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Abstract

Ongoing pain is driven by the activation and modulation of pain-sensing neurons, affecting 

physiology, motor function, and motivation to engage in certain behaviors. The complexity of the 

pain state has evaded a comprehensive definition, especially in nonverbal animals. Here in mice, 

we used site-specific electrophysiology to define key time points corresponding to peripheral 

sensitivity in acute paw inflammation and chronic knee pain models. Using supervised and 

unsupervised machine learning tools we uncovered sensory-evoked coping postures unique to 

each model. Through 3D pose analytics, we identified movement sequences that robustly represent 

different pain states and found that commonly used analgesics do not return an animal’s behavior 

to a pre-injury state. Instead, these analgesics induce a novel set of spontaneous behaviors that 

are maintained even after resolution of evoked pain behaviors. Together, these findings reveal 

previously unidentified neuroethological signatures of pain and analgesia at heightened pain states 

and during recovery.
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Introduction

Chronic pain represents a major unmet health burden worldwide. Heightened nociception 

immediately after injury is protective, serving to promote repair and recovery1,2. However, 

during chronic inflammatory diseases, such as rheumatoid arthritis, or following tissue 

damage and degradation, as seen in osteoarthritis, prolonged periods of heightened 

nociception do not confer biological advantages, but rather unmitigated suffering. Despite 

this, approved therapeutic options for treating ongoing pain are often inadequate or 

accompanied by undesirable side effects3–5. The need for safer, more efficacious analgesics 

is thus paramount; development of such drugs is dependent upon a greater understanding of 

the mechanisms and complexities underlying pain.

Preclinical models of pain in rodents are often used as an entry point in the search for 

novel analgesics. The underlying causes of pain, either inflammation or tissue damage, often 

cause molecular changes culminating in sensitization of neurons which can be identified and 

probed in these models6,7. Inflammatory pain can be modeled by intraplantar injection of 

compounds such as carrageenan into the paw, which induces robust edema and heightened 

sensitivity to both thermal and mechanical stimuli8–10. Alongside the carrageenan model, 

other models of pain are perhaps more translationally relevant, recapitulating more clinical 

features of human pain conditions. For instance, intra-articular injection of monoiodoacetate 

(MIA) results in a similar pathology to knee osteoarthritis (OA): a transient inflammatory 

response ensues as MIA causes chondrocyte death which preludes degeneration of the joint 

space11. Human OA patients often describe ongoing, dull, aching pain that is punctuated 

by sharp pain, which becomes more frequent over time12. However, behavioral markers of 

heightened nociception during a disease state in non-verbal rodents are commonly limited 

to changes in weight-bearing, locomotion and hypersensitivity to mechanical and thermal 

stimuli13. To date, studies utilizing both the carrageenan and the MIA OA models have 

Bohic et al. Page 2

Neuron. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heavily relied on histological analyses and sensory-evoked pain behavior assays to assess 

the efficacy of therapeutic agents10,14–16. With this rather limited level of characterization of 

such a complex neuroethological state as pain, what prominent features of pain in rodents 

might have gone undetected? Pain is encompassed by changes at the molecular and cellular 

levels, which feed through the nociceptive system to encode highly nuanced behavioral 

signatures. Therefore, to fully understand and measure pain, and assess novel targets for 

therapeutic intervention, a multidisciplinary approach is needed.

The peripheral nervous system detects environmental cues ranging from the pleasant to 

the harmful, feeding electrical signals into the central nervous system where appropriate 

and complex behaviors are elicited. Within the peripheral nervous system, nociceptors 

are the cardinal drivers of pain, with numerous studies demonstrating greater excitability 

of sensory neurons following exposure to inflammatory mediators17. Retrograde tracers 

permit identification of the neurons innervating a particular area of the body, thus enabling 

greater resolution of functional and molecular changes by focusing on the cells projecting 

to the afflicted area18. Traditional methods for studying pain behavior in rodents rely often 

on evoked pain measures, whereby the degree of pain experienced is inferred from the 

latency to respond to sensory-evoked stimuli. However, such approaches do not fully capture 

the nature or assessment of pain in humans and are associated with issues of inherent 

variability when used by different groups and the potential for experimenter bias19,20. 

Thus, more objective and comprehensive tools to study animal behavior are necessary. 

Recent advances in computer vision and machine learning have led to the development 

of more unbiased techniques to monitor evoked animal response such as PAWS (Pain 

Assessment at Withdrawal Speed)21 and B-SOiD (Behavioral Segmentation of Open-Field 

in DeepLabCut22)23. Both techniques can take advantage of high-frame rate videography 

to detect subtle micro-movements animals perform in response to innocuous or noxious 

stimulation, followed by analysis of rich data sets by supervised or unsupervised machine 

learning algorithms. MoSeq (Motion Sequencing) represents a complementary technology 

where 3D vision is applied to observe an animal’s spontaneous behavior24–26. Following 

open-field spontaneous behavior, post-hoc analysis via unsupervised machine learning 

allows for the extraction of the dozens of motion sequences or modules that make up mouse 

body language26. The overall goal of the current study is to combine such approaches 

to trace nociception from its sensory encoding to the complex pain behaviors arising 

from carrageenan-induced inflammation and MIA-induced knee deterioration, providing 

multidimensional analyses to uncover novel features that define pain progression, analgesia 

and recovery in mice.

We utilize PAWS, B-SOiD and MoSeq, alongside whole-cell electrophysiology to provide 

rich mapping of the neuroethological progression of pain following injection of carrageenan 

or MIA. We observe increased excitability of sensory neurons innervating the site of 

carrageenan-induced inflammation, which shows signs of recovery within 24 hours. In 

line with the progressive nature of the model, hyperexcitability of knee-innervating sensory 

neurons increased with time following injection of MIA to the joint. The thorough analysis 

permitted by high-speed videography revealed unique paw guarding behaviors in response 

to application of innocuous vs noxious stimuli. Through computer vision coupled to 

machine learning, we uncover strings of spontaneous behavioral syllables representative 
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of pain and pain relief states in freely moving mice, as well as behavioral modulation 

following administration of analgesics in the absence of injury. Importantly, we demonstrate 

that while commonly used analgesics can reverse hypersensitivity to noxious stimuli, the 

pharmacobehavioral space occupied by animals receiving analgesics does not represent 

a true return to basal conditions. Taken together, our results have major implications on 

traditional approaches to test the clinical efficacy of new analgesics and evaluate recovery.

Results

Carrageenan- and MIA-induced pain alter ethological and evoked behavior alongside 
changes in sensory neuron excitability across distinct timescales.

The activation and sensitization of sensory neurons innervating injured tissue represent the 

first steps in the transmission of pain27. Neuronal sensitization can trigger long lasting 

molecular and synaptic changes in peripheral and central circuits28–30. How these cellular 

changes align with behavior is central to understanding, quantifying and treating pain.

To first identify the time points that punctuate the development of injury-induced pain 

behaviors, we characterized the functional and molecular changes of sensory neurons that 

innervate injured tissue across time using two rodent pain models. First, the carrageenan 

model of localized pain because of its widespread use as an inflammatory pain model 

in rodents and the reversible nature of the injury to study pain progression, analgesia 

and recovery31,32. Second, the monoiodoacetate (MIA) model of knee osteoarthritis (OA), 

which, like the human condition, involves cartilage degeneration as the first step in 

irreversible joint damage and inflammation, and can be used to explore pain progression 

and analgesia11. Carrageenan injection into the paw results in swelling of the whole paw 

and ankle at 4- and 24-hours post-injection33 (Fig. 1A, C, D and Fig. S1). Traditional 

measures of pain behavior revealed that the time animals spent rearing, an ethological 

explorative stance, was reduced 4-hours post-injection, but had recovered as early as 24-

hours (Fig. 1G). However, measuring paw withdrawal latency in response to heat with 

the Hargreaves test, one of the most commonly used assays to measure hypersensitivity 

following inflammation34, showed hypersensitivity at both 4- and 24-hours (Fig. 1H). In 

the OA model, swelling of the knee was observed 3-days after injection of MIA into the 

joint space and persisted at 10-days post-injection, when histological analysis of knee joints 

also revealed a loss of cartilage, a key clinical feature of the human osteoarthritis (Fig. 

1B, E and F). A significant decrease in rearing behavior, as well as hypersensitivity to the 

application of mechanical pressure at the site of injury were observed for both time points, 

with responses at 3- and 10-days being indistinguishable in both assays (Fig. 1I and J). 

These findings highlight an apparent discrepancy between the progression of reflexive vs 

spontaneous pain behaviors after carrageenan paw injection, while the dynamic range of 

current assays cannot differentiate multiple time points of pain progression as the knee joint 

continues to deteriorate after MIA injection. This suggests that current behavioral readouts 

testing both reflexive and ongoing pain behaviors are not always sufficient to efficiently 

track pain progression in rodents.

To better understand whether the apparent behavioral presentation of pain in these two 

models correlates with neurophysiological changes at the site of injury, we used the 
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retrograde tracer Fast Blue18,35 to study the properties of dorsal root ganglion (DRG) 

sensory neurons specifically innervating the hind paw or knee (Fig 1 K–N). Analysis of 

cell body diameters revealed the Fast Blue positive populations of hind paw- and knee-

innervating sensory neurons resembled the natural distribution of all lumbar DRG neurons 

(Fig S1). Electrophysiological characterization 4-hours following carrageenan-induced 

inflammation revealed increased excitability of ipsilateral hind paw sensory neurons, evident 

from the reduced rheobase, more depolarized resting membrane potential and increased 

macroscopic voltage-gated inward currents (Fig. 1L, O, Fig S1), suggesting the rapid onset 

of peripheral sensitization correlating with the peak of physical inflammation at the paw 

(Fig. 1A, C). At 24-hours, as inflammation begins to subside, and inflammatory mediators 

decline36, the degree of excitability also declined to match that of the contralateral side (Fig. 

1E, Fig. S1). Increased excitability was also observed for ipsilateral knee sensory neurons 

3-days post-injection of MIA (Fig. 1Q). In line with the continued knee deterioration of 

this more chronic model, ipsilateral neuronal hyperexcitability was maintained at 10-days 

post-injection of MIA (Fig. 1Q). Moreover, at 10-days post-injection of MIA, a higher 

proportion of ipsilateral knee-innervating sensory neurons fired multiple action potentials 

when stimulated at a suprathreshold, an effect not seen at 3-days post MIA-injection, or 

for either time point tested in the carrageenan inflammatory pain model (Fig. 1P–R). No 

other differences were observed between ipsilateral or contralateral neurons for either pain 

model or time point in terms of intrinsic or active electrophysiology properties (Tables 1–2, 

Fig S1). To further demonstrate that injury affects the sensory biology of nociceptors at the 

physiological and molecular level in our pain models, expression of TRPV1, an ion channel 

involved in the detection of noxious heat and marker of nociceptive neurons37–40, was 

examined using immunohistochemistry and Ca2+ imaging. These experiments revealed that 

a higher proportion of ipsilateral hind paw sensory neurons expressed TRPV1 compared 

to the contralateral side 24-hours post-inflammation (Fig S1). A greater proportion of 

ipsilateral knee-innervating neurons were also found to be sensitive to capsaicin in the MIA 

model (Fig S1).

Our results demonstrate that both paw inflammation and knee injury have profound effects 

on sensory neuron biology. Although the excitability of sensory neurons is mostly affected 

during early time points following inflammatory insult, longer-lasting molecular changes are 

seen later on. Such findings demonstrate that 4- and 24-hours after an inflammatory insult 

are informative time points to study the transition from acute changes to peripheral neuron 

excitability to longer-lasting molecular changes that feed into the central nervous system 

and ongoing inflammatory pain. Meanwhile, MIA-induced irreversible knee deterioration 

provides a clinically relevant model of chronic pain with worsening anatomical signs of 

knee osteoarthritis from 3- to 10-days, that coincide with ever greater sensory neuron 

hyperexcitability. Taken together our results highlight key biological changes within the 

peripheral nervous system that punctuate pain progression over time. However, the cellular 

changes observed do not appear to correlate with current binary algesiometric assays for 

sensory evoked and spontaneous behavior, indicating that these approaches have insufficient 

dynamic range to resolve the time course of injury and healing.
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High-speed videography of sensory-evoked reflexes resolve injury progression and 
differentiate allodynia from hyperalgesia.

To increase the dynamic range of sensory-evoked behavior assays we used high-speed 

videography to break down paw withdrawal to sensory stimuli into sub-second movements 

within groups of short-latency reflexive features at stimulus onset vs longer-latency affective 

behavioral features that occur after paw withdrawal and before paw placement back 

to the surface21,41 (Fig. 2A, B). Mechanical hypersensitivity is a common symptom 

of inflammatory pain, presenting itself as either allodynia, when innocuous stimuli 

become painful42–44, or as hyperalgesia, when there is an increased sensitivity to noxious 

stimuli45,46. While allodynia and hyperalgesia can easily be assessed in the clinic47,48, 

differentiating them in non-verbal animals is a challenge49,50. Thus, with high-speed 

videography we recorded the animal’s response to both innocuous (brush) and noxious 

(pinprick) stimuli. With this strategy we did not observe a significant change in reflexive 

behavior responses (paw height, velocity and distance) to innocuous or noxious stimulation 

following carrageenan injection (Fig. S2). However, coping behaviors (paw shaking and 

paw guarding) associated with affective behaviors, are more dynamically regulated at 4- 

vs 24-hours post-injury in response to brush and pinprick (Fig. 2C, D). Indeed, while paw 

shaking and guarding duration evoked by brush are significantly increased at 4-hours, paw 

guarding duration evoked by pinprick is upregulated at both the 4- and 24-hour time points 

(Fig. 2D). Injury can sometimes cause not only primary but also secondary hypersensitivity, 

i.e. hypersensitivity at a secondary site outside of the site of injury51–53. We therefore 

assessed if high-speed videography could detect secondary hypersensitivity at the paw after 

knee injury in the OA model. Interestingly, MIA knee injection did not seem to affect 

reflexive features in response to brush or pinprick stimulation (Fig. 2E) but it increased 

affective coping behavior in response to innocuous stimulation (guarding duration, Fig. 2F) 

at 10-days post-MIA compared to baseline. Thus, we capture here the presence of secondary 

allodynia at the hind paw after MIA knee injection54,55.

To further differentiate the affective behavioral signatures of hypersensitivity at the primary 

site of injury, including signatures identified above specific to noxious vs innocuous 

stimuli56,57, we employed a recently developed unsupervised machine learning approach 

to parse spatiotemporal patterns in paw position data (B-SOiD23) at 4- vs 24-hours post-

carrageenan. For accurate comparison, we used the same high speed behavioral data 

collected in Fig. 2A–F. As inputs, we used two positions within the hind paw and two 

reference points as identified with the deep neural network DeepLabCut (see Methods). 

B-SOiD then identified and extracted unique clusters of conserved motor responses to 

these stimuli (Fig. 2G; categorical names were assigned to clusters post hoc; all data 

shown). We found eleven sub-action clusters across stimulation contexts. These behaviors 

and distributions were similar to those observed by our top-down supervised approach 

(Fig. 2A–F), but with clear distinctions. Notably, B-SOiD extracted a combination of two 

unique guarding types (i.e. angled vs flat guard, see Supplemental videos) that was different 

based on the foot stimulus presented (Fig. 2H–I). These phenotypes were distinct from each 

other in both height and foot posture. Mice exhibited an upregulation of the angled guard 

(characterized post-hoc as paw lifted and perpendicular to the surface, Fig. 2J) in response 

to brushing at 4-hours post-carrageenan compared to baseline occurrence (p<3e-12, Fisher’s 
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exact test). Conversely, the flat guard appeared only in response to pinprick stimulation 

after injury (paw lifted and parallel to the surface), likely associated specifically with 

hyperalgesia58 (Fig. 2I, K). This guard type was the dominant action induced by noxious 

stimulation after carrageenan-induced inflammation (p<1e-20 for either 4- and 24-hours 

post-injection time point compared to baseline occurrence, Fisher’s exact test). However, 

the display of the flat guard was absent in all baseline samples, as well as across brush 

conditions. Thus, the angled guard coping response alone is characteristic of allodynic 

behavior post-carrageenan, while the flat guard is specific to hyperalgesia. We also note that 

the combined performance of these two specific behaviors identified through unsupervised 

discovery agrees with the temporal profile of general paw guarding durations identified 

with our supervised approach as time progresses (Fig. 2D). Additionally, a lift-to-hover 

pattern (e.g. successive, alternating paw lifts (green) and hovering (yellow), Fig. 2H–I) 

was identified as a behavioral combination analogous to a hind paw shake (see videos in 

Supplemental Information). This lift-to-hover pattern was observed at baseline, but became 

repeated and extended after injury, particularly with the brush stimulus (brush – 4-hours vs 

baseline: p<4e-9, 24-hours vs baseline: p<2e-15; Fig. 2H).

Altogether, our approach finely measured the transition in inflammatory-induced 

sensitization at 4- and 24-hours after paw inflammation, and secondary paw allodynia 

and hyperalgesia after knee injury. This highlights the importance of affective behavioral 

biomarkers as representations of inflammatory pain independent of the site of injury. 

We find that inflammatory pain specifically alters the responses to mechanical stimuli 

such that defensive coping behaviors are more frequent. Interestingly, we show that 

mechanical allodynia (e.g. hypersensitivity to innocuous stimuli) appears as early as 4-

hours post-carrageenan and 3-days post-MIA injection while mechanical hyperalgesia (e.g. 

hypersensitivity to painful stimuli) is most upregulated at 24-hours. To our knowledge this 

is the first evidence of a robust and generalizable sensory-evoked behavior feature that 

distinguishes mechanical allodynia vs mechanical hyperalgesia in rodents.

Ethological approach to movement-evoked spontaneous measures of inflammatory pain

Sensory-evoked responses alone do not accurately reflect the most common symptoms 

experienced by chronic pain patients59. Intuitively, we know that an injured knee can 

change the way we walk, abdominal pain can change the way we stand, and chronic pain 

in general can change the way we interact with our environment as well as each other. 

Movement-evoked and spontaneous pain are significantly greater and a far more common 

clinical problem than tactile hypersensitivities60–62. Our findings that ethological behaviors 

can also define pain progression over time (Fig. 1G, I) prompted us to explore unbiased 

approaches to scoring behaviors in freely moving mice at 4- vs 24-hours post-carrageenan 

paw injection and at 3- vs 10-days post-MIA knee injection. To detect, measure and scale 

behavior in freely moving animals, we used time-of-flight infrared cameras to detect mouse 

body contours, depth and movement during 20-min long sessions. We then applied 3D 

pose analysis using unsupervised machine learning (Motion Sequencing or MoSeq)24,26 

to identify sets of sub-seconds long movements (a.k.a. “modules”) that best categorize 

spontaneous behavior in models of paw inflammation and knee osteoarthritis (Fig. 3A). 

Linear Discriminant Analysis (LDA) of module usage shows the global transformation of 
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spontaneous behavior as it adapts over time to the injury (Fig. 3B–C). The progressive 

transformation we uncover here resolves the discrepancy between the punctual change in 

rearing behavior as measured by traditional approaches at 4-hours (Fig. 1G) and the ongoing 

evoked pain at 4- and 24-hours (Fig. 1H) in carrageenan-induced paw inflammation. It also 

allows us to capture the progression of pain between early and later time points, which Is 

sometimes indistinguishable with more traditional sensory evoked assays, both for paw and 

knee pain (Table S1).

To identify ethologically meaningful modules representative of spontaneous and movement-

evoked pain, we classified the 69 identified modules as belonging to one of four types of 

behavior: locomotion, grooming, pausing and rearing (Table S1). We found that all four 

types of behaviors were affected as a result of paw inflammation and knee osteoarthritis 

(Table S1, Fig. S3). In accordance with traditional measures showing a decrease in rearing 

behavior at 4-hours after carrageenan paw injection and at 3- and 10-days after MIA 

knee injection (Fig. 1G, I), we found that the usage of rearing modules is downregulated 

(e.g. downregulated rearing module 36, Fig. 3G post-carrageenan and rearing module 18, 

Fig. 3J post-MIA). However, we found a prolonged impact of pain on rearing behaviors 

also at 24-hours post-carrageenan injection (Fig. 3G, Table S1). This result suggests that 

rearing actually remains painful for animals at 24-hours, highlighting ongoing pain often 

observed following inflammation and sometimes missed by traditional approaches (Fig. 1G). 

Interestingly, we also found upregulated pausing and grooming modules during ongoing 

pain in both pain models (e.g. upregulated pausing module 4, Fig. 3H post-carrageenan 

and Fig. 3K post-MIA, and upregulated grooming modules 59, Fig. 3I post-carrageenan 

and 60, Fig. 3L post-MIA, pausing modules: 4, 49 post-carrageenan injection, 3, 4, 17, 49, 

53 post-MIA injection, Fig. S3). Thus, inflammatory pain localized in the paw and in the 

knee induces a mosaic of behavioral changes that we can resolve with 3D pose estimation 

analysis. Moreover, we could capture different sets of modules affected at 4- vs 24-hours 

post-carrageenan and 3- vs 10-days post-MIA, as well as when comparing paw vs knee 

pain (Table S1). Therefore, spontaneous behavior as captured by 3D pose estimation informs 

pain progression in a complementary manner to sensory evoked assays and can discriminate 

between pain of different etiology.

Altogether, we find that 5 out of 69 modules are differentially regulated at 4- vs 24-hours 

post-carrageenan and 4 out of 69 at 3- vs 10-days post-MIA. We propose that these 

modules represent a cohort of sensitive behavioral biomarkers of ongoing pain, central 

to understanding the neuronal networks driving pain progression over time. For example, 

resolving precisely how these specific spontaneous pain signatures correlate to neuronal 

activity driving plasticity changes from peripheral to central mechanisms is crucial to 

targeted analgesic development.

Gabapentin improves evoked and spontaneous signatures of osteoarthritis knee pain 
while meloxicam relieves tactile hyperalgesia following inflammation.

To validate both sensory-reflexive (Fig. 2) and spontaneous (Fig. 3) pain behavioral 

biomarkers, we explored the effects of drugs commonly used in veterinary and human 

medicine for inflammation and/or pain management. We aimed to test pain relief in 
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carrageenan-induced pain with the anti-inflammatory drug meloxicam and MIA-induced 

osteoarthritis pain with gabapentin at 24-hours and 10-days respectively (Fig. 4A–B). 

Meloxicam and gabapentin are commonly used to relieve inflammation and pain in rodents, 

dogs, cats and humans63–72. At 22-hours post-carrageenan paw injection and 10-days 

post-MIA knee injection respectively, we injected mice with either saline or meloxicam 

(for carrageenan-induced pain) or gabapentin (for MIA-induced pain) intraperitoneally. We 

then assessed carrageenan-induced plantar heat hypersensitivity with Hargreaves (Fig. 4C), 

MIA-induced knee hypersensitivity to mechanical pressure (Fig. 4D), sensory-reflexive 

responses with high-speed videography (Fig. 4E–F), and spontaneous behaviors with 

3D pose dynamic analysis (Fig. 4G–L). As expected, we found meloxicam reduced 

carrageenan-induced heat hypersensitivity (Fig. 4C) and gabapentin reduced MIA-induced 

knee pressure hypersensitivity (Fig. 4D). We then tested paw sensory-reflexive responses 

with high-speed videography and machine learning (Fig.4E–F). While we could not capture 

gabapentin-mediated analgesia at the secondary site of hypersensitivity (paw) post-MIA 

knee injection (Fig. 4E), we found that meloxicam alleviated the carrageenan-induced 

hyperalgesic response to pinprick typically observed at 24-hours (Fig. 4F). Combined with 

the hyperexcitability of injury-innervating neurons observed at 4- but not 24-hours (Fig. 1E), 

this suggests that prolonged inflammation results in sensitization of central circuits that drive 

tactile hyperalgesia, and that meloxicam can target this secondary effect of inflammation to 

blunt this behavior.

Next, we assessed the effects of meloxicam and gabapentin on identified spontaneous 

signatures of pain (Fig. 4). We found that meloxicam reinforced the shift in spontaneous 

behavior we observed in animals in carrageenan-induced pain (Table S1, Fig. S4). On 

a global scale we observed a further reduction in locomotion and rearing modules, and 

elevated pausing and grooming modules (Fig. 4G, H, rearing #15 and #60 grooming, 

Table S1). In total we observed 23 deregulated modules at the analgesic vs baseline state 

(i.e., 24-hours+meloxicam vs baseline+saline) compared to only 8 deregulated modules 

between baseline and pain states (i.e., baseline+saline vs 24-hours+saline). Gabapentin 

administered to animals at 10-days post-MIA knee injection showed a different shift in 

behavioral profile. Most notably, gabapentin administration at 10-days post-MIA induced an 

improvement in usage of locomotion and rearing modules compared to animals that received 

saline (Fig. 4J, K, rearing #18 and #57 locomotion). This suggests beneficial effects of 

gabapentin on spontaneous signatures of pain. Consistent with individual module results, the 

behavior state maps drawn by LDA of module usage show that the spontaneous behavior of 

animals in pain that received an analgesic is different from that of animals pre-injury and 

animals in pain that received saline (Fig. 4I, green baseline+saline, pink 24-hours+saline, 

dark blue 24-hours+meloxicam, Fig. 4L, green baseline+saline, red 10-days, darker blue 

10-days+gabapentin). For example, while the point clouds in Figure 4I and 4L do show 

some overlap between conditions, cohorts can be distinguished by their module usage, 

which we quantified by computing the F1 of the LDA in predicting the condition of the 

held-out animals (30% training set, 70% test set or held-out animals; F1-scores on the test 

set: CAR bsl+saline = 0.57, CAR bsl+meloxicam = 0.50, CAR 4h = 0.67, CAR 24h+saline 

= 0, CAR 24h+meloxicam = 0.40, overall model accuracy = 0.50, better than “pure-chance” 

= 0.20 and randomized data). For accuracy, we report F1, the harmonic mean of precision 
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and recall. We thus conclude that meloxicam and gabapentin resolve sensory-evoked aspects 

of pain in mice, but do not bring spontaneous behavior back to a pre-injury state (Fig. 

4I, L, Fig. S4). This unexpected finding led us to question whether they might also alter 

baseline behavior in the absence of pain. Our analysis demonstrates that both meloxicam 

and gabapentin indeed affect spontaneous behavior even when administered in uninjured 

animals (Fig. 4G–L, Fig. S4). While this is to be expected for gabapentin, a drug with known 

sedative effects via reduced neuronal excitability73–75, this is more surprising for meloxicam 

which acts by reducing pro-inflammatory, injury-induced prostaglandin production36,76.

Higher order behavioral sequences predict pain and analgesic states in rodents

While sub-second movement-evoked pain signatures can be resolved at a single module-

transition analysis (Fig.3), ongoing pain signatures necessitate a different analytical 

approach, one that can describe the structure of behavior over a longer time scale (i.e., over 

multiple modules and transitions). To quantitatively represent longer behavioral sequences, 

we first asked whether analysis of transition probabilities can be used to more accurately 

describe ongoing pain signatures. Thus, we calculated transition probabilities by counting 

the total number of occurrences where module A is followed by module B, for all modules. 

In this case, we used a Sankey diagram to represent transition probabilities between 

incoming and outgoing modules based on root module 18, a rear for which usage decreases 

as MIA-induced pain progresses and which is rescued by gabapentin administration (Table 

S1, Fig. S5). We find that most sequences are stable across time, for example, 18 can be 

preceded by 1, forward locomotion, and followed by 11, full rear, at baseline, 3-days and 

10-days after MIA knee injection and even after administration of gabapentin (blue, Fig. 

S5). Though the probability of this full rear following 18 decreases across time as mice 

perform less full rears when in pain (Table S1). Instead, we see new sequences 1>18>2 or 

1>18>20 appear whereby instead of proceeding to a full rear, the mouse sometimes pauses 

(2) or comes down from the rear (20) when it is in an ongoing pain state at 10-days (yellow, 

Fig. S5). We hypothesized that these unique novel sequences could be representative and 

discriminative of various pain states (4- vs 24-hours post-carrageenan and 3-days vs 10-days 

post-MIA).

If we compare the analysis of spontaneous behavior to deciphering a new language, module 

usage informs us on word frequency, which holds only limited meaning as to the state of 

the animal. However, extracting sequences of modules, akin to deciphering the meaning 

of entire sentences77,78, might provide a better representation of ongoing pain states. To 

test this model, we applied standard sequence classification techniques of natural language 

processing79 to extract sets of modules which best represent a particular experimental 

group (carrageenan: baseline + saline, baseline + meloxicam, 4-hours post-carrageenan 

injection, 24-hour post-carrageenan injection + saline, or 24-hour post-carrageenan injection 

+ meloxicam; MIA: baseline + saline, baseline + gabapentin, 3-days post-MIA injection, 

10-days post-MIA injection + saline, 10-days post-MIA injection + gabapentin). These 

methods embed long sequences (i.e., the raw sequencing data produced by one animal) 

in a representational space where sequences having similar co-occurrence structure (pairs 

of modules, triples of modules, etc.) tend to cluster. Consequently, these embeddings 

depend on contextual information80 which is absent in module usage data and potentially 
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more powerful than first order transition probabilities (see Materials and Methods, 

Learned Embeddings of Module Sequences). To evaluate the relative predictive powers 

of usages vs first order transition probabilities vs learned embeddings, we trained three 

multinomial logistic regression classifiers to predict experimental groups from each type of 

representation (see Materials and Methods, Classifier Analysis of Animal Representations). 

Context-dependent, learned embeddings (Fig. S5) were substantially more predictive of 

experimental groups than raw usages or transition probabilities on hold-out test data (.223 

and .492 F1 for raw usages for carrageenan and MIA resp.; .257 and 406 F1 for transition 

probabilities for carrageenan and MIA resp.; .538 and .781 F1 for learned embeddings for 

carrageenan and MIA resp.).

Learned embeddings now provide us with the means to identify precise behavioral 

sequences that characterize different pain states. To apply this finding, we adapted standard 

module co-location metrics80 to detect 2-, 3- and 4-long modules that characterized each 

of the experimental conditions (Fig. 5, Table S1). These methods proceed by recursively 

agglomerating neighboring modules into higher-order units according to whether the higher-

order unit appears significantly more than its constituents in the full sequence. This allowed 

us to identify sequences of spontaneous behavior most representative of the various mouse 

internal states we probe here such as pre-injury (baseline + saline), acute pain (4-hours post-

carrageenan), adaptation to pain (10-days post-MIA knee injection), effect of a common 

analgesic drug on ongoing pain (10-days post-MIA knee injection + gabapentin) (Table 

S1). Mainly we found that sequences comprising grooming and pausing behavior are 

most representative of early pain states (38>14>23, 64>56>41 at 4-hours post-carrageenan, 

40>4>40>19, 64>56>41 at 3-days post-MIA) (Table S1). Moreover, mice injected with 

MIA adapt their behavior between 3- and 10-days after knee MIA injection whereby 

slow explorative sequences best characterize their behavior at 3-days, whereas at 10-days 

sequences combining half-rears and exploratory behavior appear. Finally, meloxicam 

administration (24-hours post-carrageenan + meloxicam) seems to abolish sequences of 

escape behavior exhibited by mice at 4- and 24-hours.

We then ablated these specific behavior sequences (constituting only 0.535 % and 0.678 % 

of the total modules in the MIA and carrageenan conditions respectively) by replacing them 

with random modules to re-learn embeddings on these ablated sequences. Despite removing 

only a small portion of the total modules, this procedure resulted in an average drop in 

test-data classifier F1 of 0.166 +/− .015 for the MIA condition and 0.237 +/− .075 for the 

carrageenan condition, placing it within a standard deviation from the performance of the 

transition representation (Fig. 5E, F). In contrast, when the same number of random modules 

were ablated, testing F1 score was essentially the same (decreasing only by .011 in the MIA 

condition and increasing very slightly by .002 in the carrageenan condition (Fig. 5E, F). We 

take this quantitative result as a proof of concept not only that complex behaviors beyond 

usages and transitions characterize different pain states but also that these complex behaviors 

can be detected using standard sequence representation methods from machine learning.

In conclusion, we have identified the learned embeddings method as a crucial tool to extract 

biologically meaningful data from rich and complex behavior datasets. This allowed us to 
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uncover specific behavioral signatures of spontaneous pain as well as quantify the efficacy 

and side-effects of analgesics.

Spontaneous behavior remains affected long after inflammation-induced sensory-evoked 
hypersensitivity has resolved

We found that pain relief from sensory-evoked hypersensitivity, usually assumed to equal 

analgesia, does not coincide with a return to pre-injury spontaneous behavior (Fig. 4). To 

investigate whether spontaneous behavior ever returns to a pre-injury state, we first assessed 

sensory-evoked thermal sensitivity with Hargreaves and mechanical sensitivity with von 

Frey at baseline and at 4-hours, 24-hours, 3-days, 6-days and 14-days post-carrageenan 

paw injection (Fig. 6A). We found by 6-days post-carrageenan injection thermal and 

mechanical sensitivity were similar to baseline (Fig. 6B, C). We next used 3D pose analysis 

to probe variations in spontaneous behavior at those time points where sensory-evoked 

hypersensitivity has resolved. We were surprised to find the usage of 24 and 17 modules 

out of 69 were still deregulated at 6- and 14-days post-carrageenan injection respectively 

compared to baseline (Table S1, Fig. 6D, purple vs green). Of the 13 syllable usages which 

were deregulated in pain (Table S1, Fig. S3), we found 6 modules which showed a return 

to pre-injury: 2 rearing modules, 2 grooming modules and 2 locomotion modules (e.g. rear 

against the wall, module 46, Fig. 6E and grooming, module 59, Fig. 6F, Fig. S6). However, 

other rearing modules were still downregulated (5 out of 23 total rearing modules, example 

module 15, Fig. 6G) and pausing modules were still upregulated (6 out of 16 total pausing 

modules, example module 34, Fig. 6H, Fig. S6) at 14-days after carrageenan injection. To 

control for habituation-induced changes in module usage, we compared the modules affected 

after carrageenan injection with modules affected after saline injection in the paw and 3D 

imaging following the same schedule (Fig. S6). Importantly, the modules that might be 

representative of habituation, as identified by comparing baseline and 6-days post-saline 

injection, and baseline and 14-days post-saline injection, are overall different from the 

modules that are deregulated at 6- and 14-days after carrageenan injection. Specifically, out 

of 24 modules deregulated at 6-days after carrageenan injection, only 5 are also deregulated 

in the control saline group, and out of the 17 modules deregulated 14-days after carrageenan 

injection, only 4 are also deregulated in the control saline group. Thus, we believe that most 

of the 24 and 17-set of modules identified at 6- and 14-days post-carrageenan injection 

in this manuscript are likely to represent longer-term pain-related changes in spontaneous 

behavior. Of note, the spontaneous behavior of mice that had received meloxicam at 24-

hours was very stable at 6- and 14-days post-carrageenan (Fig. 6I). Strikingly, this was 

not the case for mice that did not receive meloxicam at 24-hours, where we could see an 

ongoing change in spontaneous behavior between 6- and 14-days after injury (Fig. 6J). 

While it remains unclear if mice regain full usage of rearing behaviors at a later time point, 

it is interesting to observe a module-usage stabilizing effect of meloxicam, a drug with an 

elimination half-life of ~20-hours81, after just one administration. Future studies will need to 

probe whether this effect is beneficial to other recovery metrics like depression and anxiety.

In conclusion, our methods demonstrate a divergence in the timeline for recovery of 

sensory-evoked vs spontaneous behaviors from inflammatory pain, suggesting that the 
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neuroinflammatory mechanisms and neural pathways underlying these two aspects of injury-

induced pain are different.

Discussion

Using two different rodent pain models, we provide a holistic assessment of pain 

behaviors, analgesia and recovery in the mouse that is correlated to key changes in 

neuronal excitability. With videography across timescales followed by unbiased analyses 

using machine learning, we identify evoked and spontaneous behaviors of inflammatory 

pain previously undetected with traditional methods. Profiling sensory neurons directly 

innervating the site of injury revealed that changes in neuronal excitability initiate 

inflammatory pain, and that persistent pain is driven by molecular changes27,82,83. 

We determined that while widely used pain management strategies (meloxicam in 

veterinary medicine and gabapentin in human medicine) might provide relief from tactile 

hypersensitivities, they rarely equate to a return to a pre-injury state when it comes to 

spontaneous ethological signatures of pain. Finally, recovery of evoked and spontaneous 

behaviors after injury does not seem to follow the same timeline, suggesting different 

neural pathways underlie the evoked and spontaneous aspects of the pain experience. 

Taken together, these data provide a new multidisciplinary approach for arraying highly 

dimensional pain behavior datasets and offer a new experimental roadmap for assaying 

analgesic efficacy and recovery in preclinical rodent models.

Resolving pain behaviors across time

A single injection of carrageenan produces localized inflammation, which starts resolving 

within a day, but noxious sensations can persist for days. Here, we demonstrate higher 

excitability of sensory neurons innervating the inflamed hind paw after 4-hours of 

inflammation. This rapid onset of hyperexcitability, as well as the pain relief mediated by 

meloxicam, point to the involvement of specific molecular mechanisms such as the release 

of prostaglandin E2 (PGE2)34,36. However, our electrophysiological approach shows that 

sensory neurons innervating the site of inflammation are no longer hyperexcitable 24-hours 

after inflammation. This suggests that the persistent pain behaviors we observe at the 24-

hour time point are likely driven by adaptations of the nociceptive system. Indeed, we show 

an increase in the number of sensory neurons expressing TRPV1 24-hours after induction 

of inflammation. Our results show that the status of sensory neurons evolves rapidly 

with inflammation, with unique changes in the activity and molecular profile of sensory 

neurons that are punctuated at discrete time points post-injury. This is consistent with recent 

findings from RNA profiling of sensory neurons in a longer-lasting inflammatory pain 

model (complete Freund’s adjuvant (CFA) paw injection) showing an increase at 48-hours 

in PGE2 synthase expression in peptidergic nociceptors and TRPV1 in both peptidergic and 

non-peptidergic nociceptors84,85.

Knee neuron hyperexcitability increases from 3- to 10-days after MIA knee injection as 

degeneration of the articular cartilage progresses (Fig. 1F). Additionally, as peripheral 

nociceptor signaling is maintained, central circuits adapt and the resulting pain experience 

is due to both peripheral and central sensitization86, hence behavioral pain signatures should 
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evolve. However, neither mechanical pressure sensitivity nor traditional assessment of 

rearing behavior could differentiate the osteoarthritis-like pain experience of rodents at 3- vs 

10-days (Fig. 1I–J), again highlighting the limited dynamic range of traditional assays and 

the need for more global pain assessment. Using computer vision and unsupervised machine 

learning, we identified unique spontaneous behavior signatures at 3- and 10-days with a 

different set of rearing modules being downregulated at each time point and an increase 

in grooming behavior at 10-days, but not at 3-days, post-MIA knee injection. Interestingly, 

this increased grooming is resolved after gabapentin injection, as well as certain rearing 

behaviors being restored.

Developing, screening and testing single and combination therapies to treat pain over time 

requires an ability to differentiate between these critical time points with unique and easily 

identifiable behavior signatures. With machine learning we can now identify discrete sets of 

behaviors that correlate with pain of different etiologies, pain progression and its relief, or 

lack thereof.

Supervised and unsupervised learning approaches to scale sensory-reflexive paw 
withdrawal behaviors can distinguish hyperalgesia and allodynia

Using the 4- and 24-hour time points to anchor our sensory-reflexive behavioral studies, 

we show that the early onset of paw withdrawal behaviors in response to stimulation 

at the primary site of injury are unaltered over time (paw speed and height, Fig. 2). 

However, we observe an upregulation of defensive coping behaviors like paw guarding 

as pain progresses from 4- to 24-hours. This is consistent with recent work demonstrating 

that supraspinal brain structures like the parabrachial nucleus of the brainstem and the 

central and basolateral amygdala coordinate more complex defensive coping behaviors, like 

attendance to the stimulated area and escape behavior, at longer time scales87–90. Taken 

together, our results show a distinction between strictly reflexive and supraspinal mediated 

coping behavioral responses to sensory stimulation under pathophysiological conditions, 

that can be distinguished across time and are specific to different sensory modalities. In 

addition, our work shows identifiable variations in guarding responses to innocuous and 

noxious stimuli. To our knowledge, this is the first demonstration that differences in paw 

guarding behaviors are specific to a given mechanosensory stimulation, finally allowing for 

the nuanced distinction between allodynia and hyperalgesia in preclinical animal models.

3D pose estimation establishes spontaneous pain signatures and redefines the 
relationship between analgesia and recovery in preclinical rodent models

While sensory-evoked behavior measurements are necessary for the estimation of rodent 

pain91, our addition of 3D pose estimation to scale spontaneous pain behaviors provides a 

more rounded and unbiased picture of the overall rodent pain state (sensory-discriminative, 

affective-motivational, and cognitive-evaluative components59), which more accurately 

resembles our own lived pain experiences. Our 3D pose estimation studies uncover two 

distinct trends in how ongoing pain affects general behavior. First, we show that mice 

differentially use unique micro-movements at 4- vs 24-hours after carrageenan compared 

to pre-injury (4 and 8 modules deregulated at 4- and 24-hours respectively), suggesting a 

qualitatively different pain experience at 24-hours. Second, we find a parallel trend that 
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follows a U-shaped curve where the usage of certain movements is most affected during 

the acute phase and tends to revert to pre-injury levels at 24-hours. This second trend 

suggests an adaptation of motor behavior to pain. Importantly, those two parallel types of 

adaptation of spontaneous behavior to ongoing pain are recapitulated in the MIA-induced 

model of knee osteoarthritis whereby a minority of behaviors tend to improve at 10-days, but 

the majority worsen as cartilage degeneration, bone necrosis and inflammation progress. 

Unexpectedly, 25% of modules are still deregulated after sensory-evoked carrageenan-

induced hypersensitivity has resolved. Indeed, we find that certain types of rearing behavior, 

mainly full rears, are still less used by mice 14-days after carrageenan paw injection, 

potentially because they are still painful and/or uncomfortable.

The International Association for the Study of Pain describes pain as both a sensory and an 

emotional experience92, with analgesia broadly defined as a lack of pain or an insensitivity 

to pain. By this current definition an analgesic provides relief from both sensory-evoked 

and ongoing emotional pain. However, is analgesia a return to a pre-injury state or a 

different state altogether? Our combined approach shows that each pain state (pre-injury, 

4-, 24-hours post-injury, etc.) occupies a unique corner of behavioral space and can be 

defined by unique sequences of sub-second movements. While meloxicam can relieve 

mechanical and thermal sensory-reflexive responses, its effect on spontaneous behavior is 

more subtle as mice injected with either saline or meloxicam at 24-hours post-injury still 

share common sub-second movements and movement sequences. Thus, our pose estimation 

results demonstrate that current analgesic treatments for pain are unlikely to revert an animal 

back to a pre-injury behavioral state. However, the application of combined approaches 

that can more accurately correlate unique and distinguishable behavior signatures with their 

underlying pathological mechanisms will drastically improve the translational potential of 

analgesic drug development from bench-to-bedside.

Looking towards the future: how should we measure pain and analgesia in rodents?

Here we propose a large array of computational approaches to better define sensory-evoked 

and spontaneous pain progression from acute to chronic, and identify unbiased markers 

of analgesic efficacy. The growing number of computational tools available for automated 

tracking of animal behavior might make it seem difficult to choose the most appropriate 

one. We discuss here our insights on the advantages and limits of the supervised and 

unsupervised approaches we used to study two broadly used animal pain models: transient 

carrageenan-induced inflammatory paw pain and persistent osteoarthritis-like MIA-induced 

knee pain. First, generally speaking, the nature of the injury model should guide researchers 

towards the use of sensory-evoked (for example DeepLabCut22 or SLEAP93 tracking 

followed by PAWS21, B-SOiD23 analysis of behavior) and/or spontaneous pain tracking (for 

example 3D imaging from above or below followed by behavior segmentation and analysis 

using MoSeq26,94 or B-SOiD). As a general rule, for techniques that produce such fine and 

granular level of behavior tracking, the design of the experiment and inclusion of control 

groups is crucial. Here for example, we included a control cohort to monitor habituation-

induced changes in module usage with MoSeq (Fig. S6). Furthermore, as highlighted in 

our study of MIA-induced knee pain, subsecond tracking of paw withdrawal might not be 

informative of the pain state of the animal when the injury concerns a body part other than 
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the paw, for example in the case of visceral pain. However, we were able to capture the 

commonality of global markers of ongoing pain: increased pausing and grooming, decreased 

rearing, both for paw and knee pain by using 3D imaging and MoSeq. Second, while the 

sum of all pausing module usages is significantly upregulated at baseline compared to pain 

states, we do believe it is important and meaningful to also analyze at the specific module 

level for a variety of reasons. For example, the module level analysis shows more subtle 

effects of meloxicam administration: one specific pause is significantly downregulated, 

whereas another type of pause is significantly increased. The granularity generated by 

such analyses allows the investigator to interrogate on- and off- target effects of drugs 

which would otherwise be masked by agglomeration, which is the classical approach in 

human-scored behaviors and pain research. At an ethological level, not all pauses are equal, 

and humans are poor at correctly classifying these appropriately, which is the benefit of 

unsupervised approaches such as MoSeq.

Modern machine learning methods tend to work best in the big data regime, where the 

number of samples is much larger than the number of features. However, ethological data 

often falls outside this regime, since a sample corresponds to one animal and many-animal 

experiments are expensive. However, as data collection techniques improve and sample 

sizes grow, big-data approaches become increasingly feasible. Our setting, with hundreds 

of samples each with tens of thousands of modules, represents a transitional moment in 

data scale at which the comparative advantage of traditional vs modern methods is difficult 

to decide in advance. The current manuscript demonstrates that, while modern methods 

(e.g. learned embeddings) can achieve better raw prediction than traditional techniques (e.g. 

LDA), their results are often difficult to interpret, necessitating explanatory workarounds 

like those which produced the behavior motifs in the Section “Higher order behavioral 

sequences predict pain and analgesic states in rodents”. Traditional methods, for their 

part, show the opposite relation between prediction and interpretability. Nevertheless, the 

direction of the field is clear, and the era of truly big-data ethology will usher in the methods 

we have begun to explore here.

Our view is that sequence analysis techniques like those we have adapted from natural 

language processing represent an exciting opportunity for this new era. Importantly, 

they take advantage of the discrete nature of module data and can incorporate 

arbitrary timescales, unlike the simple Markovian assumptions underlying the transition 

representation. Second, new natural language methods based on transformers (e.g. GPT-495) 

have shown great promise in sequence generation. Although we have not explored 

generative modeling in this manuscript, we believe that the ability to synthesize new 

behavioral sequences and indeed new “animals” will have significant theoretical and clinical 

applications. The development of sequence processing methods for ethology is an important 

step towards this ability.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information may be requested from and will be provided by the 

corresponding author Victoria E. Abraira (victoria.abraira@rutgers.edu).
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Material availability—This study did not generate new unique reagents or mouse lines.

Data and code availability—Behavioral and electrophysiological data have been 

deposited at Zenodo (https://doi.org/10.5281/zenodo.7884191) and are publicly available 

as of the date of publication. Software and code used in this manuscript is available from 

the sources listed in the key resources table, and is publically available as of the date 

of publication, subject to their individual licenses. Any ad hoc scripts used within this 

manuscript for plotting have been deposited at Zenodo, in the same repository as, and 

alongside, the corresponding data. Any additional information required to reanalyze the data 

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals (Rutgers University)—Wild Type male mice of C57BL/6N background were 

used for behavioral analyses. All mice were adults between 2 and 4 months. All procedures 

were approved by the Rutgers University Institutional Animal Care and Use Committee 

(IACUC; protocol #: 201702589). C57BL6 mice were purchased from Jackson Laboratories. 

All animals were habituated to our facility for 2 weeks after delivery before beginning 

behavioral experiments described below. All mice used in experiments were housed in a 

regular light cycle room (lights on from 08:00 to 20:00) with food and water available 

ad libitum. All cages were provided with nestlets to provide enrichment. Animals were 

co-housed with 4 mice per cage in a large holding room containing approximately 300 

cages of mice. 20 μl 3% (w/v) λ-Carrageenan (Sigma-Aldrich) in PBS 1X was injected 

into the mouse left hind paw using a Hamilton syringe for the carrageenan model of 

paw inflammation. 10 μl 0.1 mg/μl sodium iodoacetate (VWR) in PBS 1X was injected 

into the knee joint for the MIA-induced model of knee osteoarthritis. All animals were 

acclimated to the testing room for an hour prior to testing. For 3D pose imaging, mice 

were gently placed in the middle of a circular 17” diameter enclosure with 15”-high walls 

(US Plastics) and allowed to roam freely for 20 minutes while being recorded with the 

Kinect2 depth-sensing camera. Mice were habituated to the Hargreaves testing chambers 

for two hours over two days. Thermal hyperalgesia was assessed at baseline and 6- and 

26-hours post-carrageenan injection after 3D pose imaging at baseline, 4- and 24-hours 

post-carrageenan injection. Inflammation was induced while mice were under inhalation 

anesthesia (2 to 3.5% isoflurane according to mice’s loss of consciousness and anesthetic 

depth (monitoring of respiratory rate and pattern and responsiveness to toe pinch). Saline or 

meloxicam (5mg/kg, Henry Schein Animal Health) was injected intraperitoneally 22 hours 

post carrageenan injection (2 hours before the last 3D pose imaging session).

Animals (University of Cambridge)—Wild Type male mice of C57BL/6J background 

were used for behavioral, electrophysiological and histological analyses. All mice were 

adults between 2 and 4 months. Experiments performed in Cambridge, UK (dynamic 

weight bearing, pressure application measurement, electrophysiology, Ca2+ imaging and 

immunohistochemistry) were regulated under the Animals (Scientific Procedures) Act 1986 

Amendment Regulations 2012. The University of Cambridge Animal Welfare and Ethical 

Review Body also approved all animal experiments. Male C57BL/6J mice (Envigo) were 

housed in groups of up to five per cage with access to food and water ad libitum. The 
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holding room was maintained at 21 °C and operated a 12-hour light/dark cycle. Sensory 

neurons innervating the site of interest were labeled with the retrograde tracer Fast Blue (2% 

w/v in sterile PBS; Polysciences) one week before intraplantar injection of carrageenan or 

one day before intra articular injection of MIA under inhalation anesthesia (2% isoflurane). 

To label cutaneous hind paw afferents 3 × 1 μl injections were made to the lateral, central 

and medial plantar aspects of each hind paw, 1.5 μl tracer was injected intra articularly to 

both knees to label knee-innervating sensory neurons. Unilateral (side determined randomly) 

injections of carrageenan (20 μl intraplantar; 3% w/v λ-carrageenan in sterile PBS; Sigma-

Aldrich) or MIA (10 μl intra articular; 0.1 mg/μl in sterile PBS; Sigma-Aldrich) were made 

under inhalation anesthesia (2% isoflurane). Digital calipers were used to measure knee, 

ankle or foot pad diameters at appropriate time points. One cohort of animals were injected 

with gabapentin (30 mg/kg; Merck) intraperitoneally 10 days post-intra articular injection of 

MIA.

Animals (University of Pennsylvania and Columbia University)—Wild Type male 

mice of C57BL/6N background were used for behavioral analyses. All mice were adults 

between 2 and 4 months. Mice for behavior testing were maintained in a barrier animal 

facility in either the Carolyn Lynch building at the University of Pennsylvania, or the 

Jerome Greene Science Center at Columbia University. Both vivariums are temperature 

controlled and maintained under a 12-hr light/dark cycle (7 am/7 pm) at 70 degrees 

Fahrenheit with ad lib access to food (Purina LabDiet 5001) and tap water. The feed 

compartment on the wire box lid of the cage was kept at a minimum of 1/3 full at all 

times. All cages were provided with nestlets to provide enrichment. All procedures were 

conducted according to animal protocols approved by the university Institutional Animal 

Care and Use Committee (IACUC) and in accordance with the National Institutes of 

Health (NIH) guidelines. C57BL6 male mice were purchased from Jackson Laboratories. 

All animals were habituated to our facility for 2 weeks after delivery before beginning 

behavioral experiments described below. Animals were co-housed with 4–5 mice per cage 

in a large holding room containing approximately 500 cages of mice. 20 μl 3% (w/v) 

λ-Carrageenan (Sigma-Aldrich) in 0.9% sterile NaCl solution (saline) was injected into the 

mouse hind paw. Mechanical sensitivity was assessed with PAWS at baseline, 4 and 24 hours 

post carrageenan injection. Inflammation was induced while mice were under inhalation 

anesthesia (2 to 3.5% isoflurane according to mice’s loss of consciousness and anesthetic 

depth (monitoring of respiratory rate and pattern and responsiveness to toe pinch). Saline or 

meloxicam (5mg/kg, Henry Schein Animal Health) was injected intraperitoneally 22 hours 

post carrageenan injection (2 hours before the last PAWS behavioral testing session).

METHOD DETAILS

Histology—Knee joints were collected post-mortem and fixed in 4% (w/v) 

paraformaldehyde (PFA; Sigma) for 24-hours at 4 °C, tissue was incubated in decalcifying 

solution (10% (w/v) EDTA, 0.07% (v/v) glycerol, 15% (w/v) sucrose in PBS, pH 8) at 4 

°C for ~ 3 weeks, during which time solution was regularly refreshed. Once sufficiently 

decalcified, joints were snap-frozen in Shandon M-1 Embedding Matrix (Thermo Fisher 

Scientific). A cryostat was used to slice 20 μm sections in the sagittal plane, sections were 

collected on SuperFrost Plus slides (Thermo Fisher Scientific). Slides were stained with 

Bohic et al. Page 18

Neuron. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



safranin O (0.1% w/v, cartilage stain), Weiger”s iron hematoxylin (nuclei stain) and Fast 

Green (0.08% w/v, counterstain), mounted with glycerol and imaged using a NanoZoomer 

S360 (Hamamatsu).

Behavior: Dynamic Weight Bearing—The weight bearing of free-moving animals was 

assessed using a dynamic weight bearing apparatus (Bioseb). Each test lasted three minutes, 

mice were naïve to the test device before baseline weight bearing was assessed. The 2 

highest confidence levels of automatic paw assignment by the accompanying software were 

taken forward for analyses; correct paw assignment was manually validated for at least 1 

minute 30 seconds of each test.

Behavior: Hargreaves Assay—To assess hind paw heat sensitivity, Hargreaves’ test was 

conducted using a plantar test device (IITC). Mice were placed individually into Plexiglas 

chambers on an elevated glass platform and allowed to acclimate for at least 30 minutes 

before testing. A mobile radiant heat source of constant intensity was then applied to the 

glabrous surface of the paw through the glass plate and the latency to paw withdrawal 

measured. Paw withdrawal latency is reported as the mean of three measurements for both 

hind paws with at least a 5 min pause between measurements. A cut-off of 20 s was applied 

to avoid tissue damage.

Behavior: Pressure application measurement—Mechanical sensitivity of the knee 

joint was assessed using a pressure application measurement device (Ugo Basile). Animals 

were scruffed before the force transducer was used to apply gradual force to each of 

the animals’ knee joints, by squeezing the joint medially. The withdrawal threshold was 

recorded when an animal withdrew the limb being tested, or after 450 g force was applied. 

Each animal was tested twice per time point, with a short break between tests, withdrawal 

force is reported as an average of the two measurements taken at each time point.

Electrophysiology—Mice were sacrificed by cervical dislocation before the lumbar DRG 

(L2 – L5) from carrageenan injected and non-injected sides were collected separately in 

dissociation media (L-15 + GlutaMAX growth media supplemented with 24 mM NaHCO3; 

Life Technologies). Dissected DRG were then incubated in dissociation media containing 

1 mg/ml type 1A collagenase (Sigma Aldrich) and 6 mg/ml bovine serum albumin (BSA; 

Sigma-Aldrich) for 15 min at 37 °C, 5% CO2, before a further 30 min in dissociation 

media containing 1 mg/ml trypsin (Sigma-Aldrich) and 6 mg/ml BSA. DRG were then 

suspended in culture media (L-15 + GlutaMAX growth media supplemented with 10% (v/v) 

fetal bovine serum, 24 mM NaHCO3 38 mM glucose and 2% (v/v) penicillin/streptomycin) 

before several rounds of mechanical trituration and brief centrifugation (160g, 30 s). 

After sufficient trituration, dissociated cells were pelleted (160g, 5 min), resuspended in 

culture media and plated on poly-D-lysine/laminin coated glass coverslips (BD Biosciences) 

and incubated at 37 °C, 5% CO2. Electrophysiology experiments were performed the 

following day, recordings were made using an EPC-10 amplifier (HEKA) and corresponding 

Patchmaster software. The extracellular solution contained (in mM): NaCl (140), KCl (4), 

MgCl2 (1), CaCl2 (2), glucose (4) and HEPES (10), adjusted to pH 7.40 with NaOH. Patch 

pipettes were pulled from borosilicate glass capillaries (Hilgenberg) using a P-97 pipette 
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puller (Sutter Instruments) with resistances of 4–8 MΩ and back filled with intracellular 

solution containing (in mM): KCl (110), NaCl (10), MgCl2 (1), EGTA (1), HEPES (10), 

Na2ATP (2), Na2GTP (0.5), adjusted to pH 7.30 with KOH. Whole cell currents or 

voltages were sampled at 20 kHz from Fast Blue labelled neurons, identified by LED 

excitation at 365 nm (Cairn Research). Step wise depolarization (Δ10 pA, 50 ms) was 

used to determine the action potential threshold of cells. Only cells which fired action 

potentials and had a resting membrane potential less than or equal to −40 mV and were 

included in analyses. Action potential parameters were measured using Fitmaster software 

(HEKA) and IgorPro software (Wavemetrics) as previously described18. The excitability of 

neurons was further assessed by applying a suprathreshold (2x action potential threshold) 

for 500 ms, the number of action potentials discharged during this time was counted. The 

activity of macroscopic voltage-sensitive channels was assessed in voltage clamp mode with 

appropriate compensation for series resistance. Cells were held at −120 mV for 150 ms 

before stepping to the test potential (−60 mV – 55 mV in 5 mV increments) for 40 ms and 

returning to a holding potential of −60 mV for 200 ms between steps. Peak inward and 

outward currents were normalized to cell size by dividing by cell capacitance. Peak inward 

current densities were then fit to a Boltzmann function to determine the reversal potential 

and half-activating potential of voltage sensitive channels. To compare macroscopic voltage-

sensitive currents between neurons isolated from the Ipsi and Contra sides peak current 

densities were normalized to those obtained from cells from the Contra side.

Ca2+ Imaging—During the dissociation and culture of DRG neurons isolated from mice 

that were injected with MIA intra articularly one coverslip was seeded at double the density 

for electrophysiology experiments for both ipsilateral and contralateral cells. 24-hours after 

dissociation these cells were incubated with the Ca2+ indicator Fluo-4 AM (10 μM diluted 

in the same extracellular solution used for electrophysiology experiments) for 30 minutes at 

37 °C, 5% CO2. Following the 30 minute incubation, coverslips were washed and imaged 

using an inverted Nikon Eclipse Ti microscope, Fluo-4 was excited using a 470 nm LED 

(Cairn Research) and captured with a Zyla cSMOS camera (Andor) at 1 Hz, 50 ms exposure 

using Micro-Manager software (NIH). Cells were perfused via a gravity-driven 12-barrel 

perfusion system (Dittel). A 15 second baseline was captured while extracellular solution 

was perfused before a 10 second stimulation with 1 μM capsaicin (Sigma-Aldrich), cells 

were then perfused with extracellular solution again for 75 seconds before challenge with 50 

mM KCl, sufficient to depolarize and thus identify viable neurons. After each experiment 

a single image was captured at 365 nm (Cairn Research), exposure 500 ms, to identify 

Fast Blue positive cells. During analysis, single cells were selected as regions of interest 

using ImageJ software (NIH). Cells were deemed positive for Fast Blue if the background 

corrected intensity exceeded 2x the standard deviation (SD) of intensities of all cells in the 

field of view). Ca2+ signals were analyzed with custom-written R scripts, the fluorescence 

signals of each cell were background and baseline corrected, only cells for which KCl 

elicited an increase in Fluo-4 fluorescence > 5 x the SD of the baseline average were taken 

forward for further analyses. Fluo-4 intensities were normalized to the maximal fluorescence 

elicited during KCl stimulation, cells were deemed capsaicin sensitive if Fluo-4 intensity 

surpassed the same threshold during the 10 second application of capsaicin.
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Immunohistochemistry—24-hours post inflammation a cohort of mice were 

transcardially perfused with 4% (w/v) PFA under terminal anesthesia (intraperitoneal 

delivery of 200 mg/kg sodium pentobarbital). Lumbar DRG (L3 – L4) were then collected 

from both the inflamed and non-injected sides and post-fixed in Zamboni’s fixative for 30 

min, followed by overnight incubation in 30% (w/v) sucrose at 4 °C for cryoprotection. 

Individual DRG were then snap-frozen in Shandon M-1 Embedding Matrix (Thermo Fisher 

Scientific). 12 μm sections of each DRG were collected on a cryostat sequentially across 

10 slides. After washing with PBS containing 0.001% (v/v) Tween-20 (Thermo Fisher 

Scientific), slides were incubated with antibody diluent (1 % (w/v) BSA, 5% (v/v) donkey 

serum and 0.02% (v/v) Triton-X-100 in PBS) at room temperature for 1 hour before 

overnight incubation at 4 °C with an anti-TRPV1 antibody (1:500; guinea-pig polyclonal; 

Alomone, AGP-118). The following day slides were washed three times with PBS-Tween 

before incubation with donkey anti guinea-pig IgG-AF488 for 2 hours at room temperature, 

followed by a further two washes and mounting. Images were acquired with an Olympus 

BX51 microscope and Q-Imaging camera. Two sections per DRG per animal were analyzed, 

briefly, each cell was selected as a region of interest and individual cells were considered 

positively stained if the background corrected intensity exceeded 2x SD of the normalized 

intensity across all sections. Negative controls which were not exposed to any primary 

antibody showed no fluorescent staining.

High-speed imaging and video storage—Mouse behaviors were recorded at 2000 fps 

with a high-speed camera (Photron FastCAM Mini AX 50 170 K-M-32GB- Monochrome 

170K with 32 GB memory) and attached lens (Zeiss 2/100M ZF.2- mount). Mice performed 

behavior in rectangular plexiglass chambers on an elevated mesh platform. The camera 

was placed at a ~45° angle at ~1–2 feet away from the Plexiglas holding chambers on a 

tripod with geared head for Photron AX 50. CMVision IP65 infrared lights that mice cannot 

detect were used to adequately illuminate the paw for subsequent tracking in ProAnalyst. 

All data were collected on a Dell laptop computer with Photron FastCAM Analysis software 

(average size of video file = ~2 GB).

Somatosensory behavior assays—In all behavioral experiments, we used a sample 

size of 6–10 mice per strain, as these numbers are consistent with studies of this kind in the 

literature to reach statistically significant conclusions. All mice were habituated for 2 days, 

for one hour each day, in the Plexiglas holding chambers before testing commenced. Mice 

were tested in groups of five and chambers were placed in a row with barriers preventing 

mice from seeing each other. On testing day, mice were habituated for an additional ~10 

min before stimulation and tested one at a time. Stimuli were applied through the mesh to 

the hind paw proximal to the camera. Testing only occurred when the camera’s view of 

the paw was unobstructed. Mice received two stimuli on a given testing day (db and lp) 

and were given at least 24 hr between each stimulus session. Stimuli were tested from least 

painful to most: dynamic brush then light pinprick. Dynamic brush tests were performed 

by wiping a concealer makeup brush (L’Oréal Paris Infallible Concealer Brush, item model 

number 3760228170158) across the hind paw from back to front. Light pinprick tests were 

performed by touching a pin (Austerlitz Insect Pins) to the hind paw of the mouse. The pin 

was withdrawn as soon as contact was observed.
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Automated paw tracking (Proanalyst)—We used ProAnalyst software to automatically 

track hind paw movements following stimulus application. This software allowed us to 

integrate automated and manually scored data, possible through the ‘interpolation’ feature 

within ProAnalyst. We were able to define specific regions of interest (paw), track, and 

generate data containing ‘x’ and ‘y’ coordinates of the paw through time. In a subset of 

videos, additional manual annotation was performed for increased accuracy.

Automated paw tracking (DeepLabCut)—For deep learning-based paw tracking in 

DeepLabCut (DLC), we pseudo-randomly selected a subset of training frames from trials 

which contained the greatest behavioral variation and hand-labeled the hind paw toes, center, 

and heel. We trained DLC to predict toe, center, and heel positions in unlabeled video 

frames.

Quantifying withdrawal behavior (PAWS)—Behavioral features were extracted from 

raw paw position time series in an automated and standardized procedure. First, the start 

and end of paw movement (paw at rest on the ground) were identified, and analysis was 

restricted to this time window. Peaks in paw height were then determined based on Savitsky-

Golay smoothed estimates of paw velocity, and the first peak identified. The time of the 

first peak (designated t*) was used to separate pre-peak behavioral feature calculations from 

post-peak calculations. To differentiate shaking from guarding in the post-peak period, we 

constructed a moving reference frame based on the principal axis of paw displacement 

across a sliding window (0.04 s in duration) for each time point, and identified periods of 

consecutive displacements above a specified threshold (35% of maximum paw height) as 

periods of shaking. Note that in the construction of the moving reference frame the principal 

axes of variation were recovered via principal component analyses, which is not invariant to 

the sign of the recovered axes. Since displacement is measured over time it is sensitive to 

reversals in sign along the axis we measure it. We therefore ensured consistency by using the 

axis direction minimizing the angular deviation from the axis recovered at the previous time 

step. PAWS is open source and freely available at https://github.com/crtwomey/paws.

Quantifying withdrawal behavior (B-SOiD)—To determine behavioral sub-actions 

following foot stimulation, pose estimation data was passed along to the unsupervised 

behavioral discovery and extraction algorithm, B-SOiD. Experimentalists processing this 

data were blind to the experimental condition. Position coordinates of fore paw hind paw 

motion tracked by DeepLabCut in samples of 2000fps video, and then were imported to 

the B-SOiD app to identify unique behavioral clusters in response to pain stimulus. Data 

from dynamic brush and light prick Hour-4 sessions were combined to develop a generalized 

B-SOiD model of pain response. The frame rate was scaled down to 1/7th of the original 

to help B-SOiD extract sub behavioral features. Data used in the B-SOiD model were 

the hind paw toe, hind paw center-paw and two static reference positions. The two static 

reference points were the initial positions of the fore paw the maximum elevation of toe post 

stimulation. B-SOiD performed nonlinear embedding to transform 16-dimensional data to 

5- dimensional UMAP space. The 16-dimensional data include frame by frame calculation 

of distance and angle between all four points as well as the speed of the two body parts. 

11 behavioral clusters were identified and used to train the random forest classifier of the 
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algorithm, which was then used to assign behavioral labels to data from all epochs and 

stimulation types. Every frame was labeled, and a smoothing kernel was used to eliminate 

any sub actions lasting under 2.5 seconds (5 frames). Importantly, beyond the spatiotemporal 

relationship values between the points, no other information was available to the algorithm. 

B-SOiD is open source and freely available at https://github.com/YttriLab/B-SOID.

3D pose analysis: data acquisition, processing, and modeling—Analysis was 

performed using tools and procedures provided by the Datta Lab, and following previous 

publications24–26. The following programs and versions were used: kinect2-nidaq (v0.2.4-

alpha), moseq2-extract (v1.1.2), moseq2-pca (v1.1.3), moseq2-model (v1.1.2), moseq2-viz 

(v1.2.0). All depth movie data for this study were used together to train the final MoSeq 

model: carrageenan cohort, saline control cohort, MIA cohort.

First, we used the program kinect2-nidaq (v0.2.4-alpha) to collect raw depth frames from a 

Microsoft Kinect, mounted above the arena. Frames were collected at 30 Hz, and each frame 

was composed of 512 × 424 pixels, where each pixel contained a 16-bit unsigned integer 

specifying the distance of that pixel from the sensor in mm. After each session, frames were 

gzip compressed and moved to another computer for offline analysis.

The raw data for each recording session was extracted using the program 

moseq2-extract (v1.1.2), largely using the default parameters and the flip model 

“flip_classifier_k2_c57_10to13weeks.pkl” supplied by the Datta Lab. Briefly, the mouse’s 

center and orientation were found using an ellipse fit on the pixels identified as “mouse”. 

Then, an 80 × 80 pixel box was drawn around the mouse, and the mouse was rotated to face 

the right hand side. All extraction results were assessed for quality of extraction by a human 

watching a movie visualization of the data and also by comparing the distributions of height, 

width, length, and area, following best practices as described by the Datta Lab (personal 

communication).

Next, we used the program moseq2-pca (v1.1.3) to project the extracted depth frames onto 

the first 10 learned principal components (PCs), forming a 10 dimensional time series 

that described the mouse’s 3D pose trajectory. Quality of the PCA model was assessed 

by examining a visualization of the pixel weights assigned by each principal component 

as well as the cumulative distribution of the percent variance explained by each principal 

component. This program was also used to generate a model-free changepoint analysis, 

which describes an empirical module duration distribution, found without any model 

constraints.

Then we used the program moseq2-model (v1.1.2) and the 10-D PCA-transformed data to 

train a series of autoregressive hidden Markov models (AR-HMM, a.k.a “MoSeq model”). 

Each state was described by a vector autoregressive process that captures the evolution of the 

10 PCs over time and a hidden Markov model that captures the switching dynamics between 

these states. For all models, we used the following parameters: “--max-states 100 --robust”. 

We determined the best value for the hyperparameter kappa, which affects the timescale of 

discovered behavioral modules. For this we trained a family of 100 models for 200 iterations 

each, with kappa values ranging logarithmically from 100,000 to 1,000,000,000. The best 
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kappa parameter was determined by minimizing the absolute difference in the mean module 

duration between a given AR-HMM model fit and the mean block duration found via a 

model-free changepoint analysis (see above). For the results presented in this manuscript, we 

found a kappa value of 155,567,614 satisfied this criteria. Then, we trained a family of 100 

models for 1,000 iterations each, using this discovered optimal kappa value. To choose an 

appropriate model from this family, we examined the aggregate log-likelihood value for each 

model and chose the model with the median log-likelihood to carry forward to downstream 

analysis.

3D pose analysis: Behavioral usage and transition matrix analysis—Module 

usage was calculated by counting the number of occurrences of each module and dividing 

by the total sum of all module occurrences within a recording session, converting 

module usage into a percentage. The number of modules analyzed were cutoff based 

on the global usage across all sessions, eliminating modules which were not performed 

by any animals in the study. Transition matrices were calculated by counting the total 

number of occurrences where module A transitions into module B (for all modules) 

and normalizing by the sum of the matrix (bigram normalization). Statistical testing for 

module usage follows the previously published procedures24–26,96. Briefly, for each group 

comparison of interest and each module, we took 1,000 bootstrap samples (sampling with 

replacement within a group) of the given module’s usage for each group and performed 

a z-test on these two distributions. Finally, we use the Benjamini-Hochberg procedure 

(statsmodels.stats.multitest.multipletests97) to correct for multiple hypothesis testing and 

control the false discovery rate.

3D pose analysis: Behavioral Linear Discriminant Analysis—Linear Discriminant 

Analysis (LDA) was performed using the scikit-learn implementation using the eigen solver 

and 2 components. Individual normalized usage or bigram transition probabilities were 

fed as input to the LDA model, including group labels. This data was split into train and 

validation sets in a 70:30 stratified ratio. We searched over the hyperparameter “shrinkage” 

using a 5-fold stratified cross-validation approach using only the train subset and found little 

effect on the model performance against the never-before-seen validation set. Final models 

were trained using the entire train set, and evaluated on the never-before-seen validation 

set. We also performed a permutation test (sklearn.model_selection.permutation_test_score), 

wherein we train a family of models against 100 randomly permuted labels, and compare 

the distribution of model scores against shuffled data vs final model and calculate a p-value. 

Results were plotted with seaborn and matplotlib.

Learned Embeddings of module Sequences—Each animal was represented as a 

doc2vec (“document to vector”) embedding98 using the Gensim software package (Software 

Framework for Topic Modelling with Large Corpora. In Proceedings of LREC 2010 

workshop New Challenges for NLP Frameworks. Valletta, Malta: University of Malta, 

2010. p. 46--50. ISBN 2-9517408-6-7), version 4.0.1, in Python 3. Doc2vec is a standard 

unsupervised sequence embedding technique used widely in natural language processing. 

Each animal and each module was first encoded uniquely as a one-hot vector of d 
dimensions (d = 148 = 78 animals + 70 modules in the MIA condition or d = 130 = 60 
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animals + 70 modules in the Carrageenan condition). These one-hot vectors were mapped 

by a linear transformation to an n-dimensional embedding space. The linear transformation 

was adapted by stochastic gradient descent using two losses, resulting in two embeddings. 

Following Le and Mikolov, 2014, the two embeddings for each animal were averaged 

to produce the final animal representation. Both embeddings were trained with standard 

procedures which we outline here. The first embedding was learned by 1) randomly 

sampling an animal and a contiguous length-2k sequence of modules emitted by the animal, 

2) mapping the one hot vectors of the sampled animal and modules to the n-dimensional 

embedding space, 3) averaging the animal and module embeddings, 4) mapping the average 

to the 70-dimensional space of probability distributions over modules, and 5) predicting 

from this output the identity of a random module in the size-2k window. The embedding 

space was adapted to improve accuracy on this module prediction task. In the parlance of 

doc2vec methods, this is “distributed memory” (DM) embedding. The second embedding 

was learned using only representations of animals (no module embeddings). Similar to the 

first technique, an animal was randomly sampled together with a 2k-module subsequence 

in its raw behavioral sequence. The one hot vector of only the animal was mapped to the 

embedding space. The animal embedding was then mapped to the 2k x 70 dimensional 

space of distributions on 2k-long module subsequences, from which random modules in 

the sampled subsequence window were predicted. The embedding space was adapted to 

improve the accuracy of this subsequence prediction task, which also helps the embedding 

encode higher order information beyond neighboring modules in the raw sequence. This is 

referred to as a “distributed bag of words” (DBOW) embedding. Again, the final embedding 

for each animal to be used in classification was the concatenation of DM and DBOW 

embeddings. In order to determine the best possible embedding model, we performed a 

hyperparameter grid search over the embedding dimension, (n, between 10 and 100 in 10 

equally-spaced steps), the embedding window size, (k = 2, 4, 8, 16, 32), the number of 

training epochs, (e=50, 100, 150, 200, 250) and the type of raw data used. For raw data, 

we either used the modules assigned to every video frame (“frames” data), or the discrete 

sequence of modules independent of their real-time duration (“emissions” data). The search 

revealed that the model with the best training accuracy (see below) had n = 70 k=2, 

e=50 and used the emissions data. Note that, although the identity of an individual animal 

was used during training, the embeddings are not trained to distinguish between different 

animals. Moreover, the experimental class of each animal was never used at this stage.

Classifier Analysis of Animal Representations—We used a multinomial logistic 

regression classifier to compare the expressive power of three types of animal 

representations: module usages, module transition probabilities, and learned embeddings. 

Our goal here was to predict which of the five experimental manipulations an animal 

received from each of these representations. The dimensionality of the input data was 

generally different in the three cases, with usages fixed at 70 dimensions. For transitions, 

we used the m most frequent transitions on average, where m was chosen by a grid search 

having the same values as the n search discussed above (m=50 was optimal). Data in each 

representation condition was first separated into the same train and test sets in a 70–30 split. 

We trained an identical, L2 -regularized, 5-class logistic regression classifier on each type 

of representation using leave-one-out cross validation on the training set. The regularizer 
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weight was chosen by a grid search over 11 values logarithmically spaced between 1 × 

10–5 and 1 × 105 and all results represent the best regularization weight for each model. 

The classifier was trained using scikit-learn in Python 3. The classifier was trained with a 

stopping criterion of 1 × 10–5 and with balanced class correction in a one-vs-rest manner. 

For each representation type, we chose (over different grid search parameters; see previous 

section) the model which had the best accuracy on the training set. We then report the F1 

score for this model on the testing set; i.e. hyperparameters were not tuned according to the 

reported F1 score, only the training F1 score. In the MIA condition, this procedure resulted 

in the following testing F1 scores per representation: (Usages, .481 ± .240), (Transitions, 

.410 ± .160), (Embeddings, .781 ± .190). In the carrageenan condition: (Usages, .223 ± 

.190), (Transitions, .257 ± .164), (Embeddings, .194). Standard errors are reported. Since 

the embeddings take into account much larger scale information (i.e. windows of 2k = 

4 modules), we can hypothesize consequently that there are experimental effects which 

differentiate the groups and manifest at behavioral scales beyond usages and one-step 

transitions.

Finding characteristic module sequences—There are several possible ways to 

associate to each embedding a set of characteristic modules or module sequences. For 

the present study, we adapted a standard method (Mikolov et al., 2013) for scoring the 

significance of n-grams in written text. An n-gram is a contiguous sequence of n words or, 

in our case, modules. The original method scored the significance of a bigram (w1, w2) by 

computing

s′ w1 , w2 = C w1,  w2 – δ / w1 . C w2

where C(x) represents the counts of x in the data and δ controls how many counts are 

required to make s positive. The idea is to discount the significance of the bigram (w1, 
w2) by the amount that w1 and w2 tend to appear individually (including in the bigram 

of interest). The original authors detected higher order n-grams by applying this scoring 

function to sequences repeatedly, thresholding s to determine which bigrams should become 

a fixed phrase, and congealing detected phrases into single symbols.

We took a similar approach with a new emphasis on module n-grams which distinguished 

between animal classes. To that end, let A be the module sequences associated to a given 

experimental class (e.g. baseline), and -A be the complementary module sequences of all 

other animals in all other classes. Further, for a given n-gram w = (w1, …, wn), denote the 

set of contiguous subgrams of lengths 1, …, n by S(w) = {(w1), (w2), …,(w1,w2, …), (w2, 
w3), …}. Then, we define

s′ w = CA w – δ /πS w C − A w

In other words, we discount the n-grams detected in class A by the amount that all 

subgrams, including the n-gram itself, appear in -A. If any subgram was found in A but 

not in the complement, we gave it a count of ε = 1 × 10–3. δ was set to 1. We collected 

scores for 2,3 and 4 grams and then found the unique n-grams associated to each class. We 
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also experimented with setting the complement (i.e. -A) as the whole data set (including A), 

but this produced worse quantitative results than Eq. S.2. We took to the top 5% of detected 

phrases by score per class.

The scoring function which we used to identify significant phrases is an adaptation 

of standard methods used in natural language processing (see òriginal scorer`99). By 

construction, this function discounts the score of a detected phrase to the extent that its 

constituent modules appear individually due to random chance. Take, for example, the top 

detected phrases for the 4-hour class in the CAR condition, “65>62”. Module 65 appears 8 

times, each time it appears it does so followed by Module 62, Module 62 appears 13 times. 

The scorer detected this regularity and awards “65>62” the highest rank (5.3846). Compare 

this to the case of “0>1”, where each syllable appears many thousands of times individually 

(Module 0: 1046 times; Module 1: 1306 times), but the intact bigram appears only 4 times. 

The resulting score (0.0002) is therefore 27000 times smaller than that of “65>62”. Our 

modified version of this score function, described in the section “Finding characteristic 

module sequences”, further exaggerates these scores by additionally discounting them by the 

amount the intact phrase appears outside of the target class (e.g., in this case not in 4-hour 

CAR).

Put simply, the above analysis shows that certain phrases (e,g. 65>62) tend to appear only as 

intact units rather than accidental neighbors. We show this by counting the number of times 

that 62 immediately follows 65 and dividing by the total count of 65 or 62 in the whole 

sequence of behaviors. If the phrase 65>62 appeared frequently only because 65 and 62 

appeared on their own many times (due to random chance), then this division would lower 

the score, exactly like the case of 0>1. A high score indicates that the phrase appears not due 

to random chance but because those modules, in some sense, belong together.

To show that these n-grams have a material effect on the quality of the learned embeddings, 

we then ablated them and replaced them with random modules in the raw data. The number 

of ablations was proportionally small (MIA: 3 days 1.15%, Baseline + saline 0.15%, 10-days 

+ gaba 0.22%, 10 days + saline 0.11%, Baseline + gaba .08%. Carrageenan: 4-hours .98%, 

Baseline + meloxicam .03%, Baseline + saline .13%, 24-hours + meloxicam 2.1%, 24-hours 

+ saline .15%) of the raw modules. Averaging over ten realizations of random module 

insertions, F1 dropped, in the MIA condition, from .781 to .620 +/− .011 (s.e.), and, in the 

carrageenan condition, from .538 to .301 +/− .075. Since the optimal window size was 2k = 

4, performance would likely have degraded even more had we ablated higher order n-grams, 

though these are difficult to find. To show that targeting these specific phrases was the cause 

of the decrease in classifier performance, we also ablated random phrases, making sure to 

ablate the same amount as in the targeted condition. However, in this case we found that 

testing F1 decreased only by .015 in the MIA condition and increased very slightly by .002 

in the carrageenan condition The top ranked n-grams for each class for each condition are 

given in Tables S2 and S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as the mean ± standard error of the mean (SEM). Statistical tests used 

to assess differences between groups are detailed in individual figure legends. Behavioral 
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assays were replicated several times (3 to 10 times depending on the experiments) and 

averaged per animal, except for PAWS where each stimulus was presented one time to 

each animal per type of stimulus (brush or pinprick) during the testing session to avoid 

sensitization. Statistics were then performed over the mean of animals. Statistical analysis 

was performed in GraphPad Prism (USA) using two-sided paired or unpaired Student’s 

t-tests, one- or two-way repeated-measures ANOVA for functional assessments, when 

data were distributed normally. Post hoc Tukey’s or Bonferroni tests were applied when 

appropriate. The significance level was set as p < 0.05. The nonparametric Mann-Whitney or 

Wilcoxon signed rank tests were used in comparisons of <5 mice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Carrageenan and MIA pain models cause changes in ethological and evoked behavior 
accompanied by alterations in sensory neuron excitability over distinct timescales.
Timeline of experiments following (A) unilateral intraplantar injection of carrageenan or 

(B) intra-articular injection of MIA. (C) Inflammation of the injected (Ipsi) hind paw 

was observed 4-hours post-injection compared to the non-injected (Contra) paw. (D) 
Footpad swelling was quantified with digital calipers following injection of carrageenan. 

(E) Histological examination of knee joints 10 days after injection showed a healthy layer 

of cartilage for the contralateral joint (Ei), which had been lost in the ipsilateral joint (Eii). 
(F) Knee joint swelling was measured following injection of MIA. (G) The time mice 

spent rearing before, 4-hours, and 24-hours post-induction of inflammation with carrageenan 

was assessed using a dynamic weight bearing device. (H) Hargreaves measurement of 

Bohic et al. Page 34

Neuron. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



carrageenan-induced heat hypersensitivity was assessed at baseline and following 4- and 

24-hours. (I) Time spent rearing was assessed at baseline (BSL) and 3- (D 3) and 10-days 

(D 10) post-injection of MIA. (J) Sensitivity of both knee joints to mechanical stimulation 

was tested using a pressure application measurement device before and 3- and 10-days 

post-injection of MIA. (K) Schematic representation of retrograde labeling of hind paw 

innervating sensory neurons with Fast Blue followed by cell culture and whole cell patch 

clamp electrophysiology. (L) Representative current clamp recordings of Ipsi and Contra 

hind paw neurons of comparable capacitance, showing action potentials evoked by ramp 

injection of current (0–1 nA, 1 s), the thresholds for action potential discharge are annotated 

with dashed (Contra) or solid (Ipsi) lines. (M) Schematic representation of retrograde 

labeling of knee innervating sensory neurons with Fast Blue followed by cell culture and 

whole cell patch clamp electrophysiology. (N) Representative current clamp recordings of 

Ipsi and Contra knee neurons of comparable capacitance, showing action potentials evoked 

by ramp injection of current (0–1 nA, 1 s), the thresholds for action potential discharge 

are annotated with dashed (Contra) or solid (Ipsi) lines. (O) Step-wise current injections 

were used to determine the rheobase of Ipsi and Contra hind paw innervating sensory 

neurons 4- or 24-hours post-induction of inflammation with carrageenan. (P) Neurons with 

rheobase < 450 pA were stimulated with a suprathreshold (2 x rheobase) for 500 ms and 

the number of action potentials discharged counted. (O) Step-wise current injections were 

used to determine the rheobase of Ipsi and Contra knee innervating sensory neurons 3- or 

10-days post-injection of MIA. (P) Neurons with rheobase < 450 pA were stimulated with 

a suprathreshold (2 x rheobase) for 500 ms and number of action potentials discharged 

counted. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001: (C, E, G, H, I, J) one-way 

ANOVA with Bonferroni post hoc; (O, Q, R) Mann-Whitney test between Ipsi and Contra 

for individual time points.
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Figure 2. PAWS and B-SOiD automated pain assessment platforms detect defensive coping 
behaviors associated with pain sensation during inflammation.
(Ai) A behavioral response to a somatosensory stimulus at baseline. (Aii) Post-carrageenan 

injection mice guard the paw in the air for extended time. (i,ii) Green lines show paw 

trajectory pattern across entire behavior, and mouse image shows single frame with paw 

at its apex. (B) PAWS software measures reflexive (i.e. height, paw displacement along 

the y axis, etc.) and affective behavioral features (i.e. shaking, guarding, distance traveled 

by the paw, etc.). The apex t* or first peak of the behavioral response separates reflexive 

and affective behavioral features (as described in the methods from Jones et al., 2020). 

Here, the y axis is a univariate projection of the paw displacement across both x and 

y dimensions, in centimeters. This graph thus captures paw movements in both x and y 

directions over time, following dynamic brush stimulation at baseline, for 1 mouse. Further 

details on the computation methods used to generate this graph can be found in Jones et 

al., 2020. (C,D) Affective features such as paw guarding and paw shaking are upregulated 
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in response to dynamic brush and light pinprick comparing baseline to 4- and 24-hours 

post-carrageenan injection. (E,F) Paw guarding was found upregulated at 10-days after MIA 

knee injection, consistent with the paw being a potential secondary site of hypersensitivity. 

(G) Low-dimensional projection of feature clusters as identified after UMAP/HDBSCAN. 

5 colors were then assigned to the 11 identified sub-clusters to indicate their post-hoc 

behavioral group assignment. Stacked bar plots of the percent of time spent doing each 

behavior (rest, paw lift, angled guard, flat guard, hovering) in response to dynamic brush 

(H) and (I) light pinprick at baseline, 4-hours, and 24-hours time points post-carrageenan 

injection. Responses are color-coded by the identified action type as in panel (G). Examples 

of the angled paw guard identified by B-SOiD, which may be indicative of the activation of 

different subsets of sensory neurons (mechanoreceptors by brush, inducing (J) angled guard, 

nociceptors by pinprick, inducing (K) flat guard). N=10 mice per group; * p < 0.05, ** p 

< 0.01: Kruskal-Wallis test followed by Dunn’s multiple comparisons were performed to 

determine statistical significance between the responses of mice to each stimuli across time 

independently.
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Figure 3. 3D pose analysis detects behavioral signatures of paw carrageenan-induced 
inflammatory pain and knee MIA-induced injury.
(A) Schematic of analysis pipeline. (B) Linear discriminant analysis (LDA) of spontaneous 

behavior module usage at baseline, and following carrageenan injection at 4- and 24-hours. 

(C) LDA of spontaneous behavior module usage at baseline, and 3- and 10-days post MIA 

injection. Spinogram representations of micro-movements that define particular behavioral 

modules identified as (D) rearing, (E) pausing and (F) grooming. Usage of rearing decreases 

following induction of inflammation with carrageenan (G) and MIA (J). Usage of pausing 

(H, K) and grooming (I, L) increase following injection of carrageenan in the paw and 

MIA in the knee respectively. Baseline (BSL) n= 10 animals, 4h n= 20 animals, 24h n= 

10 animals, D3 n= 20 animals, D10 n= 10 animals, Statistical analysis: corrected bootstrap 

t-test.
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Figure 4. Meloxicam relieves affective features of hyperalgesia but it does not promote return 
to pre-inflammation spontaneous behavior, while gabapentin improves spontaneous signatures of 
MIA-induced knee injury.
(A) Timeline of the experiment. Mice were tested at baseline and after intraplantar injection 

of 20 μl 3% carrageenan at 4-hours post-injection, then at 24-hours after intraperitoneal 

injection of saline or meloxicam. (B) Timeline of the experiment. Mice are tested at 

baseline and after intra articular knee injection of 10 μl 0.1mg/ul MIA at 3-days post-

injection, then at 10-days after intraperitoneal injection of saline or gabapentin. (C) 
Hargreaves measurement of carrageenan-induced heat hypersensitivity at baseline, 24-hours 

following carrageenan injection, as well as pain relief by meloxicam at 24-hours, ipsi- 

(full circles) and contralateral (empty circles) to paw injection. (D) Measurement of MIA-
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induced pressure knee hypersensitivity at baseline, 10-days following MIA knee injection, 

as well as pain relief by gabapentin at 10-days, ipsi- (full squares) and contralateral 

(empty squares) to knee injection. (E) Paw guarding duration is measured with machine 

learning at baseline, and post-carrageenan injection at 4-hours, and 24-hours after saline 

or meloxicam intraperitoneal injection following dynamic brush (left) or light pinprick 

(right). (F) Paw guarding duration is measured with machine learning at baseline, and 

post-MIA knee injection at 3-days, and 10-days after saline or gabapentin intraperitoneal 

injection following dynamic brush (left) or light pinprick (right). (G-I) 3D pose analysis 

of spontaneous behavior of 5 groups: baseline + meloxicam intraperitoneal injection, 

baseline + saline intraperitoneal injection, 4-hours post-carrageenan paw injection, 24-hours 

post-carrageenan paw injection + saline intraperitoneal injection, 24-hours post-carrageenan 

paw injection + meloxicam intraperitoneal injection. (G) Spontaneous rearing behavior is 

decreased after paw carrageenan injection, further decreased by meloxicam intraperitoneal 

injection (example module #15 among other rearing modules downregulated, see Table 

2). (H) Spontaneous grooming behavior is increased after paw carrageenan injection, 

further increased by meloxicam intraperitoneal injection (example module #60). (I) 
Representation of LDA of raw usage for the five different groups. (J-L) 3D pose analysis 

of spontaneous behavior 5 groups: baseline + gabapentin intraperitoneal injection, baseline 

+ saline intraperitoneal injection, 3-days post-MIA knee injection, 10d post-MIA knee 

injection + saline intraperitoneal injection, 10-days post-MIA knee injection + gabapentin 

intraperitoneal injection. (J) Spontaneous rearing behavior is decreased after knee MIA 

injection, which can be resolved after gabapentin intraperitoneal injection (example module 

#18). (K) Locomotion is affected after knee MIA injection, which can be resolved after 

gabapentin intraperitoneal injection (example module #57). (L) Representation of LDA of 

raw usage for the five different groups. (I-L) While the point clouds in Figure 4I and 4L 

do show some overlap between conditions, cohorts can be distinguished by their module 

usage, which we quantified by computing the F1 of the LDA in predicting the condition of 

the held-out animals (F1-scores: CAR bsl+saline = 0.57, CAR bsl+meloxicam = 0.50, CAR 

4h = 0.67, CAR 24h+saline = 0, CAR 24h+meloxicam = 0.40, overall model accuracy = 

0.50 better than “pure-chance” = 0.20 and randomized data). For accuracy, we report F1, the 

harmonic mean of precision and recall.

For 3D pose analysis, baseline+saline (bsl+sal) n= 10 animals, baseline+meloxicam 

(bsl+mel) n= 10 animals, baseline+gabapentin (bsl+gbp) n= 10 animals, 4h post-

carrageenan n= 20 animals, 24h post-carrageenan+saline (24h+sal) n= 10 animals, 24h 

post-carrageenan+meloxicam (24h+mel) n= 10 animals, D3 post-MIA n= 20 animals, D10 

post-MIA+saline (D10+sal) n= 10 animals, D10 post-MIA+gabapentin (D10+gbp) n= 10 

animals, Statistical analysis: corrected bootstrap t-test.
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Figure 5. Higher order behavioral sequences predict pain and analgesic states in rodents.
(A-D) Example of module sequences most representative of spontaneous behavior at 

baseline (A), 4-hours following carrageenan paw injection (B), and 10-days post MIA 

knee injection and saline (C) or gabapentin (D) intraperitoneal injection, as identified by 

learned embeddings method. A standard co-location algorithm was first used to detect 

2-long module sequences according to whether the 2-long sequence (e.g. A>B) appeared 

significantly more than each of its constituents (i.e. A or B). Wherever a significant 

2-long sequence was detected, we replaced it by a new agglomerated syllable representing 

the co-location. We then recursed on this procedure to find 3- and 4-long sequences, at 

each iteration checking for the significance of agglomerated sequences by comparing their 

frequency to those of each of the sequence’s constituents. (E) Bar plot showing the relative 

performances of the different representations along with the performance of targeted (Targ. 

Abl.) vs random ablations (Rand. Abl.) for carrageenan dataset. (F) Bar plot showing the 

relative performances of the different representations along with the performance of targeted 

(Targ. Abl.) vs random ablations (Rand. Abl.) for MIA dataset. Baseline+saline (bsl+sal) n= 

10 animals, baseline+meloxicam (bsl+mel) n= 10 animals, baseline+gabapentin (bsl+gbp) 

n= 10 animals, 4h post-carrageenan n= 20 animals, 24h post-carrageenan+saline (24h+sal) 

n= 10 animals, 24h post-carrageenan+meloxicam (24h+mel) n= 10 animals, D3 post-MIA 
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n= 20 animals, D10 post-MIA+saline (D10+sal) n= 10 animals, D10 post-MIA+gabapentin 

(D10+gbp) n= 10 animals, Statistical analysis: corrected bootstrap t-test.
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Figure 6. 3D pose analysis resolves the behavior of animals following resolution of inflammation 
as a new state as opposed to return to baseline, this state is stabilized by treatment with the 
anti-inflammatory Meloxicam.
(A) Timeline of extended behavioral characterization following induction of inflammation 

with carrageenan. (B) Heat hypersensitivity of the Ipsi paw is comparable to baseline 

by 6-days post-injection of carrageenan. (C) Intraplantar injection of saline does not 

affect mechanical sensitivity of the hind paw when assessed with von Frey, however, 

hypersensitivity is seen at 1- and 3-days post injection of carrageenan which resolves by 

day 6. (D) Mutation plot summarizing how usage of each behavioral module identified 

via MoSeq changes with time following intraplantar injection of carrageenan. Usage of 

certain behaviors including (E) rearing and (F) grooming appear to recover with time 

following injection of carrageenan, although others including (G) rearing and (H) pausing 

remain different to baseline at 14-days post-injection. (I) Administration of a single dose 

of Meloxicam at 24-hours post-injection of carrageenan stabilizes spontaneous behaviors 
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at time points where evoked-sensitivity has recovered. (J) Spontaneous behavior is more 

variable when tested after absence of pain relief. For 3D pose analysis, baseline+saline 

(bsl+sal) n= 10 animals, 4h post-carrageenan n= 20 animals, 24h post-carrageenan+saline 

(24h+sal) n= 10 animals, 6d post-carrageenan n= 20 animals, 14d post-carrageenan n= 20 

animals, Statistical analysis: corrected bootstrap t-test.
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Table 1.

Electrophysiological characterization of cultured neurons innervating the inflamed paw reveal unique cellular 

signatures that punctuate the pain progression at 4- and 24-hours.

Hours post-inflammation

4 hours 24 hours

Contra 
(n = 22)

Ipsi 
(n = 39)

Contra 
(n = 20)

Ipsi 
(n = 30)

Resting membrane potential (mV) −47.27 ± 1.56 * −43.38 ± 0.90 * −46.95 ± 1.52 −44.70 ± 1.38

Capacitance (pF) 31.23 ± 2.69 25.90 ± 1.73 30.77 ± 4.44 33.17 ± 3.03

Action potential amplitude (mV) 80.33 ± 3.95 84.58 ± 2.17 85.45 ± 3.65 87.11 ± 2.74

Half peak duration (ms) 3.04 ± 0.26 3.50 ± 0.15 3.87 ± 0.35 3.37 ± 0.27

Afterhyperpolarization amplitude (mV) 15.43 ± 1.30 14.10 ± 0.76 16.61 ± 0.71 16.15 ± 0.84

Afterhyperpolarization duration (ms) 15.36 ± 1.55 17.82 ± 1.55 15.48 ± 1.17 16.45 ± 1.19

Intrinsic and active properties of hind paw innervating dorsal root ganglion neurons from the carrageenan injected side (Ipsi) and contralateral 
(Contra) side.

*
p < 0.05, unpaired t-test.
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Table 2.

Electrophysiological characterization of cultured neurons innervating the injured knee reveal unique cellular 

signatures that punctuate the pain progression at Day 3 and Day 10.

Days post-injection

Day 3 Day 10

Contra 
(n = 40)

Ipsi 
(n = 42)

Contra 
(n = 48)

Ipsi 
(n = 57)

Resting membrane potential (mV) −45.93 ± 0.88 −43.07 ± 1.18 −48.04 ± 1.18 *** −42.35 ± 1.00 ***

Capacitance (pF) 38.72 ± 3.04 38.65 ± 3.43 40.23 ± 3.48 42.75 ± 3.18

Action potential amplitude (mV) 86.83 ± 2.74 78.73 ± 0.24 85.98 ± 3.03 85.15 ± 2.66

Half peak duration (ms) 2.29 ± 0.16 2.77 ± 0.24 2.19 ± 0.17 2.60 + 0.14

Afterhyperpolarization amplitude (mV) 15.66 ± 0.65 14.69 ± 0.68 14.63 ± 0.78 14.77 ± 0.77

Afterhyperpolarization duration (ms) 9.50 ± 0.66 8.17 ± 0.56 11.71 ± 1.20 12.17 ± 1.14

Intrinsic and active properties of knee innervating dorsal root ganglion neurons from the MIA injected side (Ipsi) and contralateral (Contra) side.

***
p < 0.001, unpaired t-test.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-TRPV1 Guinea Pig (polyclonal) Alomone Cat#:ACC-030-GP
RRID:AB_2721813

Anti-Guinea Pig IgG (Alexa Fluor 488 
conjugated)

Jackson ImmunoResearch Cat#:706-545-148
RRID:AB_2340472

Chemicals, peptides, and recombinant proteins

Fast Blue Polysciences Cat#:17740

λ-carrageenan (Rutgers - Cambridge - 
Columbia)

Sigma-Aldrich Cat#:22049

Monosodium iodoacetate (Cambridge) Sigma-Aldrich Cat#:I2512

Gabapentin (Rutgers - Cambridge) Sigma-Aldrich Cat#:1287303

Monosodium iodoacetate (Rutgers - 
Columbia)

VWR Cat#:200006-706

Meloxicam covetrus Cat#:049755

Deposited data

Study Data This study Zenodo: https://doi.org/10.5281/zenodo.7884191

Experimental models: Organisms/strains

C57BL/6J mice (Cambridge) Envigo Wild-type

C57BL/6N mice (Rutgers) Charles River Wild-type

C57BL/6 (Columbia) Jackson Laboratories Wild-type

Software and algorithms

Patchmaster HEKA heka.com

Fitmaster HEKA heka.com

Igor pro WaveMetrics wavemetrics.com

Patcher’s Power Tools Max-Planck-Institut www3.mpibpc.mpg.de/groups/neher/index.php?
page=aboutppt

R Studio R rstudio.com/products/rstudio

Fiji ImageJ imagej.net/software/fiji/

µManager NIH micro-manager.org

DWB2 Bioseb bioseb.com

Python Python Software Company RRID:SCR_008394

MoSeq Wiltschko et al.26 dattalab.github.io/moseq2-website/index.html

moseq2-lda This study github.com/tischfieldlab/moseq2-lda

moseq2-nlp This study github.com/tischfieldlab/moseq2-nlp

moseq-reports This study github.com/tischfieldlab/moseq-reports

Gensim Radim Rehurek, Petr Sojka. Software 
framework for topic modeling with 
large corpora. 2010. THE LREC 2010 
WORKSHOP ON NEW CHALLENGES 
FOR NLP FRAMEWORKS. Pg. 45–50. 
University of Malta

github.com/RaRe-Technologies/gensim

PAWS Jones et al.21 github.com/crtwomey/paws
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REAGENT or RESOURCE SOURCE IDENTIFIER

B-SOiD Hsu et al.23 github.com/YttriLab/B-SOID

DeepLabCut Mathis et al.22 github.com/DeepLabCut/DeepLabCut

Proanalyst Xcitex Inc. xcitex.com/proanalyst-motion-analysis-
software.php

Other

Kinect2 Microsoft amazon.com/kinect-v2/s?k=kinect+v2

Open-field assay enclosure US Plastics usplastic.com/catalog/item.aspx?itemid=120721
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