyseal capillaries are columnar in shape and experience a high 

shear force (Ramasamy et al. 2016). They also contain specialized ECs, termed ‘type H’ 

due to high expression of Pecam1 and endomucin (Kusumbe et al. 2014). Blood flows 

directly from the type H vessels in the metaphysis or from arteries along the endosteum 

to the capillaries in the medullary cavity (Fig. 1B). The capillaries in the medullary cavity 

are sinusoidal and highly branched and thus experience a rapid reduction in blood velocity 

(Ramasamy et al. 2016), the endothelium of which are termed ‘type L’ ECs due to low 

expression of Pecam1 and endomucin (Kusumbe et al. 2014). Blood subsequently drains 

from type L endothelium to a central vein in the diaphysis (Ramasamy et al. 2016). 

Capillary specialization impacts blood flow through and oxygenation in the skeleton: cells 

near type H ECs in the metaphysis experience the highest oxygen tension while cells near 

the type L ECs in the marrow are hypoxic as the blood reaching the marrow is already 

oxygen poor (Kusumbe et al. 2014, Ramasamy et al. 2014, 2016, Spencer et al. 2014). 

Specialization of the capillary endothelium and relative oxygen tension is also important 

for stem and progenitor cell maintenance (Dobnig & Turner 1995, DaSilva et al. 2009). 

Osteoprogenitors preferentially associate with type H endothelium, which expresses higher 

levels of growth factors associated with osteoprogenitor survival and proliferation (Kusumbe 

et al. 2014, Langen et al. 2017). Type L endothelium and the vessel-associated mesenchymal 

cells experience low oxygen tensions and secrete signals that maintain HSC populations 

(Sugiyama et al. 2006, Ding et al. 2012). Thus, regional differences in oxygen tensions and 

endothelium type play an important role in the progenitor cell niche.

Oxygen tension is spatially heterogeneous in the skeleton: the highest tension is observed 

periosteally and decreases in cortical bone (Spencer et al. 2014). Intracortical oxygen 

tension heterogeneity is revealed by the expression of hypoxia-sensitive transcripts in 

OCYs, wherein OCYs deep within cortical bone express markers of glycolysis and the 

oxygen-regulated protein ORP150, which do not occur in OCYs closer to the bone surface 

(Frikha-Benayed et al. 2016). Similarly, oxygen tension is lower within BM than in the 

endosteum. The BM has no direct arterial blood supply. Instead, blood supplying oxygen 

to the BM first donates oxygen to the metaphysis or the endosteum – leaving less oxygen 

in the blood to supply the BM with – ultimately contributing to hypoxia within the marrow 

(Ramasamy et al. 2016). Hypoxia within the marrow may also be attributed to the higher 

metabolic demand of marrow stromal or HSCs (Spencer et al. 2014).

Long bone vascular structure changes as a function of age. The proportion of type L ECs 

increases throughout the lifespan while type H ECs decline with age (Kusumbe et al. 

2014, Langen et al. 2017). This age-related shift has important implications for metastasis, 

as it has been proposed that bone metastasis is likely mediated through sluggish blood 

flow through type L ECs (Peng et al. 2020). However, it is yet unclear if the same blood 
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vessel organization occurs in the flat bones, which is where bone metastasis occurs more 

frequently, for example, the pelvis and ribs. To date, the reported microvascular networks 

in the pelvis are like long bones; however, type H and type L endothelium have yet to be 

identified in these bones (Pannarale et al. 1997). As such, further interrogation of blood 

vessel organization in these bones is warranted.

Sex steroids and bone

Bone remodeling is driven, in part, by sex hormone signaling; this is often appreciated 

in post-menopausal osteoporosis, wherein bone mineral density rapidly declines following 

cessation of estrogen production. Estrogen influences both and OBs, restraining osteoclastic 

bone resorption via suppression of RANKL while promoting OB survival and therein 

maintaining the ideal coupling of the remodeling cycle of resorption followed by formation 

(Hughes et al. 1996, Khosla et al. 2012). Without estrogen, remodeling is uncoupled to 

increase bone resorption relative to formation and cause net bone loss with each remodeling 

cycle (Khosla et al. 2012). Estrogen signaling impacts both females and males. In females, 

selective estrogen receptor α (ERα) deletion from OCLs (Ctsk-cre;ERaf/f) increases OCL 

number and trabecular bone resorption (Nakamura et al. 2007, Martin-Millan et al. 2010), 

while Osx-, Col1-, Bglap-, or Dmp1-cre-driven deletion of ERα in OBs or OCYs reduces 

bone mass and OB number (Almeida et al. 2013, Määttä et al. 2013a, Windahl et al. 

2013, Kondoh et al. 2014, Melville et al. 2014). In males, ERα deletion exerts transient or 

sustained impacts on bone mass when deleted in pre-OBs (Osx-cre) (Ucer et al. 2015) vs 

mature OBs and OCYs (Col1- or Dmp1-cre) (Windahl et al. 2013, Ucer et al. 2015). The 

influence of sex steroids on the skeleton is not restricted to estrogen, as progesterone and 

androgens also drive skeletal development and maintain skeletal homeostasis.

Androgen receptors (ARs) are expressed in epiphyseal chondrocytes and in growth plate 

cartilage cells – therefore affecting longitudinal bone growth in early puberty. Androgens 

were found to regulate proliferation as well as differentiation of epiphyseal chondrocytes 

and growth hormone secretion during puberty (Clarke & Khosla 2009). The AR consists 

of an N-terminal domain, followed by a DNA-binding domain, a hinge region, and a 

C-terminal ligand-binding domain where the ligands bind (Wang et al. 2007). In the inactive 

state, the AR is bound to a complex regulated by the heat shock protein HSP90 that 

maintains it in the cytoplasm, but ligand binding releases this binding – allowing the AR 

to translocate to the nucleus, where it binds to the promoters of target genes at sequences 

called the androgen response element (ARE). Both testosterone and dihydrotestosterone 

(DHT) stimulate OB precursors and may also promote OB differentiation. By upregulating 

transforming growth factor-beta (TGF-β) and insulin-like growth factor (IGF) 1/2 – 

which stimulate bone formation – and downregulating interleukin (IL)-6 which stimulates 

osteoclastogenesis, they ensure that bone density is maintained at a high level. In OBs, 

androgens promote IL-1β and fibroblast growth factor (FGF), while suppressing PGE2 

(Prostaglandin E2) and cAMP production by IL-1 and PTH (Wiren et al. 1997). DHT has 

also been shown to prevent osteoclastogenesis by reducing OPG levels. Many of these 

genes are direct targets of the AR and were found to contain an ARE in their proximal 

promoter. For example, IL-10, which inhibits bone resorption, IL-1, and IL-6 all are 
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direct transcriptional targets of the AR. Taken together, the AR regulates bone density by 

increasing OB proliferation and preventing osteoclastogenesis.

Androgen control of bone has a greater impact in males than females. AR deletion from OBs 

or OCYs in male mice results in reduced bone mass, reminiscent of the low bone mass of 

men on androgen deprivation therapy (ADT) (Yeh et al. 2002, Notini et al. 2007, Lauretani 

et al. 2008, Chiang et al. 2009, Sinnesael et al. 2012, Määttä et al. 2013b); similarly, AR 

deletion from OBs and OCYs reduces bone mass in female mice, though less so than in 

males (Määttä et al. 2013b). These studies highlight that bone is highly responsive to sex 

hormone signaling whose contributions are sex-, age-, and compartment-dependent. Because 

sex hormones are a target of cancer therapies, treatment strategies that alter hormone levels 

or function must consider the skeletal sequelae of these choices.

Prostate cancer clinical course and treatment

PCa remains the most common cancer diagnosed and the second most common cause of 

cancer death in men in the United States (Siegel et al. 2023). Though many treatments 

exist for PCa, research continues to further improve treatment to improve patient outcomes. 

Introducing the disease course and common strategies to treat PCa will highlight current 

molecular mechanisms and may identify clinical needs which need to be met.

Screening, diagnosis, and cancer treatment

Current American Cancer Society guidelines recommend screening with serum prostate-

specific antigen (PSA) in men ages 40–50 depending on their risk; however, frequency 

of screening is often controversial based on the recommending organization (Smith et al. 

2019, Desai et al. 2022). Serum PSA is a common marker used in screening for PCa, 

although changes in PSA levels lack both specificity and sensitivity for early disease. PSA 

screens thus can lead to high rates of overdiagnosis and overtreatment; instead, screening 

is most effective when patient risk and symptoms are also considered. The most common 

presenting symptoms for patients with PCa are lower urinary tract symptoms including 

urinary frequency and hesitancy and poor urinary stream. Unfortunately, such symptoms 

are often common with those for benign prostatic hyperplasia and prostatitis, therein 

highlighting the need for more specific and less sensitive diagnostic biomarkers to correctly 

identify patients with early PCa before symptom onset (McNally et al. 2020). Localized PCa 

is diagnosed by digital rectal examination and prostate biopsies which identify the Gleason 

grade (Sauter et al. 2016).

PCa treatment depends on the stage, risk stratification, and extent of progression (Fig. 2). In 

the US, depending on risk stratification, common treatments for localized PCa can involve 

radiation therapy, prostatectomy, or active surveillance for disease progression (Brawley 

et al. 2018). These treatments are curative in most patients with PCa. However, after the 

United States Preventative Services Task Force recommended against annual PSA screening 

in 2012, there has been a noted increase in the incidence of metastatic PCa (mPCa) in 

the National Cancer Institute’s Surveillence, Epidemiology and End Results data despite an 

overall decrease in PCa diagnosis. The increase could also result from improved diagnostic 
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imaging techniques which identify higher rates of low-volume metastases and high-volume 

mPCa (Desai et al. 2022). Common sites of metastasis for PCa include bone, lymph node, 

brain, liver, and lung. Most patients with mPCa are initially castration-sensitive (metastatic 

castration-sensitive prostate cancer (mCSPC)) and respond to ADT. ADT treatment can be 

achieved through luteinizing hormone-releasing hormone agonists such as leuprolide acetate 

or goserelin, luteinizing hormone-releasing hormone antagonists like degarelix or relugolix, 

or surgical castration via orchiectomy (Sun et al. 2016). Currently, the addition of docetaxel, 

a chemotherapy agent, or abiraterone, a CYP17 inhibitor, to ADT is the first treatment of 

choice for patients with mCSPC (James et al. 2017, Kyriakopoulos et al. 2018). In practice, 

it seems abiraterone with ADT may have more benefits for patients with low-volume disease 

whereas docetaxel plus ADT confers survival benefits in high-volume PCa (Hahn et al. 

2018). Additional agents more recently approved for mCSPC in conjunction with ADT 

include antiandrogens apalutamide and enzalutamide (Sayegh et al. 2022).

Patients with mCSPC eventually develop castration resistance (metastatic castration-resistant 

prostate cancer (mCRPC)). Once mCSPC progresses to mCRPC, the disease becomes much 

more aggressive with poorer prognosis, yet a variety of adjunctive therapies can be used 

(Sayegh et al. 2022). In patients with no previous chemotherapy exposure, docetaxel is the 

preferred agent though cabazitaxel is another chemotherapeutic agent approved for mCRPC. 

In practice, it is often used after progression on abiraterone acetate or enzalutamide; 

both agents also provide a survival benefit in chemonaïve or docetaxel-pretreated mCRPC 

patients (Sayegh et al. 2022). Radium-223 – a radioactive radium isotope which acts as a 

calcium mimetic incorporated during osteogenesis – is a therapy with proven benefit, for 

patients with primarily osseous metastatic disease and symptoms from bony metastases. 

Immunotherapy with sipuleucel-T, a dendritic cell vaccine created from patients’ own cells 

has demonstrated survival benefits in patients with asymptomatic mCRPC. Patients with 

select mutations benefit from treatment with PARP inhibitors olaparib or rucaparib which 

interfere with DNA repair. A radiopharmaceutical ligand, Lu-PSMA-617, was also recently 

approved for patients with mCRPC who have progressed through antiandrogen, androgen 

biosynthesis inhibition, and taxane therapies (Sayegh et al. 2022). Many factors, including 

disease burden, presence of bone or visceral metastases and symptoms, influence sequencing 

decisions and treatment selection, especially when patients with mCRPC experience disease 

progression.

Treatment-associated bone loss

Crucially, patients who develop skeletal complications (termed skeletal-related events 

(SREs)) like hypercalcemia, bone pain, or pathologic fractures have markedly worse 

prognoses and survival outcomes than those without SREs (Coleman 1997): 5-year survival 

rates are 56% in PCa patients without bone metastasis, but plummet to <1% with metastasis 

and a SRE such as fracture (Nørgaard et al. 2010). Thus, there is a critical link between 

bone health and patient survival, which necessitates investigation of the crosstalk between 

bone and metastatic PCa. Indeed, PCa and its treatment associates with or causes skeletal 

comorbidities. For example, bone mass is reduced in PCa patients, particularly in patients 

with bone metastasis: 25 and 9% of patients are osteopenic or osteoporotic, respectively 

(Kwon et al. 2014). Many treatments for PCa such as ADT and enzalutamide can also 
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cause osteoporosis and osteopenia, illustrating the entwined nature of bone health in PCa 

patients. ADT significantly associates with reduced bone mineral density in the first three 

years of treatment (Kim et al. 2019). Indeed, ADT – either surgical or chemical – causes 

rapid onset of osteoporosis and bone loss at trabecular and cortical sites in the skeleton 

(Stoch et al. 2001, Hörnberg et al. 2011). In men undergoing ADT, the mean trabecular 

bone mineral density of the lumbar spine decreased by 8.5 ± 1.8% (Smith et al. 2001). 

Further, PCa patients on ADT experienced significantly more fractures compared to patients 

not on ADT (Shahinian et al. 2005). The AR antagonist enzalutamide associates with 

higher fracture rates than the placebo in the ARCHES trial (Armstrong et al. 2019). 

Pre-clinical studies in mice demonstrate that enzalutamide reduces bone mass in the 

axial but not appendicular skeleton (Wu et al. 2016). Similar to enzalutamide, in patients 

with non-metastatic CRPC, treatment with apalutamide significantly increased fracture risk 

compared to placebo (11.7 vs 6.5%) (Smith et al. 2018). In vitro, abiraterone acetate inhibits 

OCL differentiation and activity while promoting OB differentiation, activity, and bone 

deposition (Iuliani et al. 2015). An important consideration for abiraterone acetate is that it 

is commonly administered with prednisone which reduces bone strength via upregulation of 

OCL function, reduction in OB function and dysregulated Wnt signaling from OCYs (Yao et 

al. 2008, 2013). Thus, the relationship between abiraterone acetate plus prednisone on bone 

health is likely complex.

The use of advanced AR antagonists, including abiraterone and the antiandrogens, gives rise 

to alternately spliced AR variants that lack the ligand-binding domain while maintaining the 

N-terminal domain and the DNA-binding domain, such as AR-V7 and AR-567 (Messner et 

al. 2020a). AR variants transcribe genes not regulated by the full-length receptor while many 

genes that were previously regulated are no longer maintained. For example, the GDF15 

promoter contains an ARE that is activated by AR splice variants; once expressed, GDF15 

promotes RANKL activation resulting in bone metastasis (Siddiqui et al. 2022a). AR-

regulated transcription involves multiple co-regulators that bind to the AR–ARE complex. 

Many of these co-regulators bind at the ligand-binding domain, and therefore, it is assumed 

that loss of these co-regulators alters the transcriptional pattern of the AR.

Bone-sparing therapeutics in prostate cancer

Current therapy options for improving bone health in patients undergoing PCa treatment 

focus on preventing bone resorption, but their administration is low in real-world studies. 

Zoledronic acid, a bisphosphonate, and denosumab, a RANKL inhibitor, are the primary 

agents that delay the onset of SREs and bone metastasis-related pain (Roviello et al. 2022). 

Co-treatment with bone-targeted agents in mCRPC patients significantly reduces fracture 

risk. Radiation therapy is also an effective palliative option for bone metastasis-related 

pain (Roviello et al. 2022). Though osteoanabolic therapies such as romosozumab (an 

anti-sclerostin antibody) and Forteo (recombinant human PTH (1–84)) are FDA-approved 

for post-menopausal osteoporosis, neither have been considered in PCa patients. However, 

inhibition of the Wnt antagonist DKK1 promotes tumor progression and metastasis in PCa 

(Thudi et al. 2011, Zhang et al. 2014), which may dampen enthusiasm for anti-sclerostin 

therapy in PCa. Similarly, PTH-related protein drives tumor-associated bone destruction 

in breast cancer (BCa); given the common targets and mechanisms of action between 
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PTHrP and PTH, the involvement of PTHrP may generate reluctance toward a clinical 

trial for Forteo (Guise et al. 1996). Thus, a thorough investigation of the effects of these 

osteoanabolic drugs on bone metastases is needed before clinical trials can begin.

Upon metastasis to bone, PCa can present as osteoblastic (bone-forming), osteolytic (bone-

resorbing), or mixed lesions in the skeleton (Fig. 3). Bone resorption and formation are 

coupled with tumor progression (Thalmann et al. 2000, Yi et al. 2002, Yin et al. 2003), 

evidence for which is provided by increased levels of biochemical markers of OB activity, 

increased cellular activity and metastasis (measured by technetium diphosphonate at bone 

metastatic sites) (Cachin et al. 2006), and elevated serum markers of bone resorption 

(Percival et al. 1987, Pelger et al. 1998, Garnero et al. 2000). Histologically, PCa cells 

localize to OB-rich regions of the bone hence bone metastases are primarily osteoblastic 

in PCa (Charhon et al. 1983, Roudier et al. 2008). The presence of OBs adjacent to the 

tumor itself a priori suggests that PCa drives OB activity, which creates osteosclerotic woven 

bone physically adjacent to the metastatic tumor (Charhon et al. 1983). OB presence near 

metastases is not universal, as this is not observed in bone metastases from breast, lung, 

or kidney cancers (Logothetis & Lin 2005). Further, OBs are generally absent from normal 

bone that is not undergoing adaptation or remodeling. Combined with increased serum 

markers of OB activity (Ibrahim et al. 2010), it is apparent that functional engagement 

between PCa and skeletal cells drives disease burden.

Molecular mechanisms of prostate cancer growth and bone metastasis

Metastatic PCa is often treated with ADT, illustrating the importance of AR signaling in 

PCa development, growth, and survival. ADT is an imperfect treatment due to side effects 

and tumor escape from androgen sensitivity. While these therapies cause tumor repression, 

at least initially, they also affect bone mineral density and associate with falls and fractures. 

Understanding the mechanisms governing mCSPC vs mCRPC may assist in developing or 

repurposing existing therapies to better address clinical needs and ultimately improve patient 

outcomes.

Androgen receptor signaling in prostate cancer and homeostasis

The male gonadal hormones testosterone and DHT elicit their molecular functions by 

binding to the AR. As a member of the steroid receptor nuclear receptor family, AR exhibits 

ligand-dependent dimerization, nuclear translocation, and DNA binding (Heemers & Tindall 

2007, Wilson et al. 2016, Messner et al. 2020b). The AR is broadly expressed in the body, 

where its actions impact the development and maintenance of myriad systems including the 

cardiovascular, immune, reproductive, hematopoietic, and musculoskeletal systems (Davey 

& Grossmann 2016). AR signaling drives expression of prostatic PSA (Riegman et al. 

1991), cytochrome P450 and TGF-β in the liver (Kanda & Yokosuka 2015), and oxytocin 

in the brain system (Karlsson et al. 2016); further, nongenomic AR signaling activates 

and interacts with other signaling pathways including Gq/PLC/IP3 (Foradori et al. 2008), 

MAPK (Foradori et al. 2008), IL-6/STAT3, PI3/Akt (Leung & Sadar 2017), and NF-κB (Hu 

et al. 2017b). Despite the initial effectiveness of ADT, loss of androgen dependence and 

rise of a CRPC phenotype invariably occur. CRPC employs multiple molecular strategies 
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to progress, including AR amplification, AR mutations which reduce ligand specificity 

and thereby enable ligand-independent AR signaling, and alternately spliced AR variants 

that lack ligand-binding domains (Jathal et al. 2011). The net effect of such molecular 

adaptations sustains AR signaling even under conditions of markedly reduced androgen 

synthesis and bioavailability.

The AR is broadly expressed in organs and tissues including the ovary and testis, accessory 

sex organs, muscle, fat, bone, and myeloid tissue (de Gendt & Verhoeven 2012). Thus, it 

is unsurprising, if not unexpected, that strategies which mitigate AR signaling – whether 

ADT, inhibiting androgen synthesis (abiraterone) or AR antagonists (enzalutamide and 

apalutamide) – also exert systemic sequelae, notably in the skeleton. In bone, androgens 

restrain OCL formation while maintaining OB and OCY viability (Manolagas et al. 2013, 

Messner et al. 2020b). Germline deletion of AR produces mice with low bone mass driven 

by high bone turnover (Kawano et al. 2003); conditional deletion in specific bone cell 

subtypes elicits muted impacts on bone mass, with limited impact on cortical and trabecular 

microarchitectural parameters compared to global AR deletion (Manolagas et al. 2013). 

Thus, the greatest weapon currently available to combat recurrent PCa – AR inhibition – 

has negative consequences on bone health independent of tumor burden. Consequently, an 

ideal PCa treatment would retain the efficacy of ADT while improving the specificity of 

treatment, targeting solely PCa while sparing AR signaling in other tissues.

How prostate cancer metastasizes to bone

PCa metastasis to bone involves several steps: transformation, angiogenesis, invasion, and 

distal migration from the primary site, followed by endothelial attachment, extravasation, 

and site-specific establishment of metastases at a secondary site (Clarke et al. 2009) (Fig. 

4). As a densely mineralized and highly rigid tissue, the skeleton may present as a hostile 

environment for tumor cell growth without adaptation (Martin 2002). To accomplish this, 

tumor cells migrate across the sinusoidal wall to invade and survive within BM stroma prior 

to migration to endosteal bone surfaces (Suva et al. 2011) (Fig. 4). The endosteal bone 

surface is covered with lining cells whose motility is stimulated by the newly resident tumor 

cells (Fig. 4). The cancer cells communicate with local BM stromal cells and release factors 

that stimulate the motility of the lining cells, activating bone resorption (Suva et al. 2011) 

(Fig. 5). This provides access to the demineralized bone surface for subsequent tumor cell 

adhesion and proliferation (Roodman 2004, Suva et al. 2009).

Chemokines attract prostate cancer and initiate downstream signaling

Concentration gradients of chemokines produced by bone attract cancer cells (Lazennec & 

Richmond 2010). The CXCR4/CXCL12 binding pair is involved in bone metastases (Fig. 

5). CXCL12 that is secreted from cancer-associated fibroblasts and OBs in bone binds to 

its cognate receptor CXCR4 on expressed in PCa cells, thus recruiting cancer to bone. 

Chemokine ligand-receptor binding encourages the adhesion of PCa cells to ECs or the 

extracellular bone matrix α5 and β3 integrins at the metastatic site (Engl et al. 2006); in 

turn, this initiates a cascade of downstream signals including MAP kinases, PI3K/Akt, Ras, 

Rho GTPases, and NF-κB, the concerted effect of which is to aggravate inflammation, 
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cancer cell invasion, proliferation, and survival (Vindrieux et al. 2009). Thus, pharmacologic 

targeting of the CXCR4/CXCL12 binding pair may diminish PCa recruitment to the bone, 

preventing bone metastases and their resultant sequelae.

Bone marrow microenvironmental cues promote adhesion, migration, and 

growth

The heterogeneity of the BM microenvironment contributes mightily to PCa metastasis, 

tumor growth, and tumor dormancy. Endothelial adhesion of metastasis PCa cells to BM 

endothelium is enriched compared to other endothelial sources (Haq et al. 1992, Lehr 

& Pienta 1998, Scott et al. 2001). Myriad cell–cell adhesion proteins are implicated in 

mPCa cell–BM endothelium interactions, including galectin-3 and LFA-1 (Lehr & Pienta 

1998), SDF1/CXCL12 and CXCR4 (Taichman et al. 2002), PSA (Romanov et al. 2004), 

fractalkine-CX3CR1 (Shulby et al. 2004), and E-selectin (Dimitroff et al. 2004), among 

others (reviewed in Kan et al. 2016). BMAT produces adipokines, such as leptin and 

adiponectin, that promote cancer cell growth and migration (reviewed in Hardaway et al. 

2014, Otley & Sinal 2022).

Hypoxic circuits promote prostate cancer growth and drug resistance

Variances in oxygen bioavailability may influence PCa metastasis and survival in bone. 

Hypoxic signaling within and from bone prompts the secretion of proteins such as VEGF 

and shifts metabolism to facilitate cancer cell growth and survival. Hypoxia and androgen 

signaling create feedback circuits: androgen ablation causes hypoxia, whereas hypoxia, 

in turn, enhances ligand-independent AR transcriptional activity (Mitani et al. 2011). 

Thus, hypoxia may enable androgen resistance by allowing for AR signaling without 

its ligand to drive CRPC growth. This is likely mediated by redirecting glucose flux 

from the AR-dependent pentose phosphate pathway to the hypoxia-induced glycolysis 

pathway (Geng et al. 2018), thus triggering AR-independent enzalutamide resistance. 

Therapeutic resistance may thusly be conferred to PCa by the hypoxic environment of 

bone. Such interactions between metastatic cancer and its niche highlight the importance 

of combination therapeutic strategies which target both implicit cancer biology as well as 

the microenvironmental signals which drive cancer evolution. Though microenvironmental 

cues may drive therapeutic resistance, these same cues may sensitize PCa to other therapies. 

Thus, understanding interactions which drive synergy or antagonism between a therapeutic, 

the cancer, and its microenvironment provides an opportunity to develop more effective 

therapeutics.

Overlapping signaling pathways in bone homeostasis and prostate cancer

Parathyroid hormone participates in bone remodeling and prostate cancer-associated 
hypercalcemia

PTH and PTH-related peptide (PTHrP) impact bone mineral density. PTH or PTHrP 

binds to the receptor PTH1R which is a G protein-coupled receptor; this activates 

the Gs heterotrimeric G-protein that activates cyclic AMP/PKA pathway, ultimately 
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phosphorylating the OB transcription factor Runx2, activating several genes in these cells. 

This includes the phosphorylation of the Ras small GTP-binding protein – leading to a 

kinase cascade cumulating in the phosphorylation and activation of a MAPK – including 

Erk1/2, JNK/SAPK, and p38MAPK. This pathway also phosphorylates and activates the p85 

subunit of PI3K. Class IA PI3K is a dimer of the p110 catalytic subunit and one of five p85 

regulatory subunits. Phosphorylation of PI3K activates several downstream targets, including 

Akt and p70S6 kinase, a downstream target of mTOR. The activation of these pathways 

increases osteoblastogenesis and OB survival (Jilka 2007). In PCa, PTHrP is a major cause 

of hypercalcemia. DHT stimulation led to the inhibition of PTHrP, while the latter stabilized 

the AR by phosphorylation at Y534 (DaSilva et al. 2009). Testosterone stimulation inhibited 

PTH-stimulated osteoclastogenesis (Chen et al. 2001). Therefore, it is estimated that AR 

inhibition would reverse these effects, resulting in bone loss.

Insulin-like growth factor, fibroblast growth factor, epidermal growth factor, and other 
receptor tyrosine kinase activating pathways

Through activation of the PI3K pathway, PTH stimulates insulin-like growth factors IGF-1 

and IGF-2 expression to stimulate OB proliferation and differentiation and to regulate OCL 

activity. The functions of IGF-1/2 are regulated by a family of six secreted transporters that 

have high affinity to the IGFs – named IGF-binding proteins 1–6 (IGFBP1–6). IGFBPs bind 

and stabilize IGF – for example, maintaining IGFs in circulation or inactivated in the OBs 

for prolonged periods of time, thereby preventing homing and metastasis. Upon dissociation 

from IGFBPs, IGFs can then bind to their receptor and activate the PI3K signaling cascade. 

IGFBPs can have both stimulatory and inhibitory effects on the IGFs in bone, with IGFBP-3 

and -5 being stimulatory and IGFBP-1, 2, -4, and -6 being inhibitory.

The IGF receptors belong to a family of receptor tyrosine kinases (RTKs) that can activate 

the PI3K cascade, the Ras/MAPK cascade or both. There are 20 different classes of RTKs 

encoding about 90 RTKs in all. Many of these RTKs are active in the bone and mediate bone 

metastasis. The FGF receptors also mediate osteoblastogenesis and bone formation. There 

are 23 FGFs that can bind to four FGFRs. While FGFR1–4 are involved in the proliferation 

of OB precursor cells, FGFR2 is also involved in OB differentiation (Choi et al. 2008). 

Mutations in FGFR2 result in increased transcriptional activity of the transcription factor 

Runx2, which results in increased expression of osteogenic markers. FGFRs also activate the 

Ras/MAPK and PI3K/Akt pathways.

Another RTK, the epidermal growth factor receptor (EGFR), is a glycoprotein that also 

activates the ERK and Akt pathways. There are four RTKs in the EGFR family, EGFR/

ErbB1, HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4. This family of RTKs regulate 

the proliferation and differentiation of OBs, OCLs, and chondrocytes, thereby regulating 

bone formation and cancer metastasis. EGFR stimulation affects OCLs, by inhibition of 

OPG expression and upregulation of RANKL. Decreased signaling of ErbB RTKs reduces 

trabecular and cortical bone mass caused by reduced osteoblastogenesis and increased bone 

resorption (Feng & McDonald 2011). We have previously demonstrated that the ErbB3 

RTKs are highly activated in PCa (Chen et al. 2011, Jathal et al. 2019). Overall, these studies 
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indicate that activation of RTKs by their respective growth factors promotes bone mineral 

density while their loss causes loss of bone mineral density.

Regulation of bone remodeling by Wnt/β-catenin signaling in prostate cancer

Wnts are secreted glycoproteins that comprise a large family of 19 proteins. Wnts activate 

two major signaling pathways – the canonical β-catenin dependent pathway and the non-

canonical pathways. The receptors for the Wnt ligands are called frizzled (Fzd) and consist 

of 10 members. The Fzd receptors are akin to G protein-coupled receptors and require 

co-receptors to mediate Wnt signals, such as LRP5/6. In the absence of Wnt activation, 

β-catenin is cytoplasmic and is ultimately degraded by a complex composed of Axin, APC, 

PP2A, GSK3, and CK1α (Komiya & Habas 2008). Wnt binding to Fzd and LRP5/6 disrupts 

this complex and stabilizes β-catenin, which then translocates to the nucleus, where it 

acts as a transcriptional co-activator to the transcriptional factors LEF/TCF. Non-canonical 

Wnt signaling pathways include Fzd binding to Dsh which triggers downstream signaling 

cascades that regulate cell polarity (called the planar cell polarity pathway). Wnt4, Wnt5A, 

and Wnt 11 activate non-canonical pathways that activate the small GTPases Rho and Rac 

or activate JNK to modulate the cytoskeleton. A second branch of the non-canonical Wnt 

signaling pathway stimulates intracellular Ca2+ mediated by Gq. Wnt5A and Wnt11 can 

activate this pathway (usually using Fzd2) and are mediated by PKC and CamKII. The latter 

has also been shown to inhibit canonical Wnt signaling.

The canonical Wnt/β-catenin pathway, alongside RUNX2, modulates skeletal development, 

OB differentiation, and bone formation (Krishnan et al. 2006, Monroe et al. 2012). It 

promotes mesenchymal commitment to the osteoblastic lineage and OB differentiation 

during bone formation. Wnt10b signaling increases bone mass by stimulation of 

osteoblastogenesis and regulates trabecular bone and serum osteocalcin (Bennett et al. 

2005). Wnt6a also influences the differentiation of mesenchymal precursors into OBs 

(Cawthorn et al. 2012). Wnt3A, Wnt4, and Wnt16 regulate RANKL and OPG expression 

in OBs. In bone cells, non-canonical Wnt signaling was shown to mediate interaction 

with BMP signaling, the RANK/RANKL/NF-κB pathway, Hippo, Notch, and Hedgehog 

signaling pathways, mTOR and EGF signaling (Lojk & Marc 2021). Osteoblastic Wnt5A 

increases RANK expression through JNK signaling that recruits the c-Jun transcription 

factor to the RANK promoter, thus increasing RANK transcription and the susceptibility 

of OCL precursor cells to RANKL (Maeda et al. 2012). In contrast, Wnt4 inhibits OCL 

differentiation of primary BM macrophages, which also inhibit the activation of the 

canonical Wnt signaling pathway. Wnt3A induces the Warburg effect in differentiating cells, 

by switching transcription to favor the glycolytic pathway, resulting in OB differentiation. 

Wnt3A, Wnt7B, and Wnt10B activate the mTOR signaling pathway, increasing OB number 

and activity, and increasing bone formation. Non-canonical Wnt signaling is also associated 

with crosstalk with the Hippo pathway as well as the ERK/MAPK cascade. YAP/TAZ, the 

main effector of the Hippo pathway, interacts with both β-catenin and Dsh. Non-canonical 

Wnt ligands Wnt5a, Wnt5b, Wnt4, and Wnt3a are also strong activators of YAP/TAZ 

activity, through activation of the Fzd2 or Fzd5 receptors, and the G-protein Gα12/13, 

which lead to downstream activation of RhoA and Rac kinases and subsequent inhibition 

of the YAP/TAZ inhibitors Lats1/2. Both the Wnt and Hippo signaling pathways are 
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required for osteogenic differentiation of mesenchymal cells, but suppression of YAP/TAZ 

abolished WNT4-induced OB differentiation. Wnt4-induced p38 MAPK pathway has also 

been shown to be involved in melatonin-induced osteogenic differentiation and suppression 

of osteoclastogenesis. Together, these results show that while canonical Wnt signaling is 

primarily associated with osteogenic differentiation and renewal of mesenchymal cells, 

non-canonical Wnt signaling has been associated with cell survival and the prevention of 

apoptosis.

PCa is usually characterized by increased levels of β-catenin at the nucleus, the cytoplasm, 

and the plasma membrane. In the plasma membrane, β-catenin regulates the activation 

of cadherins – E-cadherin in epithelial cells and N-cadherin in neuronal cells. Activating 

mutations in β-catenin in treatment-naive PCa is rare but has been observed in 12% of 

CRPC cases (Beltran et al. 2013). The AR is a crucial partner for β-catenin in PCa. Studies 

have shown competition of the AR/β-catenin complex with the TCF/β-catenin complex in 

the nucleus with the AR/β-catenin complex being predominant in PCa. Inactivation of AR 

by ADT or AR antagonists leads to redirection of β-catenin to a complex with TCF. Dkk1 

is an inhibitor of Wnt signaling that is overexpressed in PCa, resulting in bone metastasis 

and the induction of osteolytic lesions (Thudi et al. 2011). The non-canonical Wnt signaling 

pathways are also regulated by the AR. Wnt7b, which non-canonically activates PKC and 

can induce an osteoblastic response, contains an ARE and is a target of various mutated 

and alternately spliced AR in CRPC. Thus, Wnt signaling plays a very important role in the 

regulation of bone metastasis as well as its regulation by androgen withdrawal.

Transforming growth fsctor-β and bone marrow morphogenetic protein signaling influence 
osteoblastogenesis and androgen receptor signaling

The TGF-β and BMP signaling pathways control bone remodeling and maintenance. About 

29 factors of this superfamily act through heteromeric receptor complexes (seven type I and 

five type II) that transduce intracellular signals via the Smad and MAPK pathways. TGF-βs 

and BMPs have diverse functions in skeletogenesis, including mesenchyme condensation, 

skeleton morphogenesis, growth plate development, and OB differentiation (Chen et al. 

2012). They also regulate the maintenance of postnatal bone and cartilage. TGFβRII 

phosphorylases TGFβRI, in turn, phosphorylating receptor-activated Smads (R-Smads), 

Smad2 and 3. R-Smads further activate Smad4 and translocate into the nucleus, where 

they regulate transcription. TGF-β also activates a non-Smad-dependent pathway, whereby 

TGF-β activated kinase 1 (TAK1) and TAK1-binding protein 1 activate the MAPK kinase 

cascade resulting in the activation of ERK, and p38MAPK. Similarly, there are 14 BMPs that 

work through BMP receptors type I and type II.

When initially synthesized, TGF-β is non-covalently bound to latency-associated protein 

(LAP) and remains inactive. Osteoclastic bone resorption releases active TGF-β1 from LAP 

and induces enrichment of osteoprogenitors in the bone resorption lacunae. Loss of TGF-β1 

in mice reduces trabecular bone density and OB number on the bone surface. TGF-β1 does 

not induce osteogenesis in mesenchymal pluripotent cells but increases osteoprogenitors 

by inducing chemotaxis and proliferation. TGF-β1 is also necessary for survival during 

the differentiation of OBs into OCYs. TGF-β also blocked OB mineralization. On the 
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other hand, active TGF-βs regulate OCL bone resorption. While TGF-β promotes OCL 

differentiation at low doses, it can inhibit OCL differentiation at high doses. Similarly, BMP 

signaling also promotes chondrocyte proliferation and differentiation, via the expression 

of Sox9, a transcription factor that is essential for chondrogenic commitment and 

differentiation. BMP-2 conditional knockout mice have frequent fractures that fail to heal 

and may be important in bone maintenance. Additional studies show that coordination 

between BMP-2 and BMP-4 is required for osteoblastogenesis as well as chondrocyte 

proliferation, differentiation, and apoptosis.

The AR interacts with the TGF-β pathway (Song et al. 2008) as well as with BMP ligands 

(Lee et al. 2013). ADT increased TGF-β, TGFβRI, TGFβRII, and activation of Smads 2 and 

3, resulting in apoptosis by a process where the AR interacts with Smad3. In contrast, BMP6 

is thought to induce the expression of IL-6, which in turn increases AR levels. Thus, TGF-β 
may have opposite effects on the AR as compared to BMPs.

Prostate cancer and bone

PCa often metastasizes to the skeleton. Compared to other common sites of PCa metastasis 

such as the lung, the bone microenvironment more efficiently encourages subsequent 

metastasis of disseminated tumor cells, likely from genetic selection and epigenetic 

reprogramming. Indeed, skeletal metastasis augments the ability of disseminated tumor cells 

to generate secondary metastases in other organs (Zhang et al. 2021b). While AR signaling 

and its pharmacologic restraint dominate the research and clinical course, PCa growth and 

metastasis are driven by myriad mechanisms. Elaborating the breadth of molecular pathways 

subjugated by PCa and their synergistic or antagonistic interactions may identify novel 

druggable targets. Such therapeutics would prove useful, particularly in treating metastatic 

CRPC, which has the highest patient mortality rate and is the most difficult to treat. To do 

so, it is necessary to establish and refine mechanisms of PCa-skeletal engagement.

Bone remodeling and prostate cancer metastasis

PCa subverts homeostatic processes to promote metastasis, colonization, and growth. Bone 

remodeling – the continuous process by which bone repairs itself – is subjugated by PCa to 

promote metastasis to bone (Fig. 5). PCa bone metastases are most frequently observed in 

the spine, ribs, pelvis, and proximal limbs, the sites of active remodeling even throughout 

adulthood (Imbriaco et al. 1998). Remodeling occurs more frequently during skeletal 

development, a feature which was exploited in a murine model to elaborate the impact 

of remodeling and its inhibition on PCa burden. Intracardiac injection of PCa cells into 

young (7 weeks) or old (52 weeks) mice demonstrated that metastatic burden was higher in 

young compared to old mice (Kalikin et al. 2003); increased metastatic burden in the young 

mice was attributed to higher remodeling rates exhibited by the young animals. Similarly, 

inducing remodeling with PTH also produced more PCa metastasis to bone compared to 

vehicle-treated animals; conversely, inhibition of bone remodeling with a bisphosphonate 

reduced the remodeling-induced increase in bone (Schneider et al. 2005). Predilection for 

PCa to metastasize to remodeling sites is evident within a given bone. PCa cells localize 

more frequently to the lateral side of the tibia, which exhibits seven-fold higher bone 

Wells et al. Page 18

Endocr Relat Cancer. Author manuscript; available in PMC 2023 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remodeling than the medial side (Wang et al. 2014). The physical contact between PCa 

cells, OBs, and OCLs develops a cycle of mutually driven growth (Kimura et al. 2017) 

(Fig. 5). This autocatalytic cycle enhances the growth and spread of the bone metastases 

and the tumor itself (Logothetis et al. 2018). The richly complex interactions between native 

cells in bone and invading cancer involve myriad intracellular and extracellular signaling 

cascades, among them tumor-derived molecules CXCR4 and vascular endothelial growth 

factor that further recruit metastatic PCa to bone and enable survival therein (Logothetis et 

al. 2018). Other physical environment factors like extracellular Ca2+, low pH, and hypoxia 

then activate signaling pathways within these metastatic PCa cells leading to the release of 

additional factors like PTHrP, IGF, and TGF-β, ultimately perpetuating tumor cell growth 

and survival within bone (Kingsley et al. 2007, Weilbaecher et al. 2011).

TGF-β drives PCa through myriad conserved pathways. The TGF-β superfamily includes 

TGF-β, BMPs, growth and differentiation factors (GDFs), and activins. TGF-β members 

have diverse roles in patterning and cell fate decisions during development (Tabata & Takei 

2004, Ozair et al. 2013), homeostasis (Carlson & Conboy 2007), and disease (Yingling et 

al. 2004, Siddiqui et al. 2022b). TGF-β initially functions as a tumor suppressor that inhibits 

prostate cell proliferation yet after tumorigenesis acts as a tumor promoter during cancer 

progression (Bello-DeOcampo & Tindall 2003). TGF-β1 promotes bone metastases through 

canonical Smad-dependent and Smad-independent pathways; the bone matrix, in turn, is a 

rich source of TGF-β1 which can be liberated by osteoclastic bone resorption to promote 

tumor progression (Pfeilschifter & Mundy 1987, Guise et al. 1996). TGF-β1 signaling 

is highly integrated, making it difficult to target: TGF-β integrates with key regulatory 

pathways in bone health like Notch and Wnt (Klüppel & Wrana 2005, Hall et al. 2006, 

Lindsey & Langhans 2014, van den Bosch et al. 2016) and integrates with AR signaling. 

Ligand-bound AR inhibits TGF-β transcriptional activity (Chipuk et al. 2002) such that 

androgen ablation via ADT activates TGF-β signaling and gene transcription to promote 

bone metastasis. Thus, although ADT is a cornerstone of PCa treatment, the complex web 

of interactions between androgens and other signaling molecules such as TGF-β1 highlights 

the need for a more cancer-specific therapeutic. Collectively, such discoveries highlight the 

obligation of bone remodeling toward PCa invasion into bone.

Osteoblasts and prostate cancer

OBs can be found near PCa cells, which is not observed in other skeletally tropic cancers 

like BCa. Mechanisms wherein OBs may promote PCa metastasis to bone involve their role 

in maintaining the HSC niche and their role in bone remodeling.

Osteoblast maintenance of the hematopoietic stem cell niche may recruit 

prostate cancer to bone

The first step in PCa colonization of bone is invasion of the marrow space. There is marked 

overlap among bones that are destinations for metastatic PCa vs BM distribution, promoting 

the hypothesis that the BM niche provides a permissive soil or selects for PCa metastasis 

(Imbriaco et al. 1998). During homeostasis, OBs lining the endosteum maintain the HSC 

niche through CXCR4/CXCL12 interactions, which regulate HSC homing to the marrow 
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(Taichman et al. 2002, Zhang et al. 2003, Shiozawa et al. 2011). However, PCa competes 

with HSCs for the BM niche utilizing the same CXCR4/CXCL12 axis (Taichman et al. 

2002, Shiozawa et al. 2011) (Fig. 5). PCa cells can be mobilized out of the marrow and 

into circulation through pharmacologic blockade of CXCR4. Further, more PCa cells can be 

found in the marrow when the OB number is increased by treatment with PTH (Shiozawa 

et al. 2011). Another mechanism promoting niche selection in bone involves Annexin A2 

(AnxA2), a plasmalemmal calcium-dependent phospholipid (Fig. 5); AnxA2 expression in 

OBs promotes HSC homing and binding to the endosteal niche of the BM microenvironment 

(Jung et al. 2007). Metastatic PCa subverts this homeostatic process to engraft in bone via 

CXCL12 (Jung et al. 2015). Following PCa homing to bone, PCa-OB AnxA2 interactions 

elicit two further responses: (i) promotes expression of dormancy-regulating receptors Axl, 

Sky, and Mer in PCa cells and (ii) induces OB expression of Gas6 which binds to PCa cells 

to prevent PCa proliferation, promote their dormancy, and protect against chemotherapy-

induced apoptosis.

Pleiotropic role of osteoblasts on prostate cancer growth

OBs communicate extensively with PCa cells to both promote and prevent metastasis. OBs 

form gap junctions with breast and PCa cells, thereby providing intracellular Ca2+ which 

promotes metastasis (Wang et al. 2018a) (Fig. 5). OBs also promote PCa metastasis through 

secretion of factors like TGF-β (Fig. 5) which increases PCa migration and promotes an 

aggressive phenotype (Karlsson et al. 2018). The relationship between OB and PCa is 

complex, as OBs also prevent PCa metastasis and induce PCa dormancy. Wnt5a secreted by 

OBs reduces PCa proliferation and prevents metastasis in vivo. PCa cells treated with Wnt5a 

were also resistant to docetaxel, the most common treatment for metastatic PCa, suggesting 

that Wnt5a induces dormancy in PCa (Ren et al. 2019) (Fig. 5). Similarly, differentiated 

OBs induce PCa quiescence by secreting TGF-β2 and GDF10 (Yu-Lee et al. 2018) (Fig. 5). 

Thus, the complexity of OB–PCa engagement reflects context-dependent signaling, wherein 

cytokines and growth factors exert discrete spatiotemporal impact. This is reflected, for 

example, by the Wnt antagonist Dkk1, whose expression increases early in PCa development 

only to decrease during progression from primary tumor to metastasis and, in doing so, 

functions as a molecular switch transitioning PCa phenotype from osteolytic to osteoblastic 

(Hall et al. 2008).

Osteoclastic bone resorption has a muted role in prostate cancer bone 

metastases

OCLs resorb bone by breaking down the extracellular matrix of bone. Bone resorption is 

necessary for homeostasis as it removes old, damaged, or biomechanically inferior bone for 

replacement with new bone. During bone resorption, OCL release growth factors such as 

TGF-β from the bone matrix, which promotes the progression of lytic metastatic cancers 

like BCa (Pfeilschifter & Mundy 1987, Guise et al. 1996) (Fig. 5). PCa also exhibits 

lytic and mixed lesions histologically, with OCL found on the border of many PCa bone 

metastases (Russell et al. 2009, Wang et al. 2018b) (Fig. 3). Thus, it has been proposed 

that the role of OCL in PCa is the liberation of growth factors from the bone matrix 
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(Russell et al. 2009). Resultingly, preventing OCL activity was once pursued as a target 

to mitigate cancer metastasis and burden. OCL activity and viability can be dampened 

pharmacologically through bisphosphonates – an analog of pyrophosphate naturally found 

in bone – and denosumab – an inhibitor of RANKL (Bekker et al. 2004). However, clinical 

trials of these drugs in patients with PCa have not been promising. Several clinical trials 

which incorporated bisphosphonates along with the standard of care for patients with PCa 

saw no difference in rates of overall survival compared to the control group (Vale et al. 

2016, Hayes et al. 2018). Further, treatment with bisphosphonates failed to prevent bone 

metastases in PCa patients (Wirth et al. 2015). Less data exist on the efficacy of denosumab 

for the treatment of patients with PCa as only a single trial has been conducted. Patients 

treated with denosumab saw delayed time to first bone metastasis and increased metastasis-

free survival, but survival modestly increased by four months (Smith et al. 2012). Together, 

the data demonstrate that bisphosphonates do not impact PCa disease progression. Further, 

the effects seen in other OCL inhibitors such as denosumab are modest. These data suggest 

that cells other than OCL may play a more prominent role in PCa metastasis to bone.

Osteocyte mechanosensation is disrupted by prostate cancer to promote 

cancer growth

Our understanding of PCa and OCY interactions is emergent. As OCY are the most 

abundant and longest-living cell in bone, it is plausible and highly likely that disseminated 

PCa encounters and engages OCY when growing within the bone. Investigation into the 

interactions of PCa and OCY is nascent yet growing. Intratibial injection of breast or 

PCa cells into immunocompetent mice demonstrated direct contact between OCY and 

tumor cells in BM (Fig. 5), which functionally increased OCY lacunar volume and may 

impede proper OCY mechanosignaling. Osteosclerotic lesions increased OCY lacuna size 

– indicative of osteocytic osteolysis and newly embedded OCY – with a concomitant 

reduction in canalicular connectivity (Hemmatian et al. 2021). Reduced connectivity 

between OCY in the presence of PCa cells has also been recapitulated in vitro in a 

3D tissue-engineered model (Choudhary et al. 2018). This suggests that PCa tumors 

disrupt the highly organized lacuno-canalicular system in bone, which may impact OCY 

mechanosensation and signal transduction and could cause bone turnover imbalances 

characteristic of bone metastases. PCa-driven dysregulated mechanosensation in OCYs has 

been studied in vitro, wherein pressure generated from tumor growth in the bone induced 

further tumor growth and invasion. Pressure-induced OCYs produce CCL5 and MMPs 

which facilitate the migration and invasion of several PCa cell lines (Sottnik et al. 2015) 

(Fig. 5). CCL5 is a chemokine whose primary role is as a chemoattractant for immune 

cells, and this observation is consistent with previous reports showing that CCL5 induces 

migration in prostate, breast, lung, and osteosarcoma tumors (Yaal-Hahoshen et al. 2006, 

Huang et al. 2009, Wang et al. 2012). MMPs, which degrade the organic aspect of the 

matrix as occurs in remodeling, drive cancer invasion (Nemeth et al. 2002). Such findings 

were corroborated in a related study but failed to investigate candidate cytokines (Cui et al. 

2016). Further, Cui et al focused on unstimulated OCY-conditioned media, suggesting that 

the OCY secretome may have latent pro-tumorigenic properties (Cui et al. 2016). Together, 

these papers establish a role for bidirectional crosstalk between OCYs and PCa, particularly 
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in PCa subjugating or disrupting the normal mechanosensory function of OCYs to promote 

abnormal remodeling or promote PCa migration and invasion.

Osteocytes and other cancers: lessons to impart?

The relative dearth of information on the relationship between PCa and OCYs limits the 

field’s understanding of skeletal metastasis, as there is little information regarding crosstalk 

between PCa and the most abundant cell type in bone. This may impede the development 

of new drugs to combat skeletal metastasis, ultimately stalling improvements in patient 

outcomes. In this section, we will discuss mechanisms of communication between OCYs 

and other cancers where this relationship is better defined. Investigating these mechanisms 

of communication in the context of OCYs and PCa crosstalk may unveil novel targetable 

pathways to mitigate PCa skeletal metastasis.

OCYs are obligate mechanosensory cells in bone. The proper sensation of mechanical 

loading of bone through exercise and signal transduction to the effector cells in bone is 

crucial to skeletal maintenance; dysregulation of this signaling and subsequent imbalance of 

OCL/OB activity can lead to osteopenia, osteoporosis, or other skeletal phenotypes. Recent 

evidence has suggested that mechanically stimulated OCYs promote BCa migration and 

prevent cancer apoptosis. Thus, BCa may subjugate OCY mechanosignaling to promote 

cancer progression (Ma et al. 2018). However, OCY mechanosignaling may promote an 

anti-metastatic phenotype in other bone cells, establishing a pleiotropic role of OCY 

mechanical signaling in cancer metastasis. Pre-treating OCLs or ECs with conditioned 

media from mechanically loaded OCYs reduced BCa migration and increased cancer 

apoptosis from OCL- and endothelial-derived factors (Ma et al. 2019). Thus, OCY 

mechanical signaling may prevent cancer metastasis by signaling through other cells in 

closer physical proximity to BCa during the early stages of metastasis. Other groups 

have reported similar anti-metastatic effects of mechanical loading in vivo. For example, 

engagement of the Wnt co-receptor Lrp5 in OCYs may underly this anti-metastatic effect 

(Feng et al. 2021, Liu et al. 2021). Given the contribution of OCY mechanical signaling in 

BCa metastasis, mechanical signaling may also play a role in PCa metastasis; further, PCa 

subjugates OCY mechanosensation to promote metastasis through tumor-induced pressure 

(Sottnik et al. 2015). Consequently, investigation of other mechanical signaling pathways in 

bone and their contribution to PCa metastasis is warranted.

Multiple myeloma (MM) is a cancer of plasma cells residing within BM whose progression 

is regulated by OCYs. Reciprocal interactions between MM cells and OCYs involving 

Notch signaling drive OCY apoptosis and MM cell proliferation; increased expression 

of RANKL and Sost promote bone resorption and inhibit bone formation, respectively, 

consistent with osteolytic lesions that are hallmarks of MM (Delgado-Calle et al. 2016). 

Direct signaling via Notch may also be present in PCa metastases. Previous work has 

demonstrated direct contact between OCYs and PCa metastases in vivo, though the nature of 

this contact has not been described. Further, lytic PCa lesions – similar to the lytic lesions 

seen in MM – show empty OCY lacunae adjacent to the lesion (Hemmatian et al. 2021). 

Because lytic lesions have similar characteristics such as direct contact between cancer cells 

and OCYs and signs of OCY apoptosis, Notch signaling may underly this phenomenon 
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in PCa skeletal metastases. Identifying Notch signaling in PCa skeletal metastases would 

establish new therapeutic targets in this disease. Studies in MM show that treatment with 

Notch inhibitors reduces tumor burden and osteolytic lesions in a mouse model of MM 

(Sabol et al. 2021, 2022). If Notch signaling is also present in PCa bone metastases, Notch 

inhibitors may also be utilized to prevent osteolytic and mixed lesions in PCa.

Engineered models to study prostate cancer and metastasis

Tissue-engineered models provide opportunistic weapons in the fight against cancer. Such 

models are valuable to improve our understanding of underlying stimuli for tumorigenesis 

and metastasis, develop better therapeutics and diagnostics, and facilitate the translation of 

such discoveries to the clinical setting (Sitarski et al. 2018, González Díaz et al. 2019). 

Many experimental approaches have focused solely on cancer cells in a 2D environment; 

in contrast, tissue-engineered models provide both tunability and additional complexity, 

enabling the study of the role of the tumor microenvironment through interrogation of 

cell–matrix interactions and crosstalk between cancer cells and resident tissue cells. The 

development of effective tissue-engineered models of bone metastases may accelerate the 

identification of new druggable targets resulting in improved patient outcomes for those 

with metastatic bone disease. While a variety of models are available, several aspects of the 

chosen model can be modified to provide the most useful model for a given study, some of 

which are highlighted below.

Scaffolds for studying prostate cancer

The development of engineered scaffolds to serve as an artificial environment facilitates 

the examination of multiple biophysical characteristics of metastasis and growth including 

composition, stiffness, and elasticity.

Composition

PCa behavior has been studied in an array of biomaterials including natural polymers like 

collagen (Koutsilieris et al. 1994), Matrigel (Edmondson et al. 2016), alginate (Xu et al. 

2019), or synthetic polymers such as poly (ethylene glycol) (PEG) (Sieh et al. 2012, 2014, 

Taubenberger et al. 2016) and self-assembling peptides (Hainline et al. 2019). While the 

material selection is guided by the hypothesis under examination, it is imperative that the 

material embodies physiologically relevant attributes for its effective use as a model system. 

Numerous biophysical properties can be interrogated based on the selection of material 

including cell adhesion, degradation, stiffness, fibrous architecture, and extracellular matrix 

composition (Fig. 6).

Such tunability of various biomaterials allows for the interrogation of cell–matrix 

interactions and the development of superior in vitro models. For example, composite 

hydrogels of chitosan and chondroitin sulfate – an extracellular matrix protein found in high 

abundance in PCa metastases – upregulated epithelial-to-mesenchymal transition markers 

and increased resistance to docetaxel treatment compared to PCa cells grown in 2D culture 

(Xu et al. 2020). Thus, the culture of PCa cells in tunable hydrogels facilitates a cell 
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phenotype more reminiscent of aggressive metastatic PCa, offering a more biologically 

relevant platform for candidate drug testing.

Biophysical properties

In PCa, biophysical properties of the tumor microenvironment influence changes in gene 

and protein expression, alter the response to chemotherapeutics, and exhibit a positive 

correlation with aggressive cancers (Leight et al. 2017). Tissue stiffness is a biophysical 

property that correlates with disease state, which can only be evaluated using tissue-

engineered platforms (Fig. 6). Stiffness can be tuned using various biomaterials through 

regulation of molecular weight, degradability, and porosity, as well as deposition of 

biomimetic extracellular matrix by associated cells. In one example, PC-3 PCa cells were 

encapsulated with BJ-5ta fibroblasts in a PEG-fibrinogen hydrogel to test the influence of 

biomechanical cues on the capacity of in vitro models to recapitulate tumors in vivo (Habbit 

et al. 2022). Through variation of matrix composition, the Young’s moduli of acellular 

hydrogels were tuned from 50 to 10,000 Pa to mimic clinical PCa stiffness values; gene 

sets associated with stiffened matrix include epithelial-to-mesenchymal transition, metabolic 

plasticity, and angiogenesis.

The metabolic activity of cancer cells shifts as they undergo changes in aggressiveness, 

in part due to diminished nutrient availability associated with cancer cell growth which 

outpaces vascularization and the deposition of the dense matrix which restricts diffusion of 

nutrients (Netti et al. 2000). While nutrient availability can be simulated in 2D culture 

through varying nutrient concentrations, this does not recapitulate interstitial transport 

or nutrient gradients that would exist within a tissue. Thus, tissue-engineered platforms 

provide an opportunity to effectively model simple physiological phenomena like nutrient 

availability. In one study, PCa cells were grown in monolayer overlaid on top of or beneath a 

disulfide-crosslinked hyaluronic acid hydrogel to simulate high and low nutrient availability, 

respectively (Tam et al. 2020). Cells grown on top of the hyaluronic acid gels were more 

viable than cells cultured beneath the gel, suggesting that hyaluronic acid may restrict the 

transport of nutrients below the gel. ATP content within PCa cells decreased over time and 

with increasing hydrogel concentration, perhaps through autophagy, which can be used as 

a survival mechanism under conditions of nutrient deprivation. Collectively, this approach 

represents an interesting strategy to study the role of interstitial transport on PCa behavior in 
vitro.

Complexity of co-culture

The study of cancer cells in monolayer culture is a common, inexpensive approach to 

study molecular mechanisms and evaluate the efficacy of therapeutics. While this reduction 

in system complexity creates an easy workflow, it reduces biological relevance which is 

reflected in the generation of many cancer therapeutics with few candidates exceeding a 

Phase 1 clinical trial. Thus, the incorporation of co-culture and biologically relevant cues 

through tissue-engineered models may allow for more reliable translation of results from 

bench to bedside (Fong et al. 2016a) (Fig. 6).
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PCa patient-derived xenograft cells do not grow well on tissue culture plastic once 

isolated from the murine host. To effectively study PCa patient-derived xenograft tissue 

in a controlled environment, PCa patient-derived xenograft cells were encapsulated in 

a hyaluronic acid hydrogel with murine MC3T3-E1 pre-OBs to model the bone–PCa 

interaction (Fong et al. 2016b). PCa cells grew better in the presence of MC3T3-E1s than 

when maintained in monoculture within the scaffold, while expression of bone-specific 

markers (e.g. osteocalcin, bone sialoprotein, and alkaline phosphatase) was significantly 

higher in co-culture than for MC3T3-E1 alone. The engineering of 3D bone tissue models 

reflects host anatomy and thus predictive value of observed outcomes in vitro. This 

approach has revealed the direct impact of PCa cells on OCY viability and Wnt signaling 

which were not captured in 2D culture (Choudhary et al. 2018). Similarly, tunable gelatin 

methacrylamide models have enabled simultaneous coculture of osteogenic, adipose, and 

tumor microtissues to model the human bone tumor microenvironment more faithfully 

(Bessot et al. 2023). Thus, tissue-engineered models may provide essential cues for patient 

cell survival with a simpler workflow and reduced harm to animals.

Conclusions, challenges, and opportunities for advancement

Despite improvements in patient survival outcomes in recent years, there remain myriad 

unmet clinical needs. As identified earlier, there is still a need for a PCa-specific biomarker. 

Though serum PSA is currently used to identify the presence of PCa, PSA is not specific to 

PCa, nor does it correlate with disease severity. Second, both PCa and its treatment impart 

burdens on the patient, particularly for the skeleton. Notable sequelae of ADT, enzalutamide, 

apalutamide, and prednisone include bone loss and increased risk of fracture, together 

limiting the quality of life for patients on PCa treatment. Though bone loss may appear 

on the surface to be an acceptable off-target effect of PCa treatment, bone loss may have 

more dire consequences than previously considered including permitting metastasis to or 

growth within bone. Thus, treatments for bone health must also be considered alongside PCa 

treatment to improve patient quality of life and lifespan. Finally, myriad questions remain 

regarding the relationship between PCa and bone. Understanding of differences in bone 

tropism between PCa that is metastatic at diagnosis vs metastatic following local treatment 

may highlight differences in molecular mechanisms between these clinical entities. Further, 

understanding which cells within the bone – OB, OCL, OCY, or components of the BM – 

contribute most to PCa metastasis may identify new treatment or preventative strategies to 

mitigate the metastatic burden.
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Figure 1. 
Long bone anatomy and cellular composition. (A) Long bones are hollow, marrow-filled 

shafts with rounded, sealed ends. The diaphysis is the middle, tubular shaft of bone in of 

the bone which encases the medullary cavity and the bone marrow. Proximal and distal to 

the diaphysis are the conical epiphyses, whose rounded ends provide attachment sites for 

connective tissue. In growing individuals, the epiphysis and diaphysis are separated by the 

metaphysis, whose growth plates (physes) allow for longitudinal growth before ultimately 

fusing with the epiphysis in adulthood. Bone tissue is composed of spongy trabecular bone 

found inside bone, primarily within the epiphysis, while compact cortical bone forms the 

thick outer shell of the bone. The cellular composition of bone involves bone-resorbing 

osteoclasts, bone-forming osteoblasts, and matrix-entrapped osteocytes that coordinate the 

activity of osteoblasts and osteoclasts. Bone-lining cells cover bone surfaces in the absence 

of formation or resorption; they can be mobilized to active osteoblasts during remodeling. 

(B) Bones are intricately vascularized to meet high metabolic demands. Cortical bone 

is supplied through large arteries which enter the bone in the diaphysis. Cortical bone 

vasculature is then organized into Haversian and Volkmann canals which supply blood 

longitudinally and sagittally, respectively. In contrast, the trabecular vasculature enters near 

the metaphysis to provide oxygen-rich blood (red) to the growth plate before draining 

into the medullary cavity to provide less oxygen-rich blood (purple) to the bone marrow. 

Oxygen-poor blood in the medullary cavity (blue) then drains through a central vein which 

exits the bone through the diaphysis.
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Figure 2. 
Treatment of prostate cancer over its disease course. The initial stage of prostate cancer 

involves prostate-confined disease, referred to as local or nonmetastatic disease; local 

disease is treated with surgery or radiation and is surveilled for recurrence. Recurrent 

or metastatic disease if caught early is normally castration-sensitive and is thus treated 

with surgical or chemical androgen deprivation therapy (ADT). ADT is the foundation of 

prostate cancer treatment throughout the disease course. Prostate cancer eventually becomes 

castration-resistant when the disease no longer responds to ADT (denoted by blue gradient). 
Castration-resistant prostate cancer is often subsequently treated with androgen biosynthesis 

inhibitors (ABI), antiandrogens (AA), or taxanes (Tx). New therapies for metastatic 

castration-resistant prostate cancer include immunotherapy (I), radiopharmaceuticals (R), 

and PARP inhibitors (PI). Prostate cancer can metastasize during either the castration-

resistant or castration-sensitive phase (denoted by the pink gradient). Metastasis becomes 

more likely as the disease progresses and alters the treatment of the cancer. Therapies 

impacting bone mass (denoted by underlining) are given throughout the disease.
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Figure 3. 
Radiographic detection of prostate cancer metastases and histologic patterns. (A) Whole-

body magnetic resonance imaging (MRI) showing suspected metastatic lesion in thoracic 

vertebra seven; metastasis to axial bones is most common in prostate cancer. Reproduced 

with permission from (Chen et al. 2021). (B) Metastatic bone biopsy demonstrating lytic, 

blastic, and mixed lesions within a single biopsy stained with Goldner-Masson trichrome. 

Green areas indicate bone, pink areas indicate prostate cancer, and red areas indicate osteoid. 

Ovals indicate differences among approximate bone volumes, including 70, 50, 20, and 2% 

(clockwise from bottom). Bar indicates 1 mm. Reproduced with permission from (Roudier 

et al. 2008).
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Figure 4. 
The metastatic cascade. The multi-step metastatic cascade begins with transformation, where 

healthy tissue develops a tumor. Next, the tumor must stimulate angiogenesis to create its 

own blood supply and meet its metabolic needs. Some cancer cells will enter the vasculature 

in a step termed motility and invasion. Invasion into the vasculature enables cancer cell 

circulation throughout the body until it arrives at a suitable secondary site. Once at a suitable 

secondary site, cancer arrests in a capillary bed. The cancer cell can then extravasate from 

the capillary and proliferate in the secondary metastatic site.
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Figure 5. 
Prostate cancer engages bone cells to promote metastatic growth. Prostate cancer (PCa) 

recruitment to bone involves myriad pathways including the CXCL12/CXCR4 axis. 

Osteocytes may also recruit PCa to bone via production of CCL5. Once in bone, PCa 

binds to the endosteal surface via annexin A2 binding. Growth factors released from the 

bone matrix by osteoclasts such as TGF-β1 promote PCa growth. Further breakdown of the 

bone matrix is accomplished by osteocyte production of matrix metalloproteinases (MMPs). 

Calcium donation through gap junctions between PCa and osteoblasts may also promote 

PCa growth and metastasis. However, osteoblast production of Wnt5a has been shown to 

induce dormancy in PCa. Further, the production of GDF10 and TGF-β2 by osteoblasts 

induces quiescence in PCa cells. Thus, bone cells may also act as sentries against PCa 

growth.
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Figure 6. 
Engineered models to study prostate cancer. Tissue-engineered models provide both 

tunability and complexity, enabling the study of the role of the tumor microenvironment 

through interrogation of cell–matrix interactions and crosstalk between cancer cells and 

resident tissue cells. Common approaches in engineered models aim to model bone 

composition and biophysical properties, the metastatic potential of cancer cells through 

biological mediated regulation of substrate degradation, and the incorporation of other 

contributing cells to understand their influence on tumorigenesis and metastasis.
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