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Abstract

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering 

the analysis of brain microstructure, geometry, function, and connectivity across multiple scales 

and in living brains. The richness and complexity of multimodal neuroimaging, however, 

demands processing methods to integrate information across modalities and to consolidate 

findings across different spatial scales. Here, we present micapipe an open processing pipeline 

for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) 

structural connectomes derived from diffusion tractography, ii) functional connectomes derived 

from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical 

proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity 

in cortical myelin proxies. The above matrices can be automatically generated across established 

18 cortical parcellations (100–1000 parcels), in addition to subcortical and cerebellar parcellations, 

allowing researchers to replicate findings easily across different spatial scales. Results are 

represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-

conform. Processed outputs can be quality controlled at the individual and group level. micapipe 
was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, 

documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-

apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of 

human brain microstructure, morphology, function, cand connectivity.
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1. Introduction

The human brain is a complex network organized across multiple spatial and temporal scales 

(Betzel and Bassett, 2017). Neuroimaging, and in particular magnetic resonance imaging 

(MRI), provides versatile contrasts sensitive to the brain’s microstructure, connectivity, and 

function, offering a window into its organization in living humans (Turner, 2019; Larivière et 

al., 2019; van den Heuvel et al., 2019; Van Essen et al., 2013).
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Recent years have witnessed the rise of multiple neuroimaging data acquisition efforts 

(Gordon et al., 2017; Royer et al., 2021; Van Essen et al., 2012) as well as initiatives 

for open data sharing to promote transparency and reproducibility (Milham et al., 2018). 

These initiatives offer researchers the ability to interrogate brain structure and function 

in thousands of individuals across multiple sites from around the world. In addition, a 

variety of tools and processing pipelines has previously been developed. These include 

tools for the automated analysis of cortical/subcortical morphology based on T1-weighted 

MRI (Fischl, 2012; Kim et al., 2005; Patenaude et al., 2011), approaches for the analysis 

of myelin-sensitive MRI contrasts to assess brain microstructure (Paquola et al., 2019b; 

Glasser and Van Essen, 2011; Waehnert et al., 2016), measurements of cortical geometry 

and proximity relationships (Ecker et al., 2013; Hong et al., 2018; Paquola et al., 2020), 

the study of intrinsic brain function and functional connectivity via resting-state functional 

MRI, rs-fMRI (Biswal et al., 2010; Craddock et al., 2013; Esteban et al., 2019), and 

analysis of structural connectivity inferred via diffusion MRI tractography (Cieslak et al., 

2021; Daducci et al., 2012; Tournier et al., 2019; Cai et al., 2021; Theaud et al., 2020; 

Rheault et al., 2021). Individually, ongoing advances in MRI modelling approaches result in 

increasing biological validity (Craddock et al., 2015; Jbabdi et al., 2007; Mars et al., 2021), 

promising to extend findings and theory from classical neuroanatomy in non-human animals 

to humans. Yet, most tools developed to date generally focus on the processing of individual 

modalities, or the combination of only few different modalities (e.g., T1-weighted MRI and 

rs-fMRI).

System neuroscience has increasingly benefitted from paradigms that combine different 

imaging modalities (Paquola et al., 2020; Van den Heuvel et al., 2019; Van den Heuvel and 

Yeo, 2017). For example, multiple studies have begun to study brain function and functional 

connectivity in surface-based anatomical reference frames (Huntenburg et al., 2021; Tierney 

et al., 2013; Vos de Wael et al., 2018), and combined these assessments with diffusion MRI 

approaches (Liu et al., 2016; Hong et al., 2019). Further work integrating structural and 

functional neuroimaging modalities has propelled interest in examining structure-function 

relationships in the human brain (Huntenburg et al., 2018; Suárez et al., 2020; Benkarim et 

al., 2022; Paquola et al., 2019b; Vázquez-Rodríguez et al., 2019). Furthermore, there has 

been significant development towards the identification of multimodal parcellations (Fan 

et al., 2016; Eickhoff et al., 2018; Genon et al., 2021, 2018; Glasser et al., 2016) and 

large-scale gradients of brain organization (Vos de Wael et al., 2020, 2021; Margulies et al., 

2016; Paquola et al., 2020, 2019a, 2019b; Valk et al., 2020; Müller et al., 2020; Tian et 

al., 2020). However, researchers interested in synergies across multiple modalities are often 

forced to develop custom-built image co-registration and data-integration procedures.

To build upon existing MRI processing pipelines that are primarily geared towards single 

modalities, we developed micapipe. The pipeline integrates processing streams for structural 

MRI, rs-fMRI, diffusion-weighted MRI, and myelin-sensitive MRI to automatically generate 

models of cortical geometry and microstructure, as well as structural and functional 

connectivity. Micapipe generates inter-regional matrices across different spatial scales, 

incorporating multiple cortical as well as subcortical/cerebellar parcellations (Desikan et 

al., 2006; Destrieux et al., 2010; Scholtens et al., 2018; von Economo, 2009; Fischl, 2012; 

Vos de Wael et al., 2020; Schäfer et al., 2018; Glasser et al., 2016; Patenaude et al., 
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2011; Diedrichsen et al., 2009). In a nutshell, micapipe transforms BIDS-conform MRI data 

(Gorgolewski et al., 2017) to process macroscale models of brain organization in an easy-to-

analyze format, with it being the only pipeline providing models of structural connectivity, 

functional connectivity, geodesic distance, and microstructural similarity within a unified 

tool. Easy-to-verify outputs and visualizations can be produced for quality control (QC). 

In addition to its code-base being openly available on GitHub (http://github.com/MICA-

MNI/micapipe), micapipe is also available as a Docker container, included as a BIDS 

App, and is accompanied by detailed tutorials and an expandable documentation (http://

micapipe.readthedocs.io).

2. Results

Micapipe has a modular workflow that can incorporate multiple MRI data modalities (T1-

weighted MRI, myelin-sensitive MRI, diffusion-weighted MRI, and resting-state functional 

MRI), converting BIDS-conform input into BIDS-conform surface, volume, and matrix 

data (Fig. 1A). The following sections describe key pipeline features, main outputs, 

and automated quality control (QC) visualizations. We also perform several validation 

experiments across a diverse range of datasets.

2.1. Pipeline workflow

Processing modules of micapipe can be run individually or bundled using specific flags 

via a command-line interface. Multimodal integration relies strongly on the characterization 

of anatomy via T1-weighted MRI processing. Using volume- and surface-based processing 

streams, the pipeline generates subcortical, cortical and cerebellar segmentations in subject- 

and modality-specific spaces. Using structural imaging data, in addition to other input 

modalities, inter-regional brain matrices can be generated across 18 combinations of 

cortical, subcortical, and cerebellar parcellations. Inter-regional matrices are: (i) structural 

connectomes (SC) derived from diffusion tractography (Smith et al., 2015a), (ii) functional 

connectomes (FC) derived from resting-state signal correlations (Biswal et al., 2010), (iii) 
geodesic distance (GD) matrices that quantify cortico-cortical proximity using cortical 

surface models (Ecker et al., 2013; Hong et al., 2018), and (iv) microstructural profile 

covariance (MPC) matrices that assess inter-regional similarity in intracortical intensity 

profiles from microstructurally-sensitive imaging (Paquola et al., 2019b). Surface-mapped 

features are made available across three surfaces (Fig. 1B): native, conte69 (Van Essen et 

al., 2012), and fsaverage5 (Fischl et al., 1999). Intermediary files and processed derivatives 

and matrices conform to BIDS naming conventions (Fig. 1C), facilitating future use and 

harmonization across datasets and software.

2.2. Quality control (QC)

The QC module visualizes outputs at the individual and group levels (Fig. 2A). Reports 

detail completed processing steps, including image registrations, surface parcellations, and 

inter-regional feature matrices. They are organized by modality and parcellation. These 

reports help users to identify missing data, poor image quality, and faulty registrations (Fig. 

2A). Complementing subject-specific reports, group level QC automatically generates a 
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report outlining completed and missing modules for each subject facilitating use for large 

datasets (Fig. 2B).

2.3. Assessing output consistency within and between datasets

We evaluated whether micapipe yields consistent results across 50 individuals of an openly 

available multimodal MRI dataset [MICA-MICs; (Royer et al., 2021), and also compared 

processed outputs to those from six additional datasets (Table S1)].

We first assessed within-dataset consistency for each modality (GD, SC, FC, MPC) at 

three different granularities (Schäfer 100, 400 and 1000 parcels) using five different 

metrics. We generated modality- and dataset-specific mean group matrices and computed 

consistency across the following features: the first eigenvector/gradient explaining the most 

data variance (calculated via diffusion map embedding (Coifman et al., 2006)), the matrix 

edges, as well as node strength, characteristic path length, and clustering coefficient as 

three representative graph features [(Rubinov and Sporns, 2010), Fig. 3A]. We correlated 

subject-level and group-level metrics to quantify within-dataset consistency (Spearman’s 

rho, see Supplementary Fig. 5). Correlations were highest for GD and SC, followed by FC 

and MPC. Gradient 1 was the most consistent measure across parcellations and modalities, 

followed by edges and node strength. Overall, characteristic path length was similar at lower 

granularity (100 parcels) but increasingly dissimilar at higher granularity (1000 parcels). 

Clustering coefficient had variable patterns depending on the modality and granularity (Fig. 

3 B,C). Particularly, GD showed the highest within-dataset similarity over all datasets and 

measurements (rho range = 0.89–0.99), followed closely by SC in gradient 1, edges, and 

strength (rho range = 0.75–0.98). SC-derived characteristic path length was increasingly 

dissimilar at high granularity, whereas clustering coefficient had a peak of similarity at 400 

parcels in all datasets (rho range = 0.6–0.78), and low similarity at 100 and 1000 parcels. FC 

gradient 1 similarity was consistent for all granularities and datasets (rho = 81.3 ± 5.7, mean 

± sd), with a slight decrease at higher granularity. Edges and strength from FC had a good 

level of similarity (rho range = 0.68–0.79), with highest values observed in the Midnight 

scan club dataset, which notably had the highest resolution of rest-fMRI. MPC derived 

measurement showed lower similarity at higher granularities. Characteristic path length and 

clustering coefficient derived from MPC had a poor-to-fair within group similarity (rho 

range = 0.15–0.64), likely due to the topology of these matrices. Findings were consistent 

across datasets, and higher intra-group similarity probably reflected higher resolution of the 

MRI acquisitions (e.g., MICs and MSC).

We also compared the consistency of each measurement between datasets (Fig. 4). As for 

the within-dataset analysis, we found the highest similarities for GD and SC, followed by 

FC and MPC. GD, SC and FC showed high similarity between datasets for the edges, first 

eigenvector/gradient, and node strength. MPC had the lowest between dataset consistency 

for all measurements, except for the comparison between EpiC and EpiC longitudinal, and 

MICs and MSC, whose values were mostly high except in the MPC clustering coefficient. 

Particularly, we observed high similarity between GD-derived metrics across all datasets. 

SC consistency between datasets was also high for most measurements, gradient 1 being 

the most similar, followed by the edges. The graph features derived from SC had good 
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consistency but more variability between datasets. FC had decreased consistency between 

datasets for characteristic path length and clustering coefficient, compared to the good 

consistency for gradient 1 and edges. It should be noted that the highest consistency for 

FC across all measurements was between EpiC and EpiC longitudinal, likely because both 

datasets had similar acquisition parameters and included an overlapping subject sample.

2.4. Assessing test-retest similarity

We assessed the test-retest reproducibility, using 53 subjects two acquisitions each from 

the Human Connectome Project, adopting a previously published framework (Seguin et al., 

2022). Here, we generated similarity matrices between all pairs of subjects (subject-test by 

subject-retest) for each modality. From each similarity matrix, we computed three metrics: 

reliability, uniformity, and identifiability (Fig. 5A). The diagonal of the similarity represents 

the intra-individual similarity i.e., reliability when processing two acquisitions of the same 

subject. The uniformity or inter-individual similarity (triangular matrix) quantifies the mean 

similarity of matrices belonging to different individuals within a given dataset. Identifiability 

measures the extent to which matrices of the same individuals are differentiable from the 

rest of the group. Ideally, the processed matrices should be reliable (i.e., high reliability) 

and preserve inter-individual differences (i.e., low uniformity). For all feature matrices of 

each modality and three different parcellations (Fig. 5 B), we found reliability exceeding 

uniformity, leading to high identifiability. GD and SC had excellent reliability (Similarity 

>0.9), followed by FC and MPC, which decreased at higher granularity. Uniformity also 

decreased at high granularity for all modalities except GD. On the other hand, identifiability 

increased at higher granularities except for GD (Fig. 5A-left).

2.5. Performance

We tested micapipe on seven different databases acquired using different MRI sequence/

parameter combinations (Table S1). Processing times varied depending on the image 

resolution, the need to additionally process data using FreeSurfer, the number of streamlines 

selected for the structural connectome generation, and the type of acquisitions per dataset 

(Table S2). Processing was performed on the Brain Imaging Center (BIC) cluster of the 

Montreal Neurological Institute and Hospital on Ubuntu 18.04.5 LTS version workstations. 

A maximum virtual memory of 6GB, with 6–10 CPU cores, and 20 GB of RAM 

were required. Output size depended on image resolution and the length of the rs-fMRI 

acquisitions (Table S3).

2.6. Data and code availability statement

An expandable documentation at https://micapipe.readthedocs.io describes installation, 

usage, pipeline steps, updates, extra features, and provides a series of ready-to-use tutorials. 

All code can be found at https://github.com/MICA-MNI/micapipe, and is published under 

the General Public License 3.0. Micapipe is delivered as a docker container via BIDS-

App [ http://bids-apps.neuroimaging.io/apps/ (Gorgolewski et al., 2017)], and available on 

ReproNim [ https://github.com/ReproNim/containers (Halchenko et al., 2021)]. Detailed 

steps to use the Docker container and to build a corresponding singularity container are 

available under the readthedocs documentation. Code for figures and tables can be found in 
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the micapipe-supplementary GitHub repository (https://github.com/MICA-MNI/micapipe-

supplementary).

3. Discussion

We present micapipe, an open software package to integrate and process raw multimodal 

MRI data into multiple measures of structural and functional human brain network 

organization. As a standalone BIDS App, micapipe inputs and outputs BIDS-conform MRI 

data. Its outputs consist of derivative features across multiple parcellations, available in both 

surface- and volume-based reference spaces. Notably, micapipe outputs include regional 
measures of e.g., brain morphology, microstructure, and function together with inter-regional 
matrices encoding (i) cortico-cortical spatial proximity (based on geodesic distance analysis 

along cortical surfaces derived from T1-weighted MRI), (ii) microstructural similarity 

(derived from intracortical profile covariance analysis of myelin-sensitive MRI), (iii) 
intrinsic functional connectivity (obtained from rs-fMRI signal correlations), and iv) 
structural connectivity (estimated from diffusion MRI tractography). Derivative features are 

available across in surface-, volume-, and parcellation-based reference spaces, incorporating 

up to 18 different cortical as well as sub cortical/cerebellar parcellations. micapipe 
furthermore offers advanced functionalities for individual and group-level quality control 

and visualization of intermediary as well as final outputs. The pipeline has been validated 

across multiple datasets. As a unified tool to fuse and analyze multimodal neuroimaging 

data, micapipe offers neuroscientists a workflow to robustly probe human brain organization 

across multiple scales.

A range of pipelines have previously been developed to process MRI images from specific 

modalities, including tools for the generation of cortical and subcortical segmentations based 

on T1-weighted MRI data (Das et al., 2009; Fischl, 2012; Kim et al., 2005), pipelines to 

process functional MRI data (Craddock et al., 2013; Esteban et al., 2019), as well as tools 

for diffusion MRI data handling (Cieslak et al., 2021; Jenkinson et al., 2012; Tournier et 

al., 2019). Several workflows have furthermore been developed for connectome mapping 

(Daducci et al., 2012; Whitfield-Gabrieli and Nieto-Castanon, 2012), which allow users to 

examine structural and functional network architecture in a systematic manner. Building 

upon these developments, micapipe offers a unified framework for multimodal fusion and 

data processing. As such, it is similar in scope to the Connectome Mapper tool (Daducci et 

al., 2012), although with notable differences. In particular, micapipe incorporates a stream 

for the surface-based mapping of intracortical myelin proxies and for the generation of 

microstructural profile covariance (Paquola et al., 2019b). A growing body of literature 

emphasizes the utility of myelin-sensitive MRI analysis for cortical parcellation (Carey et 

al., 2018; Glasser and Van Essen, 2011; Granberg et al., 2017), to assess brain and cognitive 

development (Deoni et al., 2012; Whitaker et al., 2016; Lebel and Deoni, 2018; Paquola 

et al., 2019a), and to interrogate microstructural imbalances in common brain disorders 

(Cooper et al., 2019; Du et al., 2019; Bernhardt et al., 2018; Larivière et al., 2019). Recent 

work has shown that the analysis of covariance patterns of intra-cortical microstructural 

profiles can generate new descriptions of large-scale network organization (Paquola et al., 

2020; Royer et al., 2020). These networks appear primarily governed by systematic shifts in 

laminar differentiation and neuronal density, showing a principal organizational axes similar 
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to those at the level of cytoarchitecture and intrinsic functional connectivity (Margulies 

et al., 2016; Paquola et al., 2021, 2019b). A further feature is the automated generation 

of cortico-cortical geodesic distance matrices, which indexes proximity between different 

regions on the folded cortical surface. Cortico-cortical geodesic distance has been suggested 

to relate to intrinsic, horizontal connectivity within the cortical ribbon as well as to cortical 

wiring cost (Ecker et al., 2013; Hong et al., 2018; Paquola et al., 2020). Moreover, several 

investigations into principles of macroscale brain organization have emphasized that the 

brain is a physically embedded network, and that thus inter-regional distance relationships 

may help in the understanding of the topographic layout of functional systems and the 

connections formed between them (Betzel et al., 2016; Betzel and Bassett, 2018; Margulies 

et al., 2016; Valk et al., 2020; Wang et al., 2022; Smallwood et al., 2021). As such, distance 

measures can be assessed as a feature of interest but also as an intrinsic variable one wants to 

control connectome analyses for in some situations.

A series of evaluations assessed consistency of micapipe outputs, studying data from 

455 individuals across seven datasets. Our evaluations focused on the consistency of 

inter-regional matrix edges, the first eigenvector (gradient), and three widely used graph 

theoretical measurements (node strength, characteristic path length, clustering coefficient) 

for up to four matrix modalities (i.e., geodesic distance, functional connectivity, structural 

connectivity, microstructural covariance). Altogether, our results indicate a generally high 

consistency of the first gradient across datasets, with some variations across modalities. For 

example, geodesic distance and structural connectivity gradients were markedly consistent 

(r > 0.95), followed by functional connectivity and microstructural profile covariance. It 

is likely that functional connectivity measures and associated gradients may, in part, be 

influenced by state-to-state variations compared to the more static measures of structural 

connectivity and geodesic distance, likely in addition to data acquisition related effects. 

Edges and graph derived measurements followed an analogous pattern of consistency. 

With respect to the relatively low stability of microstructural profile covariance, one 

needs to highlight that the included datasets varied in terms of microstructurally sensitive 

MRI contrasts, featuring T1-weighted/T2w intensity ratio (Glasser and Van Essen, 2011), 

quantitative T1 relaxometry (Royer et al., 2021), as well as magnetization transfer imaging 

(Shafto et al., 2014). While these sequences are all thought to be sensitive to intracortical 

myelin content, their individual biophysical specificity remains to be established in future 

work.

Through the successful integration of several processing tools, micapipe provides multiple 

ready to use inter-regional feature matrices, i.e., structural connectomes, functional 

connectomes, microstructural covariance, and geodesic distance, together with QC 

procedures. Our pipeline is supported by a growing ecosystem of open tools for data and 

code sharing, notably Github, readthedocs, Docker, BIDS Apps (Gorgolewski et al., 2017), 

and repronim/datalad (Robert et al., 2016). By making micapipe openly accessible as well, 

we hope that it will be beneficial for future studies on human brain organization.
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4. Materials and methods

Micapipe runs modular processing streams on BIDS-conform raw T1-weighted, 
microstructure-sensitive, diffusion-weighted, and resting-state functional MRI data to 

generate fully processed surface/volume features as well as inter-regional feature matrices. 

A documentation with detailed descriptions on the installation, implementation, as well as 

usage examples and output files are available at https://micapipe.readthedocs.io/.

4.1. Workflow and main processing modules

Micapipe requires the input dataset to be formatted in BIDS (Gorgolewski et al., 2016).

4.1.1. Structural processing—Structural processing operates on T1-weighted images. 

The structural processing workflow can perform volumetric (with command-line option: 

-proc_structural) and surface-based (-proc_freesurfer, - post_structural, -GD, -Morphology) 

processing. The workflow registers subject data to volumetric and surface-templates 

providing several useful structural metrics for further analyses. These include geodesic 

distance matrices (-GD) mapped to multiple parcellation schemes as well as vertex-wise 

cortical thickness and curvature data (-Morphology). The structural workflow includes tools 

from AFNI (Cox, 1996), FSL (Jenkinson et al., 2012), ANTs (Avants et al., 2011), Mrtrix3 

(Tournier et al., 2019) and FreeSurfer (Fischl, 2012). Further information about the usage 

and outputs is found in the structural processing section in the online documentation.

Proc_structural.: Initial structural pre-processing (i.e., -proc_structural) keeps all data 

in volumetric format and generates a T1-weighted image in native processing space 

(nativepro, Fig. S1A). Each T1-weighted run is reoriented to LPI orientation (i.e., left-right, 

posterior-anterior, inferior-superior), de-obliqued, and oriented to standard space (MNI152). 

If multiple T1-weighted scans are found in the raw data, they are linearly aligned to the 

first run and averaged. Next, the average image is corrected for intensity nonuniformity (N4, 

Tustison et al., 2010) and intensity is normalized between 0 and 100. The resulting image is 

named T1nativepro, which stands for T1-weighted in native processing space. T1nativepro 
is skull-stripped, subcortical structures are segmented using FSL FIRST (Patenaude et al., 

2011), and tissue types are classified (gray matter, white matter, CSF) using FSL FAST 

(Zhang et al., 2001). A non-linear registration to MNI152 (0.8mm and 2mm resolutions) is 

calculated (Tustison and Avants, 2013) and a five-tissue-type (5TT) image segmentation is 

generated for anatomically constrained tractography.

Proc_freesurfer.: Cortical surface segmentations are generated from native T1-weighted 

scans using FreeSurfer 6.0 (Fischl, 2012) and ordered under the FreeSurfer directory, 

following BIDS naming conventions. We provide an option for datasets that have already 

been quality controlled to easily integrate the results within the pipeline’s directory structure 

and an option to process with voxel sizes less than 1mm 3 at native resolution (-hires). 

We recommend that users carefully inspect and, if needed, manually correct FreeSurfer-

generated cortical surface segmentations. As micapipe relies heavily on surface-based 

processing, poor segmentation quality may compromise downstream results.
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Post_structural.: The first step of the post structural processing is to calculate an 

affine registration from native FreeSurfer space to T1nativepro space. It then registers 

a probabilistic cerebellar atlas (Diedrichsen et al., 2009) from MNI152 to the subject’s 

T1nativepro space using affine and non-linear transformations previously computed in the 

-proc_structural module. Next, a surface-based registration of fsaverage5 annotation labels 

to native surface is performed, and the surface-based parcellation in native FreeSurfer space 

is transformed into a volume. Finally, the transformation matrices are applied to bring each 

volumetric parcellation from native FreeSurfer space to T1nativepro space. In the last step 

of this module, the pipeline builds a conte69–32k sphere and resamples white, pial and 

midthickness native surfaces to the conte69–32k template.

The -post_structural module registers native FreeSurfer-space cortical surfaces to two 

different standard templates (fsaverage5 and conte69), in addition to mapping all cortical 

parcellation schemes to the subject’s native surface space and volumetric T1nativepro 
space (Fig. S1B). Micapipe provides a total of 18 cortical, subcortical and cerebellar 

parcellations at different resolutions according to anatomical, cytoarchitectural, intrinsic 

functional, and multimodal schemes, at different resolutions. Anatomical atlases available 

in micapipe include Desikan-Killiany (aparc, Desikan et al., 2006) and Destrieux 

(aparc.a2009s, Destrieux et al., 2010) parcellations provided by FreeSurfer, as well as an 

in vivo approximation of the cytoarchitectonic parcellation studies of Von Economo and 

Koskinas (Scholtens et al., 2018). Additionally, we include similarly sized sub-parcellations, 

constrained within the boundaries of the Desikan-Killiany atlas, providing matrices with 

100, 200, 300, and 400 cortical parcels following major sulco-gyral landmarks (Fischl, 

2012; Vos de Wael et al., 2020). Parcellations based on intrinsic functional activity are also 

included across several granularities (100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 

nodes, (Schäfer et al., 2018). Lastly, we also provide a multimodal atlas with 360 nodes 

derived from the Human Connectome Project dataset (Glasser et al., 2016). All atlases are 

provided on Conte69 and fsaverage5 surface templates, and on each participant’s native 

surface to generate modality-specific matrices in subsequent modules.

Morphology.: This module registers cortical thickness and curvature measurements to two 

distinct templates. Both surface-based morphological features are registered to fsaverage5 

and conte69 and smoothed with a gaussian filter with full width half maximum of 10mm.

GD: geodesic distance.: Individual GD matrices are computed along each participant’s 

native cortical midsurface using workbench tools (Marcus et al., 2011). First, a centroid 

vertex is defined for each cortical parcel by identifying the vertex with the shortest summed 

Euclidean distance from all other vertices within its assigned parcel. Then, the geodesic 

distance is calculated from the centroid vertex to all other vertices on the midthickness 

mesh using Dijkstra’s algorithm (Dijkstra, 1959). Notably, this implementation computes 

distances not only across vertices sharing a direct connection, but also across pairs of 

triangles which share an edge in order, thus mitigating the impact of mesh configuration 

on calculated distances. Vertex-wise GD values were averaged within parcels to improve 

computation performance.
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4.1.2. Diffusion -weighted imaging processing—This section describes all DWI-

related processing steps implemented in micapipe, which heavily rely on tools from MRtrix3 

(Tournier et al., 2019). This includes image processing preparation for the construction 

of tractography-based structural connectivity matrices, as well as associated edge length 

matrices, all in native DWI space (Fig. S1C). Micapipe DWI processing has been optimized 

for multi-shell DWI but can also handle single-shell data. Geometric and inhomogeneity 

corrections are performed in datasets that contain one or more reverse phase encoding DWI. 

It is a mandatory requirement that all DWIs have associated bvec, bval and json files, with 

encoded phase direction and total readout time.

Proc_dwi.: This module processes DWI scans, and derives several potentially useful metrics 

(e.g., fractional anisotropy, mean diffusivity, Fig. S1C). First, if there is more than one 

set of DWI scans in the BIDS directory, they can optionally be aligned to each other 

using a rigid-body registration, and concatenated. All DWI images are then converted to 

Mrtrix Imaging format (mif), which encodes the bvec, bval, phase encoding direction and 

total readout time (also adjusting bvec information for potential transformations that were 

applied to the shells). Concatenated DWI images undergo denoising by estimating data 

redundancy in the PCA domain via a Marchenko-Pasteur approach [MP-PCA, (Veraart 

et al., 2016; Cordero-Grande et al., 2019)]. Then, Gibbs ringing artifact correction is 

applied (Kellner et al., 2016), and residuals are calculated from denoised images for QC 

purposes. Provided a reverse phase encoding, susceptibility distortion, head motion, and 

eddy currents are corrected (Andersson et al., 2003; Smith et al., 2004; Andersson and 

Sotiropoulos, 2016). If none is provided, only motion correction is performed. Additionally, 

outlier detection and replacement are applied (Andersson et al., 2016). After this step, 

the quality of the motion and inhomogeneity corrected diffusion images is assessed using 

eddy_quad (Bastiani et al., 2019), and a non-uniformity bias field correction (Tustison et 

al., 2010) is applied to finalize DWI preprocessing. Next, the b0 image is extracted from 

the corrected DWI and linearly registered to the main structural image (i.e., T1nativepro). 

A DWI brain mask is generated by registering the MNI152 brain mask to DWI space 

using previously generated transformations. A diffusion tensor model (Basser et al., 1994) is 

then fitted to the corrected DWI and the fractional anisotropy and mean diffusivity images 

are computed (Veraart et al., 2013). An estimation of the response function is calculated 

over different tissues: cerebrospinal fluid, white matter, and gray matter (Dhollander, et al., 

2016). These are later used to estimate the fiber orientation distribution (FOD) by spherical 

deconvolution (Jeurissen et al., 2014; Tournier et al., 2004). Next, intensity normalization 

is applied to each tissue FOD (Raffelt, et al., 2017). A second registration, in this case non-

linear, is calculated between the normalized white matter FOD and the T1-weighted image 

previously registered linearly to DWI space. The resulting warp field allows for an improved 

registration between the T1-weighted and the native DWI space in most datasets. Finally, 

the 5TT segmentation image is registered to native DWI space and a gray matter white 

matter interface mask is calculated. For QC purposes, a track density image (Calamante 

et al., 2010) is computed with 1 million streamlines using the iFOD1 algorithm (Tournier 

et al., 2012) and anatomically constrained tractography (Smith et al., 2012). Additionally, 

if the user has an already processed DWI image, we provide the possibility of skipping 

the processing module, and only running the corresponding steps of tensor fitting, FOD 
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calculation and DWI registration to the T1nativepro (flag -dwi_processed). Furthermore, 

if the user has several DWI shells and desires to process them individually could run the 

pipeline specifying the shell to process with -dwi_main and the name of the acquisition with 

-dwi_acq (eg. The optional arguments to process the DWI would be: -proc_dwi -dwi_main 

sub-01/dwi/sub-01_desc-1000b_dwi.nii.gz -dwi_acq 1000b).

SC: structural connectome generation.: Structural connectomes are generated with 

Mrtrix3 from pre-processed DWI data from the previous module and subcortical and 

cerebellar parcellations are non-linearly registered to native DWI space. First, a tractography 

with 40 million streamlines (default but modifiable, maximum tract length = 400, minimum 

length = 10, cutoff = 0.06, step = 0.5) is generated using the iFOD2 algorithm and 3-tissue 

anatomically constrained tractography (Smith et al., 2012; Tournier et al., 2010). A second 

tract density image (TDI) of the resulting tractography is computed for QC. By default, 

the full brain tractography is erased at the end of this module but can be kept using the 

option “-keep_tck ”. Next, spherical deconvolution informed filtering of tractograms [SIFT2 

(Smith et al., 2015a)] is applied to reconstruct whole brain streamlines weighted by cross-

sectional multipliers. The reconstructed cross-section weighted streamlines are then mapped 

to each parcellation scheme, with (i) cortical, (ii) cortical and subcortical, and (iii) cortical, 

subcortical, and cerebellar regions (Smith et al., 2015b. These are also warped to DWI native 

space. The connection weights between nodes are defined as the weighted streamline count, 

and edge length matrices are also generated.

4.1.3. Resting -state fMRI processing—This module processes the rs-fMRI scans, in 

preparation for the construction of functional connectomes. This pipeline is optimized for 

spinecho images with reverse phase encoding used for distortion correction. The pipeline is 

mainly based on tools from FSL and AFNI for volumetric processing, as well as FreeSurfer 

and Workbench for surface-based mapping (Fig. S1D).

Initial fMRI processing steps involve the removal of the first five volumes to ensure 

magnetic field saturation, image re-orientation (LPI), as well as motion and distortion 

correction. Motion correction is performed by registering all time-point volumes to the 

mean volume, while distortion correction leverages main phase and reverse phase field maps 

acquired alongside rs-fMRI scans. Nuisance variable signal is removed either using an ICA-

FIX classifier with a default training set or custom training set input by the user (Griffanti et 

al., 2014; Salimi-Khorshidi et al., 2014) or by selecting white matter, CSF, and global signal 

regression [for Discussion, see (Murphy et al, 2009, Murphy and Fox 2017, Vos de Wael et 

al. 2017)]. Additionally, a regression of time points with motion spikes is performed using 

motion outlier outputs provided by FSL. Volumetric timeseries are averaged for registration 

to native FreeSurfer space using boundary-based registration (Greve and Fischl, 2009), 

and mapped to individual surface models using trilinear interpolation. Native-surface and 

template-mapped cortical time series undergo spatial smoothing (Gaussian kernel, FWHM 

= 10 mm), and are subsequently averaged within nodes defined by several parcellation 

schemes. Parcellated subcortical and cerebellar time series are also provided and are 

appended before cortical time series.
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FC: functional connectome generation.: Individual rs-fMRI time series are mapped to 

individual surface models. Native surface-mapped time series are registered to standard 

surface templates (fsaverage5, conte69). Native surface and conte69-mapped time series are 

averaged within cortical parcels. The subcortical and cerebellar parcellations are warped to 

each subject’s native rs-fMRI volume space and used to extract the time series within each 

node. Individual functional connectomes are generated by cross correlating all nodal time 

series.

4.1.4. Microstructural processing and microstructural profile covariance 
(MPC) matrix generation—This module samples intracortical intensities from a 

quantitative MRI contrast, generating a depth-dependent intracortical intensity profile 

at each vertex of the native surface mesh. By parcellating and cross-correlating nodal 

intensities, this module generates MPC matrices. This approach has been previously applied 

over the whole cortex (Paquola et al., 2019b), as well as in targeted structures such as 

the insula (Royer et al., 2020). The first processing step is a boundary-based registration 

from the quantitative imaging volume (default) or input microstructurally sensitive image 

contrast to FreeSurfer native space. Then, 16 equivolumetric surfaces (Waehnert et al., 

2014) are generated between the pial, and white matter boundary previously defined from 

FreeSurfer. Intracortical equivolumetric surfaces are generated using https://github.com/

kwagstyl/surface_tools. Surfaces closest to pial and white matter boundaries are discarded 

to minimize partial volume effects, resulting in 14 surfaces. A surface-based registration 

is performed to fsaverage5 and conte69–32k templates, and the vertex-wise intensity 

profiles are averaged within parcels for each parcellation. Nodal profiles are cross-correlated 

across the cortical mantle using partial correlations controlling for the average cortex-wide 

intensity profile. Several regions are excluded when averaging cortex-wide intensity profiles, 

including left/right medial walls, as well as non-cortical areas such as the corpus callosum 

and pericallosal regions.

4.2. Quality control

Micapipe includes an integrated QC module, which can be run at any point during 

processing. This step generates group-level and individual-specific QC reports allowing the 

user to identify missing files, verify registration performance, and check outputs requiring 

further inspection. Individual QC generates an html report with detailed information of 

each processing step (Fig. 2A). The report contains different tabs, one per module: main 

inputs and outputs of each module, main parameters of the processing steps (obtained 

from the metadata json sidecar files generated by micapipe), volume visualization of the 

main outputs, visualization of the main registrations, different surfaces generated by the 

pipeline, parcellations plotted on native surface, structural connectome matrices, functional 

connectome matrices, geodesic distance matrices, microstructural intensity profiles and 

connectomes and microstructural profiles (image intensities at each cortical depth) plotted 

on the native surface. Group level QC generates a color-coded table (with rows for subjects 

and columns for modules (Fig. 2B)).
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4.3. Additional features

4.3.1. Automatic bundle segmentation—The micapipe repository also includes an 

optional automatic virtual dissection of major fiber tracts (Fig. S2A). This tool is an 

adaptation of XTRACT (Warrington et al., 2020) implemented using Mrtrix3 and ANTs, 

and its main purpose is to split a tractography (tck file) into the main white matter 

tracts. The automatic bundle segmentation uses already established automatic dissection 

protocols manually tuned for optimal performance. Derived from a full brain tractography, 

35 bundles are virtually dissected using the LANIREM protocols. The quality of the full 

brain tractography will determine the quality of bundle separation. It is highly recommended 

to provide a tractography with more than one million streamlines, and QC for any errors. 

Strategies such as anatomically constrained tractography (ACT) and spherical deconvolution 

informed filtering of tractographies (SIFT), which are available in Mrtrix3, should aid in 

obtaining such high-quality tractographies. For processing a Non-linear (SyN) registration 

of the native FA map to the FA atlas (FMRIB58_FA_1mm) is calculated. Resulting 

transformations are then applied to each bundle protocol to register them to the native 

FA space (DWI). Finally, each white matter bundle is filtered according to the dissection 

protocols.

4.3.2. Anonymize function—A function to anonymize the anatomical images from 

the BIDS directory for data sharing is provided within the micapipe repository as an 

extra feature. Native structural images are anonymized and de-identified with one of three 

different methods: de-facing, linear refacing or refacing with a non-linear warp field (Fig. 

S2B). This tool uses a custom template and a set of ROIs specifically developed to identify 

the face and skull. The full head template was created using the T1-weighted images 

(resolution of 0.8 × 0.8 × 0.8 mm) of 60 randomly selected healthy individuals from 

the MICA-MICs dataset (Royer et al., 2021). An inter-subject non-linear registration was 

performed without any mask, then the template was built using the mean of the normalized 

images. Three masks were generated: an ROI that covers the face, a brain mask, and a brain 

and neck mask. Unlike other algorithms, micapipe_anonymize supports different anatomical 

modalities (e.g., quantitative T1 maps).

4.4. Feature matrices

Besides surfaces and parcellations, micapipe outputs up to four inter-regional matrices 

across several parcellation: structural connectome (SC), functional connectome (FC), 

geodesic distance (GD) and microstructural profile covariance (MPC). Rows and columns 

of GD and MPC matrices follow the order defined by annotation labels associated with 

their parcellation (see parcellations in the micapipe repository), including unique entries for 

the left and right medial walls. For example, row and column entries of the Schäfer-100 

matrices are ordered according to: Left hemisphere cortical parcels (1 medial wall followed 

by 50 cortical regions), and right hemisphere cortical parcels (1 medial wall followed by 

50 cortical regions). FC and SC matrices follow the same ordering, although entries for 

subcortical and cerebellar structures are appended before cortical parcels. As such, row and 

column entries of the Schäfer-100 FC and SC matrices are ordered according to: Subcortical 

structures and hippocampus (7 left, 7 right), cerebellar nodes (34 regions), left hemisphere 

cortical parcels (1 medial wall followed by 50 cortical regions), and right hemisphere 
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cortical parcels (1 medial wall followed by 50 cortical regions). The ordering of all parcels 

and their corresponding label in each volumetric parcellation are documented in lookup 

tables provided in the micapipe repository (parcellations/lut). Further information about the 

organization and visualization of the output connectomes can be found in the respective 

section of the documentation.

4.5. Validation experiments

The pipeline was tested in 455 human participants from seven datasets (Tables S1 and S4): 

MICA-MICs, (Royer et al., 2021), EpiC-UNAM (Rodríguez-Cruces et al., 2020), Cam-CAN 

(Shafto et al., 2014), SUDMEX (Angeles-Valdez et al., 2022), MSC (Gordon et al., 2017), 

and 7T-Audiopath (Sitek et al., 2019). EpiC-UNAM consists of two separate acquisitions: 

one cross-sectional and one longitudinal. Acquisition and processing details for each dataset 

can be found in the section “Processing databases” of the online documentation.

4.5.1. Inter-subject consistency—We assessed inter-subject consistency at the level 

of the first eigenvector/gradient of each matrix, matrix edges, and three widely graph 

theoretical measures (node strength, characteristic path length, clustering coefficient). 

Evaluations were carried out across three selected parcellations (Schäfer-100, 400 and 

1000). Inter-subject consistency was quantified as the Spearman correlation between each 

participant measure and the group average measure for each available modality. This 

procedure was applied for the gradient 1, edges, and the three graph features (Fig. 3).

To generate gradients, we used BrainSpace (http://brainspace.readthedocs.io, Vos de Wael et 

al., 2020), with the following options: normalized angle kernel, diffusion embedding with 

alpha = 0.5 and automatic estimation of the diffusion time (See micapipe-supplementary for 

details). Group-level gradients were constructed from the average of subject-level cortical 

matrices. For MPC, FC, and GD, matrices were thresholded row-wise to retain the top 20% 

edges (see ‘Building gradients’ in the documentation, Fig. S3 for an example at the MICs 

dataset). SC matrices were log-transformed to reduce connectivity strength variance, but not 

thresholded. Moreover, left and right hemispheres were analyzed separately for SC, given 

limitations of diffusion tractography in mapping inter-hemispheric fibers. Hemispheres 

were also analyzed separately for GD gradients, as the surface-based measure of geodesic 

distance used here is computed on distinct hemisphere surface spheres. The For each 

subject, we aligned the first gradient using Procrustes rotations to the group-level gradient 

for each modality, and computed correlations as a measure of inter-subject consistency.

Graph features:  Graph measurements were computed using the igraph R package 

(igraph.org/r). We focused on three widely used graph-theoretical parameters, node strength, 

characteristic path length, and clustering coefficient (Rubinov and Sporns, 2010). We 

computed the clustering-coefficient as a measure of segregation, which provides information 

about the level of local connections in a network. The characteristic path length quantified 

network integration with short path lengths indicating globally efficient networks. Dijkstra’s 

algorithm was used to calculate the inverse distance matrix (Dijkstra, 1959) and infinite path 

lengths were replaced with the maximum finite length (Van den Heuvel et al., 2008). Finally, 

we calculated strength to characterize the relevance of the individual nodes. FC strength was 
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calculated only with positive values. Using the same thresholding as for the diffusion map 

embedding, GD, MPC and FC matrices were thresholded to retain the top 20% of the edges, 

and SC was analyzed using the un-thresholded, weighted networks.

4.5.2. Inter-datasets similarity—To assess stability across datasets, we computed 

Spearman’s correlation coefficients between the group-level measures of each pair of 

datasets for each MRI modality (Fig. 4).

4.5.3. Test-retest similarity—To assess the capabilities of micapipe to generate 

reproducible results in a test-retest scenario (Seguin et al., 2022), we used 53 subjects 

with full acquisitions from the Human Connectome Project. We processed run-1 as test and 

run-2 as retest for functional and structural modalities. For diffusion MRI we processed 

DWI_dir95 as test and DWI_dir96 as retest. MPC was calculated using the T1w/T2w 

images with run-1 and run-2 of each. We computed the similarity between each subject’s 

matrices using Pearson’s correlation for all rows, each indicating the similarity of a single 

node, then by averaging all node’s correlation to produce a single value of similarity 

between matrices (Mansour et al., 2022). This procedure was performed between all pairs 

of subjects to generate a subject-test by subject-retest similarity matrix for each modality 

(GD, SC, FC, and MPC) and three selected parcellations (Schaefer-100, 400, and 1000; 

Fig. 5A,B). We quantified both intra- and inter-individual matrix similarity of each modality 

by parcellation. Intra-individual similarities were averaged to index reliability, indicating 

the extent of processing consistency for an individual by modality (matrix diagonal). The 

inter-individual similarities were averaged to produce a measure of population uniformity of 

the processed matrices (triangular matrix). Ideally, the processed matrices should be reliable 

(i.e., high reliability) and preserve inter-individual differences (i.e., low uniformity). Hence, 

high reliability and low population uniformity is desirable. Additionally, we use a measure 

of Identifiability which quantifies how an individual can be recognized from a group based 

on the matrix features (Amico and Goñi, 2018, Mansour et al., 2021). Identifiability was 

calculated by the effect size of the difference in the means of intra-individual and inter-

individual similarities divided by the pooled standard deviation of the two distributions.

4.6. Version control and containers

micapipe is executable via a Docker container, and we provide information on how to 

convert it to a singularity image either via directly pulling from dockerhub or converting a 

local image (Kurtzer et al., 2017). Each new version of micapipe is uploaded and tagged, 

and changes are documented. The current release version is v.0.1.2. Our goal is to maintain 

continuous integration. Additionally, our pipeline has adopted the standards of BIDS-Apps 

(Gorgolewski et al., 2017) and of the center for reproducible neuroimaging computation 

(Robert et al., 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Pipeline workflow. B) Outputs can be generated across 18 different cortical parcellations 

(100–1000 parcels), in addition to subcortical and cerebellar parcellations. Most results are 

mapped to three different surface spaces: native, conte69 and fsaverage5. C) Outputs are 

hierarchically ordered with BIDS-conform naming.
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Fig. 2. 
(A) Individual level quality control (QC), which can be run at any point during the 

processing. The QC procedure will generate a html report file for each subject containing 

visualizations of intermediate files for volume visualization, cross-modal co-registrations, 

and surface parcellations. Moreover, it allows inspection of inter-regional matrices such as 

the structural connectome (from diffusion MRI tractography), the functional connectome 

(from resting-state fMRI signal correlation), the microstructural profile covariance matrix 

(from correlations of intracortical microstructural profiles), and geodesic distance matrices. 

(B) QC can also be run at a group/dataset-level. The report consists of a color-coded 

table with rows as subjects and columns as the pipeline modules (blue: completed, orange: 

incomplete/error, dark gray: not processed).
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Fig. 3. 
Within dataset mean consistency, indicating the correlation between subject- and group-

level measurements (Spearman’s rho), for Schaefer-100, Schaefer-400, and Schaefer-1000 

parcellations. (A) For each modality, five measurements were evaluated: principal gradient, 

edges, node strength, path length, and clustering coefficient. Empty rows indicate modalities 

that were not analyzed due to missing acquisitions. (B,C) Across datasets, correlations were 

highest for GD and SC, followed by FC and MPC. Gradient 1 was the most consistent 

measure across parcellations and modalities, followed by edges and node strength. Overall, 

characteristic path length was similar at lower granularity (100 parcels) but increasingly 
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dissimilar at higher granularity (1000 parcels). Clustering coefficient had variable patterns 

depending on the modality and granularity. MPC: microstructural profile covariance, FC: 

functional connectivity, SC structural connectivity, GD geodesic distance.
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Fig. 4. 
We assessed consistency of matrix parameters across datasets using Spearman’s rho 

correlation coefficient for the same features as in Fig. 3A. Each column represents the 

different modality matrices: (A) geodesic distance, (B) structural connectome, (C) functional 

connectome, and (D) microstructural profile covariance. The diagonal shows the mean 

value plotted on the surface of each dataset by measurement. As for the within-dataset 

analysis, we found the highest similarities between datasets for GD and SC, followed by 

FC and MPC. GD, SC, and FC showed high similarity between datasets for the edges, first 
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eigenvector/gradient, and node strength. FC had decreased consistency between datasets for 

characteristic path length and clustering coefficient. MPC had the lowest between dataset 

consistency for all measurements. Empty matrix entries (coloured in white) indicate missing 

data for a given dataset.
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Fig. 5. 
We assessed the capability of micapipe to generate reproducible outcomes in a test-

retest scenario, adoping a prior framework (Seguin et al., 2022). For all modalities 

and three parcellations, we evaluated the similarity between matrices of two different 

acquisitions (53 subjects from HCP, run-1 and run-2 scans). (A) From each similarity 

matrix of subject-test by subject-retest, we computed three measures of similarity: reliability 

(intra-subject), uniformity (inter-subject), and identifiability (effect size between intra- 

and inter-). Reliability quantifies the mean processing consistency for an individual; 

uniformity quantifies the mean conformity of matrices belonging to different individuals, 

and identifiability quantifies how an individual can be recognized from a group based on 

the matrix features. The scatter plots with lines show the mean values of each similarity 

measure for each modality over three granularities (Schaefer-100, 400 and 1000). (B) 
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Similarity matrices for each modality and granularity. (C) Density plots of the reliability 

and uniformity by modality and granularity of all subject pairs. For all feature matrices, 

we found higher reliability than uniformity, with excellent performance for GD and SC, 

and good results for FC and MPC. Overall, less granular parcellation data had higher 

similarity than more granular parcellation data across all modalities. GD=geodesic distance, 

SC=structural connectome, FC=functional connectome, and MPC=microstructural profile 

covariance.
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