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Abstract

Objective.—Accurate tumor detection is critical in cystoscopy to improve bladder cancer 

resection and decrease recurrence. Advanced deep learning algorithms hold the potential to 

improve the performance of standard white-light cystoscopy (WLC) in a noninvasive and cost-

effective fashion. The purpose of this work is to develop a cost-effective, transformer-augmented 

deep learning algorithm for accurate detection of bladder tumors in WLC and to assess its 

performance on archived patient data.

Approach.—‘CystoNet-T’, a deep learning-based bladder tumor detector, was developed with 

a transformer-augmented pyramidal CNN architecture to improve automated tumor detection of 

WLC. CystoNet-T incorporated the self-attention mechanism by attaching transformer encoder 

modules to the pyramidal layers of the feature pyramid network (FPN), and obtained multi-scale 

activation maps with global features aggregation. Features resulting from context augmentation 

served as the input to a region-based detector to produce tumor detection predictions. The training 

set was constructed by 510 WLC frames that were obtained from cystoscopy video sequences 

acquired from 54 patients. The test set was constructed based on 101 images obtained from WLC 

sequences of 13 patients.

Main results.—CystoNet-T was evaluated on the test set with 96.4 F1 and 91.4 AP (Average 

Precision). This result improved the benchmark of Faster R-CNN and YOLO by 7.3 points in F1 

and 3.8 points in AP. The improvement is attributed to the strong ability of global attention of 

CystoNet-T and better feature learning of the pyramids architecture throughout the training. The 

model was found to be particularly effective in highlighting the foreground information for precise 

localization of the true positives while favorably avoiding false alarms
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Significance.—We have developed a deep learning algorithm that accurately detects bladder 

tumors in WLC. Transformer-augmented AI framework promises to aid in clinical decision-

making for improved bladder cancer diagnosis and therapeutic guidance.
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1. Introduction

Bladder cancer (BCa) is the sixth most common cancer in the US, with an estimated 

81,180 new cases in 2022 (Siegel et al 2022). White light cystoscopy (WLC) is the 

standard endoscopic tool to evaluate the inner surface of the bladder for cancer screening 

or surveillance. If a tumor or an indeterminate lesion were identified, a WLC-enabled 

endoscopic surgical procedure called transurethral resection of bladder tumor (TURBT) 

is performed to remove the tumor and/or biopsy the lesion to establish the pathological 

diagnosis. About a million cystoscopies are performed annually in the US for screening or 

surveillance of BCa (O’Sullivan et al 2022). Owing to the high prevalence of disease and 

high risk of recurrence and progression, adequate tumor detection in cystoscopy is critical 

for diagnosis, risk stratification, and guiding complete resection. However, not all cancerous 

areas are readily visible using WLC. Up to 40% of BCa lesions are undetected during initial 

WLC (Burger et al 2013, Oude Elferink and Witjes 2014).

Blue light cystoscopy (BLC), also known as fluorescence cystoscopy or photodynamic 

diagnosis, is an adjunct to WLC that enhances detection of BCa through selective tumor 

uptake of the imaging agent hexaminolevulinate (Daneshmand et al 2014). Despite reported 

benefit in improved tumor detection, adoption of BLC remains limited due to the increased 

cost of specialized cystoscopic equipment and imaging agent, as well as clinical workflow 

demand to instill the imaging agent into the bladder 1 hour in advance of BLC. Moreover, 

a recent randomized controlled trial of BLC versus WLC failed to demonstrate a benefit to 

recurrence-free survival at 3 years, but did confer some additional cost (Heer et al 2022). 

Cost-effective, noninvasive, and easily adoptable adjunct imaging technologies are needed to 

address the diagnostic shortcomings of both WLC and BLC.

Deep learning has yielded breakthroughs not only in natural image analysis, but also in 

biomedical applications such as artificial intelligence (AI)-assisted diagnosis. Several efforts 

have been dedicated to developing deep learning-based approaches that can automatically 

identify bladder lesions to enhance medical decision-making in WLC (Eminaga et al 2018, 

Shkolyar et al 2019a, 2019b, Chang et al 2020, Ikeda et al 2020, Yang et al 2021). Previous 

work by us (Shkolyar et al 2019a, 2019b, Chang et al 2020) has developed a Faster R-CNN 

(Ren et al 2015)/YOLO (Redmon and Farhadi 2018)-based model, CystoNet, for automated 

cystoscopic detection of bladder tumor using deep learning.

The evolution of computational technologies has revealed the depth and scale of feature 

representations are of importance to deep learning-based model performance (He et al 

2016, Lin et al 2017). Multi-scale feature extraction with deeper network architectures 

may improve performance, by learning higher-level representations and richer semantics 
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of tumors on both input image and feature maps. Furthermore, attention mechanisms 

can potentially improve tumor detection by augmenting feature maps for model learning. 

Several attempts have been made to apply attention in conjunction with convolutional neural 

networks (CNNs) with improvement in accuracy (Hu et al 2018, Shen et al 2021).

Transformers were introduced by Vaswani et al (2017) as a new attention-based building 

block for natural language processing, and have recently gained popularity in computer 

vision. Transformers utilize non-local self-attention mechanisms, which can explicitly 

model interactions of all pixels on feature maps (Carion et al 2020). We hypothesize 

that augmenting feature learning by combining a CNN detector with transformer-based 

self-attention can improve bladder tumor detection under cystoscopy.

Herein we propose ‘CystoNet-T’, a transformer-augmented deep learning-based model for 

automated tumor detection during standard WLC. CystoNet-T builds upon our prior work 

(Shkolyar et al 2019a, 2019b, Chang et al 2020) that aims to improve WLC tumor detection 

by utilizing a transformer-augmented pyramidal CNN architecture. Feature learning is 

enhanced by aggregating global context information via transformer-based self-attention 

as well as integrating low- and high-resolution features via feature pyramid networks. 

This represents the first study to investigate the potential of transformers and attention 

mechanisms in cystoscopy.

CystoNet-T was trained and evaluated on an annotated development dataset from patients 

undergoing clinic flexible cystoscopy and TURBT. We show that this new framework 

enables accurate tumor detection across a range of sizes, morphologies, and locations.

2. Materials and methods

2.1. CystoNet-T for bladder tumor detection

An overview of the CystoNet-T structure is shown in figure 1. CystoNet-T is composed of 

three main components: a ResNet50 backbone to extract compact feature representations, a 

transformer encoder with a feature pyramidal architecture to augment feature learning, and a 

region-based detector that determines the final detection prediction.

Backbone.—The backbone of ResNet50 (He et al 2016) consists of one convolution level 

C1 and four residual levels {R2, R3, R4, R5}. The output width and height in {C1, R2, R3, 

R4, R5} have a spatial scale of {1/2, 1/4, 1/8, 1/16, 1/32} of the input image x ∈ ℝ3 × H0 × W 0

(with 3 color channels). Feature activation maps f i ∈ ℝCi × Hi × W i are generated by residual 

level i and connected to the pyramid components. The standard architecture of ResNet50 

with the standard values C5 = 2048 and H5, W 5 = H0
32 , W 0

32  was followed.

Transformer encoder.—Transformer encoder expects an input sequence to learn the 

global context information through self-attention. Hence, we flatten the high-level feature 

activation f5 by first reducing its channel dimension (from C5 = 2048 to a smaller dimension 

Cd = 256) with a 1 × 1 convolution, then collapsing the spatial dimensions to one to produce 

a Cd × H5W 5 feature map. The resulting feature maps are supplemented with positional 
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encoding to preserve positional information, and then utilized as the input to the transformer 

encoder. We applied the transformer with 6 encoder layers, each with a standard architecture 

(Carion et al 2020, Dosovitskiy et al 2020). Figure 1(b) illustrates a transformer encoder 

layer that consists of a multi-head self-attention module, layer normalization, and a feed 

forward network (FFN). The FFN is composed of two layers of 1 × 1 convolutions with 

ReLU activations. The output of the transformer is reshaped from Cd × H5W 5 to Cd × H5 × W 5

and added to the input of FPN. We note that while the encoder input and encoder 

output have the same dimensionality, they may not have a one-to-one correspondence 

in terms of the information they represent. The encoder output typically consists of 

encoded representations of the input sequence, which are often aggregated or summarized 

representations capturing the important features of the input.

Transformer-augmented FPN.—Feature pyramid networks (FPNs) can construct feature 

pyramids from a single-scale input using a top-down pathway and lateral connections (Lin et 

al 2017). FPN architecture allows feature integration across resolutions and semantic levels, 

making it particularly suitable for the detection of various tumor sizes and morphologies. 

We built four pyramid levels referring to the number of residual modules (figure 1 (a)). 

Here feature maps in the FPN top-down pathway are augmented by the transformer encoder 

with non-local features aggregation and attention weights. The resulting feature set of the 

transformer-augmented FPN is called {P2a, P3a, P4a, P5a} and serves as the pyramid 

component to produce multi-scale predictions. Furthermore, a potential issue related to the 

data interface of a transformer model is the possibility of information loss during the data 

conversion process at the encoder input. Given the computational demands of transformers, 

our approach in designing CystoNet-T involves operating the encoder input at a higher 

semantic level (R5) derived from ResNet. This may lead to the loss of certain fine-grained 

details, such as very small or subtle visual patterns, in the encoder input representation. 

To mitigate information loss and retain as much relevant information as possible, we have 

incorporated lateral connections from the FPN into CystoNet-T. These connections establish 

links to the R2–R4 stages of ResNet, allowing CystoNet-T to access both high-level and 

low-level information throughout the network. By incorporating these connections, we 

ensure the preservation and propagation of important information that might otherwise be 

lost or diluted during the forward pass through the network.

Region-based detector.—After pyramidal features are extracted and augmented via 

global attention, they are fed into a region-based detector to produce detection predictions. 

The resulting bounding boxes give an indication of the lesion location, which can provide 

auxiliary information for diagnosis and guide TURBT. The predictor head follows the Faster 

R-CNN approach described in (Ren et al 2015). CystoNet-T is developed by attaching the 

region proposal network (RPN) to all levels of transformer-augmented FPN, i.e. {P2a, P3a, 

P4a, P5a}, to generate multi-scale proposal regions. We use region of interest (RoI) pooling 

to reshape the proposals into fixed-size feature maps, which serve as the input to a sequence 

of fully connected (fc) layers. The final detection output is generated in parallel by a softmax 

classifier and a bounding box regressor.
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2.2. Sub-networks

Positional encoding.—Network activations are associated with the spatial positions of 

image features. Since the transformer expects a sequence of vectors as input, we use two-

dimensional positional embedding to retain positional information (Vaswani et al 2017). 

The positional encoding ensures that the model can differentiate between different positions 

within the input sequence, compensating for the lack of inherent spatial awareness in the 

transformer architecture. Here, we use two sets of fixed absolute encoding, each for one 

of the feature axes, i.e. x-embedding, and y-embedding, each with size Cd ∕ 2. The final 

positional encoding with size Cd is generated by concatenating the x and y embedding. 

Specifically, for a feature pixel with position (x, y), its positional encoding is defined as 

[PE(x):PE(y)], where [:] denotes concatenation and function PE is defined by:

PE(x, 2i) = sin(x ∕ 10000x ∕ Cd)
PE(x, 2i + 1) = cos(x ∕ 10000x ∕ Cd),

(1)

where Cd denotes the dimensionality of the encoder input and output. In our model, we use 

Cd = 256. i ∈ [0, 1, …, Cd ∕ 2) is the dimension for each embedding of the spatial coordinates x
and y.

Region proposal network.—The region proposal network (RPN) was introduced by Ren 

et al (2015) to generate a set of RoIs before task-specific detection. Anchor was defined 

in RPN as a set of reference boxes with multiple scales and aspect ratios to cover objects 

of various shapes and sizes, which is of utility in bladder tumor detection. In its original 

design, anchors were assigned on the last backbone layer R5, however we designed the 

anchors with scales of {322, 642, 1282, 2562}, each with multiple aspect ratios of {1: 1, 1: 

2, 2: 1} for {P2a, P3a, P4a, P5a}, respectively. As such, anchors are assigned to each of the 

transformer-augmented FPN components, allowing the model to densely cover all locations 

in all scale levels of the input. We also apply an RoI pooling layer as max-pooling, which 

performs downsampling of arbitrarily sized features at the proposal regions and produces 

feature maps with a small, fixed spatial size. Here 7 × 7 is used by default.

2.3. Dataset

With institutional review board approval, WLC images were collected from patients 

undergoing clinic flexible cystoscopy and TURBT in the operating room.

The dataset was constructed from 611 WLC images containing histologically confirmed 

papillary urothelial carcinoma, where tumors were annotated and outlined by expert 

urologists. The dataset was built to cover as many varieties of bladder tumors as possible, 

such as having differences in morphology, size, location, and illumination. To implement 

the detection algorithm, a ground truth setting consisting of a tumor bounding box was 

generated based on the outline annotation to fit the contour of a tumor. We illustrate the 

variation of the WLC dataset in figure 2 in terms of relative tumor size, which calculates 

the size ratio between the tumor location box (bounding box sufficiently fitting the tumor 

area) and the corresponding WLC frame. The values scattered along the x-axis indicate large 

variations in tumor scales for detection.
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The training set contained 510 labeled frames obtained from WLC sequences of 54 patients. 

The test set contained 101 labeled frames acquired from a separate set of 13 patients. Some 

frames contain more than one tumor and thus increase the complexity of detection. We 

imposed the constraint that a patient’s records cannot be divided across different sets to 

facilitate the evaluation of the effectiveness and generalizability of the proposed method. 

This constraint ensures that the model’s performance can be assessed on unseen data and 

prevents it from becoming overly specialized to the training dataset.

2.4. Implementation details

CystoNet-T was implemented using PyTorch (Paszke et al 2019) on a single NVIDIA 
GeForce GTX TITAN Xp. The backbone and encoder were pretrained on COCO dataset 

(Carion et al 2020), and the remaining layer weights were randomly initialized. For the 

region-based detector head, the Intersection-over-Union (IoU) threshold of nonmaximum 

suppression (NMS) was set to 0.7 following (Ren et al 2015), which helps remove RoIs 

that overlap with others that have higher scores. The anchor was assigned to negative if it 

had an IoU lower than 0.3. Dropout was employed during the training phase of CystoNet-T, 

encouraging the model to learn more robust and generalized representations.

CystoNet-T was trained end-to-end to minimize multi-task loss function L(p, p∗, t, t∗) which 

measures the matching of the predicted and annotated lesions:

L(p, p∗, t, t∗) = Lcls(p, p∗) + p∗Lreg(t, t∗), (2)

where p is the predicted probability distribution of tumor (positive) and background 

(negative), t is a vector showing the four coordinates of the predicted bounding box. p∗

and t∗ represent the ground-truth label and bounding-box regression target, respectively. 

p∗ = 1 if the target is an area presenting a tumor, and p∗ = 0 otherwise. Lcls(p, p∗) = − log(pp∗)
for true class p∗ is a log loss for positive-negative classification. We used the smooth L1 loss 

defined in (Girshick 2015) for bounding box regression:

smoothL1(x) = 0.5x2 if ∣ x ∣ < 1
∣ x ∣ − 0.5 otherwise,

(3)

and Lreg(t, t∗) = smoothL1(t − t∗) is activated for tumor targets.

We used scale augmentation, resizing the input images such that the shorter side was at 

least 640 and at most 800 pixels while the longer side was at most 960. We applied simple 

transformation techniques, such as random rotations and flips, provided by the PyTorch 

library to artificially increase the size and diversity of the training dataset and enhance the 

model’s generalization ability. We trained the model with an initial learning rate of 10−4. 

The training schedule was set to 300 epochs with a decay factor of 0.1 after 200 epochs.

2.5. Evaluation metrics

We evaluated CystoNet-T performance as the accurate identification of lesion location in a 

frame containing tumor. We followed the measurements described in (Bernal et al 2017). 

Jia et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IoU metric evaluates the degree of overlap between the ground truth (GT) and prediction 

(PR), and it is calculated as an area of intersection divided by the area of union between the 

ground truth and predicted box:

IoU = ∣ PR ∩ GT ∣
∣ PR ∪ GT ∣ , (4)

where ∩ represents the set intersection and ∪ represents set union. For IoU threshold at 

λ, true positive (TP) is a detection for which IoU(GT, PR) ⩾ λ and false positive (FP) 

is a detection for which IoU(GT, PR) < λ. False negative (FN) is a ground-truth tumor 

missed together with GT for which IoU(GT, PR) < λ. We use λ = 0.5 in our case to 

evaluate detection accuracy. For multiple predictions generated on the input, only one TP is 

considered per tumor. The detection with the highest score is considered a TP and others are 

considered to be FP. Recall (R) is the proportion of TPs among all GTs and precision (P) 

is the proportion of TPs among all detections produced by the model. F1 is the harmonic 

average of R and P that calculates the balance between precision and recall:

R = TP
TP+FN

P = TP
TP+FP

F1 = 2 × P × R
P + R

(5)

We also report the average precision evaluated at IoU threshold λ = 0.5 simply as AP to 

provide an overall evaluation, calculating the area under the precision-recall curve.

3. Results

In figure 3, we display the self-attention of the transformer with a reference point (red) 

on the test input. Attention mechanisms in the encoder allow the model to focus on the 

informative and relevant regions when predicting tumors. Furthermore, self-attention enables 

global reasoning over whole image context, and thus can model relations and interactions 

between features of different elements.

With global attention performed, we show activation maps of the transformer-augmented 

FPN in figure 4. Feature representations at the low-resolution level of FPN (P5 in figure 

4) were augmented by aggregating non-local context of self-attention and activations across 

resolutions and semantic levels. Predictions were made on pyramidal levels of P5a–P2a and 

together contributed to the final performance of precise tumor detection.

Representative bladder tumor detection images are shown in figure 5. Predictions were 

made by CystoNet-T on the test set. The results cover scenes with tumors of various 

sizes (from large to small), morphologies, and locations (see figure 5(A)-(J)). We observed 

accurate predictions (blue and orange) closely associated to the ground truth (green) across a 

range of lesion cases, including challenging examples of clustered multifocal tumors (figure 

5(K)-(M)), complex image backgrounds (figure 5(N)), and obscure tumor regions of low 

contrast with the background (figure 5(O)). We believe that precise localization was enabled 
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by leveraging both attention maps from global computations and feature representations 

from pyramidal levels.

A full comparison of detection performance of CystoNet-T and the latest detectors for 

bladder tumor detection is presented in table 1. Faster R-CNN and YOLO in the comparison 

represent the adapted versions of Faster R-CNN (Ren et al 2015) and YOLO (Redmon 

and Farhadi 2018) that were optimized for cystoscopic detection of bladder tumors in 

our previous work (Shkolyar et al 2019a, 2019b, Chang et al 2020). They were also 

the most popular and competitive detectors on detection tasks. We attempted to further 

optimize Faster R-CNN by upgrading the original backbone of VGG to ResNet50 to align 

it with competitors. FPN (Lin et al 2017) was also optimized for bladder tumor detection 

(by Yoo et al (Yoo et al 2022)) and served as a baseline method of the ResNet50 + 

FPN backbone for comparison with the proposed CystoNet-T. Models were trained and 

tested with the same data setting to ensure a fair comparison. CystoNet-T demonstrated 

significantly better performance on bladder tumor detection, achieving 96.4 F1 and 91.4 

AP on the test set. This improves the well-established benchmark detectors of YOLO 

and Faster R-CNN by 8.1 points in R and 5.7 points in P, resulting in a 7.3 F1 and 

3.8 AP improvement in detection performance. The gains of CystoNet-T arise from the 

effective exploitation of multi-scale information and global scene reasoning via transformer-

augmented FPN. This development leads to better feature learning throughout training 

and highlights the foreground information for precise localization of the true positives 

while favorably avoiding false alarms We further evaluated the importance of self-attention 

mechanism by quantitatively comparing CystoNet-T with the baseline FPN. Without global 

self-attention of transformers, performance drops by 3.2 points in F1 and 1 point in AP, 

we thus conclude that non-local computations allowed by encoder attention are important 

for achieving accurate detection. Additionally, the reported results provide insights into the 

model’s performance on the unseen data from the test set, indicating its robustness against 

overfitting.

4. Discussion

This study aimed to develop an AI-assisted approach to improve the accuracy of 

automated bladder tumor detection, with the eventual goal of seamless integration with 

WLC in clinical settings. Compared to natural image processing, bladder tumor detection 

presents greater challenges due to the low contrast between lesions and the bladder wall, 

as well as considerable intraclass variation in tumor morphologies and sizes. Recent 

advances in deep learning-based image processing have shown the potential to optimize 

detection performance through enhanced feature learning capabilities and sophisticated 

network architectures. The attention mechanism provides a powerful tool for capturing 

and emphasizing the important features for tumor identification, leading to more accurate 

detection outcomes. Furthermore, the self-attention mechanism employed by the transformer 

is particularly useful for lesion detection tasks. It enables the model to capture both local and 

global information, allowing it to focus on fine-grained details within specific lesion regions 

while considering the broader context and global relationships between different regions 

(please refer to figure 4 for an illustration of feature augmentation through self-attention). 

This selective attention improves the model’s ability to discriminate between lesions 
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and normal tissues and enhances its capability to detect lesions with various variations. 

Additionally, since tumors vary in size, incorporating features from different resolutions 

can further enhance the performance of tumor detection. These factors served as strong 

motivation for the development of a specialized framework for cystoscopic detection of 

bladder tumors. Our framework incorporates multi-scale attention-augmented lesion feature 

extraction, allowing us to effectively address the challenges associated with accurate tumor 

detection in cystoscopy.

The majority of existing methods have focused on image-level classification, generating text 

predictions per image input. Early work on classifying cystoscopy images based on hand-

engineered color features has achieved good sensitivity for tumor identification, but with 

a false positive rate of 50% (Gosnell et al 2018). Convolutional neural networks (CNNs) 

were introduced in the work of Eminaga et al (2018) for WLC image classification, where 

training and validation were performed on a curated WLC image atlas. The work of (Ikeda 

et al 2020, Yang et al 2021) evaluated typical CNN architectures for their performance 

in distinguishing images of bladder tumors, and they demonstrated accuracy gains from 

increased network depth.

Compared to image-level classification, the output of region-level detection algorithms can 

indicate the lesion location on the input image which is of clinical utility. In our previous 

work (Shkolyar et al 2019a, 2019b, Chang et al 2020) we developed a deep learning model, 

CystoNet, for cystoscopic detection of bladder tumors, with a CNN detector based on 

benchmark methods of Faster R-CNN (Ren et al 2015) and YOLO (Redmon and Farhadi 

2018). We recognize the importance of region-level detection algorithms in two regards. 

One, the bounding box detection of tumors enables explainable and reliable AI predictions, 

and two, an indication of the lesion location can provide auxiliary information for diagnosis 

and guide urologists in performing targeted tumor resection.

The deep learning-based algorithm presented in this paper, CystoNet-T, provides an effective 

solution to the challenge of accurate tumor detection in WLC images. CystoNet-T is an 

upgraded version of CystoNet that enables more precise tumor localization by transformer-

augmented pyramidal feature learning. To the best of our knowledge, this is the first 

attempt to explore the potential of global self-attention of transformers in cystoscopic tumor 

detection. We also evaluated multiple competitive baselines and demonstrated the superior 

performance of CystoNet-T over these alternatives.

To show that CystoNet-T achieves better performance for tumor detection, figure 6 plots the 

precision-recall curve of CystoNet-T and the leading deep learning-based methods (YOLO, 

Faster R-CNN, FPN) for bladder tumor detection. Models follow the same configuration 

described in table 1, area under the precision-recall curve referring to the AP values. 

CystoNet-T showed the best performance in terms of area under the precision-recall curve 

with the highest 91.4 AP, against the three other methods. Figure 7 shows the results of 

CystoNet-T (figure 7(A*)-(D*)) and the benchmark detector of Faster R-CNN (figure 7(A)-

(D)) on the test set. Faster R-CNN generated false alarms (IoU(GT, PR) < 0.5 ) in cases of a 

large and obscure tumor (figure 7(A)) and a small tumor located at the very top corner of the 

image (figure 7(B)). Faster R-CNN produced no activation in figure 7(C) with a tumor with 
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irregular morphology present in the frame. CystoNet-T had no errors in the same examples 

compared to Faster R-CNN (see figure 7(A*)-(C*)). CystoNet-T enables precise localization 

of predicting boxes around bladder tumor regions, across a range of sizes, morphologies, and 

locations. transformer-augmented FPN is the key element that significantly contributes to the 

performance gain, which improves network feature learning by aggregating information of 

global self-attention and feature pyramids.

CystoNet-T runs at 4 FPS (frame per second) on a single GPU of NVIDIA GeForce GTX 
TITAN Xp, with inference time of ~0.231 s for each WLC image input, similar to FPN with 

~0.227 s inference time. As a reference, benchmark methods of Faster R-CNN and YOLO 

run at 5 and 6 FPS, respectively. CystoNet-T increases runtime due to the extra costs of 

feature pyramids and transformer self-attention, but with clear gains in detection accuracy.

There are a few limitations to our work. In figure 7(D) and (D*) we show a failure 

case with multifocal tumors. Both Faster R-CNN and CystoNet-T missed one of the two 

tumors located on the bottom edge, failing to generate a positive alarm on the lesion 

region. CystoNet-T is likely to further improve with information aggregation from temporal 

dimension and training data with more morphologies. To make the model applicable 

in real-time, more efficient pre-processing and inference schemes are needed to reduce 

frame redundancy during WLC screening. Despite these limitations, this study represents a 

significant step forward in accurate tumor detection, with performance superior over current 

state-of-the-art models.

In the future, sequential data of cystoscopy videos will be included for model development 

and validation, extending the model from still-frame analysis. In addition, training 

and performance evaluation will need to be done with an extended variety of tumor 

morphologies, such as flat lesions. Conducting further studies with larger and more 

diverse datasets would also be valuable for validating the generalization capability of the 

proposed CystoNet-T model and assessing potential overfitting. Furthermore, we recognize 

the significance of achieving high segmentation accuracy in the context of the TURBT 

procedure. Mask R-CNN (He et al 2017) is a widely used framework for instance detection 

and segmentation. It employs ResNet-FPN as the backbone for feature extraction. The 

proposed CystoNet-T, with its transformer-augmented FPN backbone, can be viewed as 

an evolution of the FPN detector branch of Mask R-CNN. By incorporating transformer-

based self-attention to each pyramid layer, it enables global feature aggregation. A more 

comprehensive study capable of generating real-time and accurate tumor outlines can be 

developed in the future by using the detection results of the CystoNet-T as valuable prompts 

for lesion segmentation. We note that CystoNet-T is quite general and easily generalized to 

various other endoscopic imaging modalities without significant modifications. We believe 

the findings of this study will facilitate AI-assisted applications in real-world cystoscopy 

workflow with increased accuracy of cancer detection and aid in the prompt diagnosis of 

bladder cancer using WLC.
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5. Conclusion

We have developed CystoNet-T, a transformer-augmented deep-learning algorithm, for 

accurate bladder tumor detection in WLC. This method greatly improves our previous work, 

CystoNet. Our experiments show that CystoNet-T achieves excellent results across a range 

of tumor sizes, morphologies, and locations. Hence, it holds promise in aiding bladder 

cancer screening and improving the diagnostic decision-making of WLC.
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Figure 1. 
CystoNet-T framework for bladder tumor detection. (a) CystoNet-T architecture. CystoNet-

T uses the backbone of ResNet50 and FPN to generate high-level and multi-scale feature 

representations. Feature maps of the last residual block are flattened and supplemented 

with positional encoding before passing into the transformer encoder. {P2a, P3a, P4a, P5a} 

are feature pyramid components augmented by the transformer. A region-based detector is 

attached to all pyramid levels as the predictor head to produce the detection result, i.e. class 

and bounding box. (b) Illustration of a building block for the transformer encoder layer with 

multi-head self-attention. FPN = feature pyramid network; RoI = region of interest; RPN = 

region proposal network; Fc layer = fully connect layer; FFN = feed forward network.
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Figure 2. 
Distribution of the relative tumor size in the WLC dataset. The values of x-axis represent the 

size ratio between the tumor location box and the corresponding WLC image.
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Figure 3. 
Attention maps of the last encoder layer of transformer. Red dots represent the reference 

points of self-attention. From top to bottom shows predictions on a test set image with a 

small tumor region (top); a large tumor region (middle); multifocal tumor regions (bottom).
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Figure 4. 
Feature activation maps of the pyramid levels of transformer-augmented FPN. From left to 

right: input of a test set image; low-resolution activation maps of FPN w/o transformer 

augmentation; activation maps of transformer-augmented sets {P5a, P4a, P3a, P2a} at 

different resolution levels (low to high); ground truth boxes (green). Predictions are 

augmented by aggregating information from pyramidal feature levels and non-local self-

attention.
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Figure 5. 
Representative examples of bladder tumor detection using CystoNet-T. Ground truth is in 

green and the predicted detection is in blue and orange. Each output box is shown with a 

yellow class label of tumor and an associated prediction score in [0, 1]. CystoNet-T enables 

precise detection for tumors of various sizes, morphologies, and locations (A–J), and some 

challenging scenes with multifocal tumor presence (K-M), complex background (N), or 

obscure lesions with limited background contrast (O).
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Figure 6. 
Precision-recall curve of CystoNet-T versus competitive CNN-based methods (YOLO, 

Faster R-CNN, FPN) in detecting bladder tumors. All settings are identical to the same 

methods in table 1. Area under the precision-recall curve is calculated as AP in table 1. 

CystoNet-T shows the best performance with the largest area under the precision-recall 

curve of 91.4 AP.
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Figure 7. 
Comparison of prediction results on the test set. Benchmark detector of Faster R-CNN 

(top) and CystoNet-T (bottom). Green boxes represent ground truth. Blue boxes with a 

yellow class label and prediction score attached on top indicate predictions generated by 

detectors. Faster R-CNN shows poor results in detection of a large, obscure tumor (A) and 

a small tumor located at the very top corner of the image (B), and shows no activation in 

the inference of tumor with irregular morphology (C). CystoNet-T can generate accurate 

detections very close to ground truth (A*–C*). Faster R-CNN and CystoNet-T exhibit errors 

in D and D*, respectively, where both failed to accurately detect one of two tumor regions 

presenting on the bottom edge.
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Table 1.

Comparison of bladder tumor detection with benchmark detectors of Faster R-CNN and YOLO on the test set. 

FPN is the baseline of our method. The comparison items, namely Faster R-CNN, YOLO, and FPN, are 

adapted versions of the original Faster R-CNN (Ren et al 2015), YOLO (Redmon and Farhadi 2018), and FPN 

(Lin et al 2017), respectively, that have been optimized for cystoscopic detection of bladder tumors (Shkolyar 

et al 2019a, 2019b, Chang et al 2020, Yoo et al 2022). Methods were trained and tested with the same data 

settings for a fair comparison. 9 frames on the test set have two tumors present. The sum of TP and FN for 

each model is 111, which is equal to the total number of distinct tumors in the test set. Boldface indicates the 

best performance. CystoNet-T shows a significant improvement of 3.8 AP over the benchmark. TP = true 

positive; FP = false positive; FN = false negative; R = recall; P = precision; AP = average precision evaluated 

at IoU threshold λ = 0.5.

Method Backbone TP FP FN R [%] P [%] F1 [%] AP [%]

YOLO Darknet 98 11 13 88.3 89.9 89.1 87.5

Faster R-CNN ResNet50 99 13 12 89.2 88.4 88.8 87.6

FPN ResNet50 + FPN 103 7 8 92.8 93.6 93.2 90.4

CystoNet-T ResNet50 + transformer-augmented FPN 108 5 3 97.3 95.6 96.4 91.4
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