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ABSTRACT

A central goal in neuroscience is the development of a comprehensive mapping between
structural and functional brain features, which facilitates mechanistic interpretation of
brain function. However, the interpretability of structure-function brain models remains
limited by a lack of biological detail. Here, we characterize human structural brain
networks weighted by multiple white matter microstructural features including total
intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent
spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships
with function, edge length, and myelin. Contrasting networks weighted by the total
intra-axonal cross-sectional area and myelin content of white matter tracts, we find
opposite relationships with functional connectivity, an edge-length-independent inverse
relationship with each other, and the lack of a canonical rich club in myelin-weighted
networks. When controlling for edge length, networks weighted by either fractional
anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain
functional connectivity. We conclude that the co-utilization of structural networks
weighted by total intra-axonal cross-sectional area and myelin content could improve our
understanding of the mechanisms mediating the structure-function brain relationship.

AUTHOR SUMMARY

For computational network models to provide mechanistic links between brain structure and
function, they must be informed by networks in which edge weights quantify structural
features relevant to brain function. Here, we characterized several weighted structural
networks capturing multiscale features of white matter connectivity including total intra-
axonal cross-sectional area and myelin density. We describe these networks in terms of edge
weight distribution, variance, and network topology, as well as their relationships with each
other, edge length, and function. Overall, these findings support the joint use of structural
networks weighted by the total intra-axonal cross-sectional area and myelin content of white
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Myelin- and intra-axonal-caliber-weighted human brain connectomes

Streamline:

The contiguous set of 3D points
produced by a tractography
algorithm and representing the
reconstructed trajectory of a white
matter pathway.

Tractography:

A method or algorithm that

applies some model to diffusion
MRI data to reconstruct a 3D visual
representation of the white matter
pathways of the brain.

Tractometry:

A method for mapping the voxel-
level values of a volumetric brain
map onto the streamlines of a
tractogram.

Tractogram:

The 3D image representing the
collection of streamlines
reconstructed by a tractography
algorithm.

Edge weight:

The value assigned to the inter-nodal
connections of a network that
describes an explicit feature of each
connection such as physical length
or connection strength.

Network Neuroscience

matter tracts in structure-function models. This thorough characterization serves as a
benchmark for future investigations of weighted structural brain networks.

INTRODUCTION

The quest to relate human structural and functional brain networks spans the spectrum of spa-
tial scale and repertoire of data modalities absolutely. At the macroscale, the human brain can
be modeled as an anatomical network of discrete neuronal populations (nodes) intercon-
nected by white matter fibers (edges) ( ). Coordinated spatiotemporal patterns of
neuronal activity unfolding upon this structural backbone are fine-tuned by white matter
microstructure ( ; ; ;
) and form the basis of cognition and behavior (
; ). Increasingly, MRI facilitates in vivo measurement
of multiscale properties of both brain structure (e.g., ;
) and function (e.g., ;
; ; ). Diffusion MRI streamline tractography
and resting-state functional MRI are often respectively used to estimate structural and functional
connectivity (SC and FC) networks. Network science provides a framework to bring these
fundamentally different substrates into a common space where their features can be quantified
( ; ; ) and used to probe the mechanisms medi-
ating human brain function (e.g., ; ).

SC network edges can be weighted by a range of MRI-derived metrics quantifying white
matter microstructural features relevant to brain function, including voxel-level estimates of
tissue diffusivity (e.g., ), neurite density ( ), axon
diameter distributions ( ; ), myelin content (

; ), and the g-ratio (ratio of inner/outer diameters of myelinated axons)
( , ), as well as tract/bundle-level measures of axonal cross-sectional
area ( ; ). Subsets of these metrics have
been investigated using a microstructure-weighted connectomics approach (

’ ’

; ). We aim to extend this work by providing a
comprehensive assessment of the fundamental characteristics of a range of standard and state-
of-the-art weighted structural brain networks, including a network weighted by myelin.

The networks considered here can be grouped into two classes: those computed with trac-
tometry ( ) and those computed directly from the streamline weights in a trac-
togram, that is, streamline-specific. We consider three examples of the latter: (a) the number of
streamlines (NoS); and two methods that optimize the streamline weights in a tractogram to
increase specificity for white matter structural features; (b) spherical-deconvolution informed
filtering of tractograms (SIFT2) ( ); and (c) convex optimization modeling
for microstructure informed tractography (COMMIT) ( ;

). SIFT2 and COMMIT were designed to overcome known limitations of streamline
counts ( ; ; ). While the edge weights in all three
networks generally capture white matter features relevant to connection strength, SIFT2 and
COMMIT more specifically quantify the total intra-axonal cross-sectional area of white matter
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Partial volume effect:

A “smoothing” or “blurring”
imaging artifact whereby the data
corresponding to sub-voxel-level
features are lost or averaged as a
result of the limited resolution of an
imaging system.

Small-worldness:

A topological network feature
characterized by a low number of
edges or connections separating
distal nodes (short path length)
alongside high connectivity between
neighboring nodes (high local
clustering).

Rich club:

The tendency for highly connected
(high degree) nodes to be more
densely connected among
themselves than nodes of a lower
degree.

Network Neuroscience

tracts (henceforth referred to as edge caliber). To date, COMMIT and SIFT2 have not been com-
pared to NoS with uniform connection density ( ; ;

). Thus, it remains unclear how the edge weights themselves affect network
topology.

In contrast, tractometry allows network edge weights to be derived from any volumetric
brain image that is coregistered to the tractogram. This increase in methodological flexibility
comes at the expense of anatomical specificity. Tractometry is unable to resolve the separate
contributions of individual fiber populations to the aggregate value of a voxel. Given that an
estimated 90% of white matter voxels at typical diffusion MRI resolutions (~2 mm) contain
multiple fiber populations ( ), the quantitative link between white matter
microstructure and essentially all tractometry-derived edge weights is biased by partial volume
effects.

In this work, tractometry is combined with a diffusion tensor model ( ;

) to derive networks weighted by FA (fractional anisotropy) and RD (radial diffusiv-
ity), which respectively quantify the degree of diffusion anisotropy (i.e., directional depen-
dence) and diffusion magnitude perpendicular to the major axis. The crossing fiber problem
described above is also known to limit the ability of diffusion tensor models to quantify white
matter features ( ; ). Additional tractometry networks
examined here include a network weighted by ICVF (intracellular volume fraction) computed
with NODDI (neurite orientation dispersion and density imaging) ( ), as
well as a network weighted by the longitudinal relaxation rate Ry (1/T;) derived from a quan-
titative T; map. The edge weights in this network are myelin-weighted, as R; has been shown
to correlate with histology-derived myelin content ( ;

).

This characterization of weighted structural brain networks is carried out as follows: (a)
within-network features of edge weight distribution and variance; (b) edgewise relationships
with FC, edge length, and myelin (R;); and (c) topological features of small-worldness, rich club,
and network hubs. Importantly, uniform binary connectivity is enforced across all weighted net-
work variants, that is, the underlying binary connectivity map is identical. This allows the edge
weights themselves to drive the characterization.

RESULTS

In 50 healthy adults (27 men; 29.54 + 5.62 years; 47 right-handed), structural brain networks
were estimated from multi-shell diffusion MRI data with probabilistic tractography. Each sub-
ject’s structural network was used to compute eight SC networks ( ) in which edges were
weighted by NoS, SIFT2, COMMIT, FA, RD, ICVF, R;, and LoS (edge length computed as the
mean length of streamlines). NoS, SIFT2, COMMIT, and LoS correspond to streamline-specific
metrics, whereas networks weighted by FA, RD, ICVF, and R; were computed using tracto-
metry. The edge weights in NoS, SIFT2, and COMMIT networks were normalized by node
volume. Additionally, a static FC network was derived for each subject by zero-lag Pearson
cross-correlation of nodewise resting-state time series. Unless otherwise stated, all results
shown correspond to networks parcellated with the Schaefer-400 cortical atlas (
) and include 14 subcortical nodes.

Structural Brain Networks Vary in the Distribution of Their Edge Weights

Group-level networks weighted by NoS, SIFT2, and COMMIT show spatially distributed pat-
terns of high-magnitude edge weights and noticeably accentuate within-module connectivity
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Table 1.  Summary of structural network weights
Short name Long name Method Data source Interpretation
LoS Length of streamlines Streamline-specific Diffusion MRI Mean length of the streamlines
connecting two nodes
NoS Number of streamlines Streamline-specific Diffusion MRI Number of streamlines connecting
two nodes; connection strength
SIFT2 Spherical-deconvolution Streamline-specific Diffusion MRI Fiber density from spherical
informed filtering of deconvolution summed across
tractograms streamlines; connection strength
COMMIT Convex optimization modeling  Streamline-specific Diffusion MRI Total intra-axonal cross-sectional
for microstructure informed area summed across streamlines;
tractography connection strength
Ry Longitudinal relaxation rate Tractometry Multimodal MRl Ry = 1/Ty; index of tissue myelin
(diffusion + content
relaxometry)
FA Fractional anisotropy Tractometry Diffusion MRI Diffusion directional dependence
RD Radial diffusivity Tractometry Diffusion MRI Diffusion perpendicular to the
principal axis
ICVF Intracellular volume fraction Tractometry Diffusion MRI Neurite density

Network Neuroscience

(Figure 1). Modules correspond to the seven-canonical resting-state networks (Yeo et al.,
2011) plus the subcortex. These patterns are hallmarks of FC networks and are observed
in the FC network shown here. The contrast between high- and low-magnitude edge
weights is most evident in COMMIT. By comparison, the spatial variation of edge weight
distribution in the tractometry networks is smoother with more pronounced regional con-
centrations. Ry is highest in the edges connecting the visual module to itself and to the rest
of the brain; and lowest within the subcortex and between the subcortical and limbic mod-
ules. The surface plot shows the highest concentration of R; in the white matter projections
of posterior cortical regions.

Group-level edge weight distributions are summarized with respect to two important orga-
nizational patterns of brain function (Figure 2A): within and between resting-state modules
(Yeo et al., 2011); and along the principal functional gradient (Margulies et al., 2016). NoS,
SIFT2, and COMMIT mirror FC in both plots with greater edge weight magnitude within mod-
ule, especially within unimodal modules. Ry, ICVF, FA, and RD generally mirror LoS with the
reverse trend: higher between module and lowest in unimodal modules. This suggests that
tractometry-derived networks may be influenced by edge length to a greater extent.

Subject-level edge weight distributions in Ry, ICVF, FA, and RD are near normal and
network-specific (Figure 2B). They differ in both the magnitude (R; > ICVF > FA > RD) and
the dynamic range (FA and ICVF > R; and RD) of their edge weights. In contrast, NoS, SIFT2,
and COMMIT distributions are highly skewed and tend to be much lower in magnitude
(dashed line). This effect is greatest in COMMIT, suggesting that the optimization performed
by COMMIT exerts a stronger scaling effect than SIFT2. These results support the conclusion
that the structural networks considered here quantify subsets of white matter features that are at
least partially nonoverlapping.
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Group Edge Weights
NoS(iog) SIFT2(10g) COMMIT (0g)

min —— max

Figure 1. Edge weight spatial distribution. Connectivity matrices of group-level edge weights for
FC (functional connectivity), NoS (number of streamlines), SIFT2 (spherical-deconvolution informed
filtering of tractograms), COMMIT (convex optimization modeling for microstructure informed trac-
tography), R; (longitudinal relaxation rate), ICVF (intracellular volume fraction), FA (fractional
anisotropy), RD (radial diffusivity), and LoS (mean length of streamlines). Each network is composed
of 414 nodes as defined by the Schaefer-400 cortical parcellation and 14 subcortical ROls. Nodes
are grouped into the canonical resting-state modules (Yeo et al., 2011) plus the subcortex: SUB
(subcortex), VIS (visual), SMN (somatomotor), DAN (dorsal attention), SVAN (salience ventral atten-
tion), LIMB (limbic), CONT (control), and DMN (default mode). 3D cortical surfaces (shown below)
of group-level edge weights in the Schaefer-100 parcellation generated with BrainNet Viewer (Xia
etal., 2013). Edge diameter and color indicate weight magnitude. The edge weights in NoS, SIFT2,
and COMMIT networks were log;q transformed for visualization.

Edge Weights in Streamline-Specific Networks Are More Variable

Edge weight variance was quantified using the quartile coefficient of dispersion (CQD)
because of its robustness to outliers and skewed data. The CQD is computed from the first
and third quartiles as the following: CQD = (Q; — Q)/(Q5 + Q).

Intra-subject variance is roughly twofold greater in NoS, SIFT2, and COMMIT relative to
LoS and FC; and an order of magnitude greater than R;, ICVF, FA, and RD in all subjects
(Figure 3A). COMMIT is the highest overall. Subjects are more tightly clustered in all weighted
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Figure 2. Edge weight distribution. (A) Distribution of group-level edge weights binned by (top)
within- and between-module; (bottom) unimodal, transmodal, and between. Unimodal is defined
as the VIS and SMN modules. Transmodal is defined as the DMN, CONT, DAN, and SVAN mod-
ules. (B) Probability density of pooled subject-level edge weight distributions. Ry, ICVF, FA, RD, LoS,
and FC are shown on a linear x-axis (top), and NoS, SIFT2, and COMMIT are shown on a logarith-
mic x-axis (bottom). All networks were normalized to the range [0, 1] by dividing by the subject-
level max for visualization.

SC networks, relative to FC: intra-subject CQD values span roughly a fourfold greater range in
FC. This suggests that individual diversity of functional connectivity is not necessarily reflected
in the variability of their structural networks. These patterns are repeated for inter-subject var-
iance. However, FC shows a small subset of highly variable edges with roughly fourfold
greater CQD than the maximum values observed in COMMIT; that is, the most subject-specific
connections are functional. The very low edge weight variability in R1, ICVF, FA, and RD is in
part due to the widespread blurring effect (partial voluming) resulting from the tractometry
computation.

In general, inter-subject edge weight variance is more spatially distributed in SC networks
relative to FC (Figure 3B). COMMIT shows the highest mean CQD over the entire cortex and
subcortex. NoS, SIFT2, and COMMIT all show lateral-medial and posterior-anterior cortical
gradients. Mean CQD in FC shows the highest concentration in medial inferior frontal cortex
and, to a lesser extent, the expected pattern of high variance in association cortex. The most
variable subcortical regions include the hippocampus, amygdala, and accumbens.
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Figure 3. Edge weight variability. Variability is quantified using the coefficient of quartile dispersion (CQD). (A) Violin distributions of intra-
subject (left) and inter-subject (right) edge weight variance. Colored data points respectively correspond to individual subjects (N = 50) and edges
(N = 8,549). (B) Surface projections of edgewise mean inter-subject variance for cortical nodes in the Schaefer-400 parcellation (left) and 14
subcortical nodes (right). Cortical and subcortical surfaces were respectively generated with BrainSpace (Vos de Wael et al., 2020) and ENIGMA
toolboxes (L ariviere et al., 2021). (C) The proportion of within-network max CQD is shown across edge length bins for FC, NoS, SIFT2, COMMIT,
and Ry (left), as well as ICVF, FA, and RD (middle). Edge weights are grouped into six bins according to edge length, as illustrated by the histogram
(right). The edges of bins 1-5 were linearly spaced of width, w. The edges of the final bin were of width 3w.

Many features of brain networks (e.g., connection probability, weight magnitude) are
known to vary with edge length. Here, we examined the relationship between edge weight
variability and edge length by computing the CQD within subsets of group-level edge weights
binned according to their edge length (Figure 3C). Edge weight variance in NoS, SIFT2, COM-
MIT, and R; is highest in the shortest edges and decreases with edge length. ICVF roughly
follows the same pattern. FA and RD instead show the highest variability in the longest edges.

Network Neuroscience 1369
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Overall, the edge weights in streamline-specific SC networks (NoS, SIFT2, and COMMIT)
show greater contrast both within and across subjects. SC networks show network-dependent
relationships between edge weight variance and edge length. Shorter edges are more variable
in myelin- and connection-strength-weighted networks, and longer edges are more variable in
networks with edge weights derived from a diffusion tensor model.

To complement the above results, a supplemental analysis was performed using intraclass
correlation to quantify edge weight variance within each edge weight (

).

Opposing Correlations with Function in Connection-Strength- and Myelin-Weighted Networks

Shifting to inter-network edge weight relationships shows that SC networks are differentially
related to FC ( ). Importantly, we also see that all brain networks (SC and FC) are
strongly and differentially related to edge length at the subject and group levels. Correlations
with edge length are negative for NoS, SIFT2, COMMIT, RD, and FC; and positive for Ry, ICVF,
and FA. Correlation magnitude is strongest in group-level COMMIT (p =~ —0.8). To account for
this strong obscuring effect, we recomputed correlations using residual edge weights following
linear regression of edge length ( ). NoS, SIFT2, and COMMIT remain positively asso-
ciated (group-level p = 0.35) and Ry remains negatively associated with FC (group-level p =
—0.22). Correlation magnitude was reduced following linear regression of edge length in all

A edge weight correlations

Spearman's p

B residual edge weight correlations

0.8

vs FC vs Edge Length

0.4
LD @ o

08 o NS ‘ S A1 & N o

W i F @ g P @ e g e
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&
N
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W\ %\g@* o \\N‘\« & \GQ? <> ©
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Figure 4. Edge weight correlations with FC and edge length. (A) Violin distributions of edgewise Spearman’s rank correlations of all networks
with FC (left) and edge length (right). (B) Violin distributions of edgewise Spearman’s rank correlations of residual edge weights in all networks
with residual edge weights in FC. Residual edge weights were computed by linear regression of edge length. Colored data points and bars
respectively indicate subject-level and group-level correlations. Pperm gives the one-sided p value obtained from permutation testing (

).
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cases. ICVF, FA, and RD are reduced to 0, suggesting that they may not be useful in modeling
whole-brain FC. These results support the idea that R;-weighted SC networks provide comple-
mentary information to NoS, SIFT2, and COMMIT about the brain structure-function

relationship.

Edge Caliber and Myelin Content Are Inversely Related

Here, we ask how R;, which we refer to as the myelin-weighted network, is related to the
connection-strength-weighted network COMMIT. Edge-length regressed residual edge weights
in NoS, SIFT2, and COMMIT show a negative association with R; residuals for all subjects and
at the group level, which is strongest in COMMIT (group-level p = —0.29) (Figure 5A). This
suggests an edge-length-independent inverse relationship between white matter structural fea-
tures related to connection strength and myelin content.

A residual edge weight correlations
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Figure 5. The myelin-dependence of structural brain networks. (A) Violin distributions (left) of edgewise Spearman’s rank correlations with
the myelin-weighted network R;. Residual edge weights are compared following linear regression of edge length. Colored data points and bars
respectively indicate subject-level and group-level correlations. Heat scatterplots (right) of group-level residual edge weights in Ry as a function
of NoS (left), SIFT2 (left middle), COMMIT (right middle), and ICVF (right). The best fit linear curve is shown in black, and R?* (coefficient of
determination) is reported. Data color indicates density. Permutation testing provided a one-sided p value of P,em = 0.000 for all edgewise
correlations (Supporting Information Figure S8). (B) Line plot (left) of edgewise Spearman’s rank correlation of edge weights in R; versus COM-
MIT across edge length bins. Group-level and subject-level are respectively shown in green and blue. The square and diamond markers con-
nected by dotted lines show binned correlation values, and the horizontal dashed green and blue lines mark the correlation values for all edges
pooled together. Scatterplot (middle) of group-level edge weights in R; as a function of COMMIT with data points colored by bin identity.
Histograms (right) illustrating subject- and group-level edge length bins.

Network Neuroscience 1371



Myelin- and intra-axonal-caliber-weighted human brain connectomes

Graph theory:

The study of graphs, which are
mathematical structures used to
model pairwise relationships
between objects.

Characteristic path length:

The average shortest path length
between all pairs of nodes in the
network.

Clustering coefficient:

The fraction of triangles around an
individual node, that is, the fraction
of a node’s neighbors that are also
neighbors with each other.

Network Neuroscience

Computing correlations of edge weights (not residuals) within edge length bins allows the
inverse relationship between R; and COMMIT to be traced to the shortest edges of the network
(group p =~ —0.40, subject p = —0.50). As edge length increases, this relationship is reduced to
0, then becomes strongly positive in the longest subject-level edges (p = 0.39). The scatterplot
of group-level Ry versus COMMIT (middle) shows decreasing COMMIT and increasing R; with
increasing edge length. All together, these results support an inverse relationship between the
edge caliber and myelin content of a given white matter tract. This can be partly explained by
the differential dependence of these structural features on edge length: longer tracts tend to be
more myelinated with lower total intra-axonal cross-sectional area. However, this relationship
is robust to controlling for edge length supporting an intrinsic dependence between these
white matter features.

In addition, we show that our R;-weighted network corresponds well with a previously
reported ( ) Ry-weighted structural connectome (

).

Divergent Small-Worldness, Hubness, and Rich Club in Weighted Structural Networks

) based on graph
) to group-level weighted SC networks. This facilitates

In this final section, we apply network analysis tools (
theory ( ;
high-level interpretation of general features of network communication such as integrative
versus segregative processing and the economy of network organization. Although the
high material and metabolic cost of brain tissue naturally tends to favor local connectivity
(high clustering), short overall network path length is achieved through a small number of rela-
tively expensive long-range connections ( ). These edges and the nodes
they interlink form a densely connected network core known as the rich club (

). While the general proclivity for high local clustering gives rise to segregated func-
tional modules, the rich-club nodes act as network communication hubs supporting inter-modular
integration ( ; ; ;

; ). Thus, small-world network topology (high
clustering and low path length) ( ,
segregative processing at a minimum of wiring cost, and the underlying scaffold of hub brain
regions tends to show high centrality, low path length (high closeness), and low clustering (

).

Here, we report normalized small-worldness, normalized rich-club curves, and nodal hub-
ness ( ). Normalized small-worldness (S) is computed as the quotient of normalized
measures of clustering coefficient (C/C,,.;) and path length (L/L,.10)-

) supports both integrative and

All group-level weighted SC networks show the normalized small-world property (S > 1) of
higher clustering and lower path length than would be expected by chance ( ). Small-
worldness is highest in COMMIT (S = 2.5) and lowest in Ry, ICVF, FA, and RD (S = 1.6). In
contrast, all weighted SC networks did not show a canonical rich club ( ). Relative to
the tractometry and binary SC networks, the normalized rich-club coefficient ($p,orm) Was
much higher in magnitude in NoS, SIFT2, and COMMIT. A rich club was detected in these
networks across a large range of degree (k) levels (150 < k < 300). ¢ppom Was maximal at k
~ 265 in COMMIT. A rich club was also detected across a similar range of k levels in ICVF and
across k in the range [250, 300] for RD, albeit with much lower magnitude ¢,m. However,
no clear rich club was observed in Ry or FA. In fact, the rich-club curves for these networks are
roughly symmetric about the ¢bnom = 1 line relative to COMMIT. A densely connected core
was of course recovered in all weighted SC networks (uniform binary connectivity), but these

1372



Myelin- and intra-axonal-caliber-weighted human brain connectomes

A normalized small-worldness B normalized rich club
group group
25 . =
[ | MNoS
ESIFT2 L
| I COMMIT a

all tractometry networks

5,,0
1.5

wiou
[0

10 15 2.0 25
LIL

null

C normalized hubness

Hubness Euclidean Distance

x
= 25
=
3 20
[&]
» 15
<]
z

10
N
L ‘5
7
w
S © AT WA & O ¢
5 NG 6\(,00\\‘\\\\ * off & <

G iP Gr 5
& A

Figure 6. Group-level network topology. (A) Small-worldness was estimated in all structural networks: clustering coefficient was normalized
within each node, averaged across nodes (C/C,..;), then plotted as a function of normalized characteristic path length (L/L,.). Topology mea-
sures averaged across 50 degree- and strength-preserving null networks were used for normalization. Networks above the identity line (dotted
black) are characterized by the small-world attribute. Tractometry networks are indicated by the arrow. (B) Normalized rich-club curves are
shown for COMMIT, NoS, and SIFT2 (top), as well as ICVF, RD, FA, and R; (bottom). A single binary network (dotted gray line) is also shown
(bottom) as binary connectivity was uniform across weighted networks. The normalized rich-club coefficient (bom) Was computed across the
range of degree (k) and normalized against 1,000 null networks (degree-preserving for binary and degree- and strength-preserving for weighted
networks). A ¢nom value > 1 (horizontal dashed black lines) over a range of k indicates the presence of a rich club. (C) Nodewise hubness
scores are projected onto Schaefer-400 cortical and 14-ROI subcortical surfaces. Scores (0-5) were computed for each node as +1 point for all
nodes in top 20% strength, betweenness, closeness, and eigenvector centrality, as well as bottom 20% clustering coefficient. The matrix (right)
shows the Euclidean distance between all pairs of nodal hubness vectors.

results suggest that its interconnecting edges were consistently weaker than would be expected
by chance in Ry and FA. By comparison, a rich club was observed in the binary SC network
across the very large range of k [50, 300]. This supports two important concepts: (1) SC net-
work edge weights can provide an additional layer of information useful for refining the topol-
ogy of binary SC. (2) Different methods for computing SC network edge weights yield diverse
network topology.
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Weighted SC networks show network-dependent spatial topology of hubness scores
( ). The COMMIT and R1 averaged surface shows prominent hubs distributed
throughout the brain including the frontoparietal network. Nearly all of the subcortex
showed a hubness score of 4 or greater in all networks. The Euclidean distance between
hubness score vectors (right) was lower for COMMIT and SIFT2 than for either network
with NoS. Of the streamline-specific networks, NoS was more similar to both R1 and
IVCF. Overall, these results illustrate the considerable impact that edge weighting can
have on network topology.

DISCUSSION

Structure-function brain models provide a flexible framework for investigating the mechanistic
relationship between human brain structure and function in vivo, yet the interpretability of
these models is currently limited by a lack of biological detail. Here, we assemble a thorough
characterization of structural brain networks weighted by a range of quantitative MRI metrics
capturing the macro- and microscopic features of white matter tracts. Notable trends included
the following: (a) greater edge weight contrast and skewed (heavy-tailed) distributions in the
streamline-specific networks NoS, SIFT2, and COMMIT; (b) whole-brain correlations with FC
in networks weighted by connection strength (positive) and myelin (negative) that were robust
to controlling for edge length; (c) whole-brain inverse relationships with myelin for networks
weighted by connection strength and neurite density independent of edge length; and (d) the
absence of a rich club in Ry and FA networks. All weighted SC networks showed a strong
spatial dependence and small-world architecture. Collectively, these results support the overall
conclusion that SC networks weighted by edge caliber (e.g., SIFT2 and COMMIT) and myelin
(e.g., Ry) can be used to quantify nonoverlapping subsets of white matter structural features related
to FC, supporting their joint utilization in modeling function.

Interpretable Measures of Connection Strength Provided by COMMIT and SIFT2

A principal goal of this work is to identify what, if any, advantage over NoS is provided by the
global optimization methods SIFT2 and COMMIT. NoS has previously been used to inform the
strength of interregional coupling in computational models of function (e.g.,
). However, important limitations restrict model interpretation. Besides suffering from a
range of biases related to the position, size, shape, and length of white matter tracts (
), NoS varies as a function of tracking parameters, limiting its specificity for white
matter structural features ( ; ).

SIFT2 and COMMIT reportedly restore the quantitative link between connectome edge
weights and white matter structural features related to connection strength. COMMIT and
SIFT2 solve for the effective cross-sectional area (i.e., signal fraction) of each streamline using
different approaches. COMMIT uses the global diffusion signal to optimize these values,
whereas SIFT2 seeks to fit the streamline density throughout the white matter to the fiber den-
sities estimated using spherical deconvolution. Thus, while both methods rely on the simpli-
fying assumption that streamline features are invariant along their length, SIFT2 additionally
requires that the estimates of fiber density derived from the fiber orientation distribution (FOD)
are biologically accurate.

These networks also differ in the computation of their edge weights: SIFT2 is computed as
the simple sum of streamline weights, whereas COMMIT is computed as the length-weighted
sum of streamline weights. Indeed, our analysis methods do not permit us to make strong
claims as to the relationship between these methodological differences and our observed
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results; however, we do show that both SIFT2 and COMMIT display comparable but not iden-
tical fundamental characteristics to NoS. This supports the use of SIFT2 or COMMIT in place of
NoS as a measure of connection strength, which brings with it improved biological
interpretability.

Myelin Complements Connection Strength in Predicting FC

Despite the differences between COMMIT, SIFT2, and NoS, our results indicate that their edge
weights show roughly equivalent positive correlations with FC over the whole brain. Ry was
negatively correlated with FC. Significant evidence indicates a link between cerebral myelin
and FC, including a relationship between intracortical myelin and FC (

; ); the prediction of cognition ( ;

) and FC-derived components ( ) using myelin-sensitive
metrics; and a relationship between damaged myelin sheaths and greater conduction
delays in multiple sclerosis ( ). At the cellular level, myelin contrib-
utes to conduction velocity ( ), metabolic support (

), and plasticity ( ), all of which could be argued to support brain
function. Myelin plasticity in particular can be described in terms of “activity-dependence,”
whereby an increase in the functional activity of a given circuit stimulates cellular signaling cas-
cades, promoting greater myelination ( ; ). Coupled with our
results, this complex mix of functional roles supports the idea that structure-function models will
be improved by integrating measures of myelin and connection strength.

An Opposing Relationship With Edge Length for Edge Caliber and Myelin Content

When controlling for edge length, we found an inverse relationship between R; and COMMIT
over the whole brain in all subjects and at the group level. This suggests that the aggregate
g-ratio (ratio of inner/outer diameters of myelinated axons) of a white matter tract may
increase with edge caliber. At the cellular level, the diameter of an axon and the thickness
of its myelin sheath show nearly a linear relationship over a broad range of smaller diam-
eter axons; this relationship becomes increasingly nonlinear as axon diameter increases

( ; ). In general, increasing axon diameter
tends to outpace increasing myelin thickness, that is, the g-ratio tends to increase with
increasing axon caliber ( ). Our findings suggest that this

cellular-level principle may extend to the systems level: Increases in edge caliber tend
to outpace changes in the myelin content, resulting in a concomitant increase in the g-ratio
of white matter tracts.

We localized the inverse relationship between R; and COMMIT to the shortest edges, sug-
gesting that the g-ratio was the highest in the shortest connections. This result is supported by a
previous imaging study showing the highest g-ratio in “local” connections (

). In general, we found that R; increased and COMMIT decreased with increasing edge
length, which aligns with previously reported results of higher R; and fewer streamlines for the

white matter connections between transmodal regions ( ). Both of these
trends fit well with theories of brain wiring economy in which the energetic cost of maintaining
biological material increases with connection length ( ). This natural

pressure acts to reduce the total axonal volume of longer white matter bundles. Increasing the
myelin content of longer tracts comes at a cost as well, but this may be at least partially offset
as increasing myelin content reduces the total membrane surface area along which expensive
electrochemical gradients must be maintained ( ). However, a cost-
benefit analysis of the energetics of myelination concluded that the energetic cost of myelin
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maintenance outweighs any savings on action potentials ( ). This sug-
gests that higher myelination of longer edges may be better explained as a mechanism to pro-
vide trophic support ( ) to vital interregional connections (

) or to reduce conduction delays.

Edge Weight Variance Decreases With Edge Length in Most Weighted Structural Networks

White matter features related to myelin content, connection strength, and neurite density tend
to become more consistent across tracts as tract length increases. Greater variability in the
weights of the shortest connections could result from a higher proportion of false positive
streamlines influencing these edge weights. For SIFT2 and COMMIT, streamline weight com-
putation becomes increasingly unstable with decreasing length as fewer voxels contribute to
the fit. However, this result could also be explained more generally by contrasting the roles of
shorter and longer connections in the brain. Shorter white matter tracts connect brain regions
near each other in space, such as within the same module. Just as we might expect the char-
acteristics of smaller roads and streets (e.g., width, building materials, markings, signs, side-
walks) to vary by neighborhood and city, we might also expect the morphology of shorter
white matter connections to change as the functional specialization of any given region or
module changes. On the other hand, longer tracts (i.e., the freeways of the brain) may overlap
more in both their functional role and their morphological features relative to shorter connec-
tions, hence lower edge weight variability. Breaking with the above pattern, FA and RD
showed the highest edge weight variance in the longest connections. Given that structural
measures derived using a voxel-wise diffusion tensor model are particularly sensitive to the
white matter “architectural paradigm” ( ), these results suggest that white mat-
ter features related to fiber orientation and geometry actually diverge with increasing tract
length. Note that we are unable to say decisively whether the edge weight variance measured
in these structural and functional brain networks corresponds to true signal or noise. The inclu-
sion of scan-rescan data (e.g., as in ) could support stronger conclusions
as to the source of this variability.

The Absence of a Rich Club in Structural Networks Weighted by R; and FA

Group-level R; and FA did not show a normalized weighted rich club for any degree k. Higher
myelination in the white matter tracts connecting rich-club nodes has previously been
reported ( ); however, methodological differences limit comparability. A rich
club has previously been reported in FA-weighted networks using similar methods to ours (

). The source of this disagreement could potentially be attributed to
differences in our tractography algorithm, parcellation, or null network computation.

In weighted rich-club detection, the identification of a densely connected core is indepen-
dent of edge weight (depends only on node degree), but the designation of this subnetwork as
a rich club requires that it contains a higher-than-chance proportion of the strongest edges
from the full network. Indeed, this is the case over a broad range of degree k for COMMIT.
Over the same range of k, the normalized rich-club curves for Ry and FA are inverted about the
threshold value of 1 with respect to COMMIT. This implies that the subnetwork found at a
given k in this range contains edges that tend to show higher COMMIT and lower R; edge
weights than expected by chance. We previously showed edgewise inverse correlations
between R; and COMMIT that were robust to controlling for edge length. We also showed
that Ry and FA are positively correlated under these same conditions. In this light, it is not
surprising that the edges connecting rich-club nodes tend to show opposite trends in R;-
and FA-weighting with respect to COMMIT. Nonetheless, it is possible that the lack of a rich
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club in our myelin-weighted network is an artifact of tractometry. Future work will attempt to
replicate this result using myelin-weighted networks computed with a different methodology

( ).

Replication Across Parcellation Resolution and in a Second Dataset

In this report, we have chosen to feature data in the Schaefer-400 cortical parcellation plus 14
subcortical nodes. However, there is little consensus on the best brain atlas, and the optimal
choice likely depends on the specifics of your data and the question being investigated. In a
supplementary analysis, we replicated our results across 100- to 900-node Schaefer cortical

atlases. We found that residual edgewise correlations with FC ( )
and Ry ( ), as well as normalized rich club and normalized
small-worldness ( ), were robust to parcellation resolution. In

contrast, the spatial topography of high-hubness brain regions appears qualitatively dependent
on parcellation granularity, although further analyses would be necessary to draw stronger
conclusions ( ).

An independent multimodal dataset was also used to replicate the main SC results, includ-
ing the residual edgewise correlations with R; and the relationship between R; and COMMIT
across edge length bins ( ), as well as all network topology
results ( ).

Limitations

Streamline tractography is known to suffer from several important biases, including both false
positive and false negative streamlines, which can influence downstream analyses (

). Through probabilistic tractography, we opted to minimize false negatives while maxi-
mizing false positives. This allowed us to implement careful streamline- and edge-filtering
strategies in postprocessing to address this known bias. Still, without a ground truth, we cannot
quantify the extent to which we were successful in mitigating this issue, nor can we guarantee
that we did not erroneously filter true positive streamlines or edges. All processing and filtering
methods were consistent and network density was uniform across weighted structural net-
works. Thus, any major tractography bias should be as homogeneous as possible across
networks.

Tractometry-derived brain networks suffer from widespread partial volume effects due to
crossing and kissing fibers in a majority of white matter voxels. The net effect of this bias is
well understood and is apparent in our results and previous work ( ;

). Nonetheless, this method was included here, as our goal was to charac-
terize widely used structural connectivity methods. New techniques for reducing this bias are
currently being developed; these techniques allow for the estimation of tract-specific micro-
structural features (e.g., ; ;

; / ; ).

We were unable to assess repeatability in this work as we did not have scan-rescan data.

However, reproducibility has already been assessed for NODDI ( ;

), MP2RAGE-derived T1 maps ( ), diffusion-tractography-based
structural connectivity ( ), as well as COMMIT and SIFT2 tractogram filter-
ing ( ). The reproducibility of the tractometry features (R, FA, RD, ICVF) will

mainly depend on these previous steps and the accuracy of the spatial alignment of the mul-
timodal data.
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In this work, we have attempted to thoroughly examine the fundamental properties of a
wide range of standard and state-of-the-art metrics for quantifying white matter brain structure.
However, the scope of possible methods and their respective variants is too broad to treat
thoroughly in a single body of work. In particular, track-weighted imaging (

; , ) and fixel-based analysis ( ;
, ) provide state-of-the-art solutions to the challenge of quantifying white mat-
ter structural features in the presence of crossing fibers.

Conclusion

We presented a thorough characterization of weighted SC networks. Overall, our findings sup-
port the joint use of SC networks weighted by connection strength and myelin in predicting
FC. In particular, using the COMMIT or SIFT2 algorithms to quantify connection strength
shows promise to improve model interpretability relative to NoS. Beyond R;, there is a wide
array of myelin-sensitive metrics that could be used to compute useful myelin-weighted networks.
The integration of this microstructure-weighted connectivity approach into structure-function
models will advance the mechanistic interpretation of both the function and the dysfunction of
the living human brain.

MATERIALS AND METHODS
Data Acquisition and Preprocessing

Multimodal MRI data were collected in 50 healthy volunteers at 3 Tesla on a Siemens Mag-
netom Prisma-Fit scanner equipped with a 64-channel head coil as follows:

e T;-weighted (T;w) anatomical: 3D magnetization-prepared rapid gradient-echo sequence
(MP-RAGE; 0.8 mm isotropic; TR = 2,300 ms; TE = 3.14 ms; Tl = 900 ms; iPAT = 2; partial
Fourier = 6/8).

e  Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar
imaging sequence consisting of three shells with b-values 300, 700, and 2,000 s/mm? and
diffusion directions 10, 40, and 90, respectively (1.6 mm isotropic; TR = 3,500 ms, TE =
64.40 ms; multiband factor = 3); b0 images were also acquired with reverse phase encod-
ing direction to facilitate distortion correction of DWI data.

® 7 min of resting-state functional MRI: multiband accelerated 2D-BOLD gradient echo
echo-planar sequence (3 mm isotropic; TR = 600 ms, TE = 30 ms; mb factor = 6; flip
angle = 52°). Two spin-echo images with AP and PA phase encoding were additionally
acquired (3 mm isotropic; TR = 4,029 ms; TE = 48 ms; flip angle = 90°).

e Quantitative T, relaxometry data were acquired with a 3D-MP2RAGE sequence (

) (0.8 mm isotropic; TR = 5,000 ms, TE=2.9 ms, Tl; =940 ms, T1, = 2,830 ms;
iPAT = 3; partial Fourier = 6/8). This was used to compute a T; map that was sampled to
estimate the edge weights in R; (1/T;) networks (myelin-weighted).

The multimodal processing pipeline micapipe ( ) (
) was used to preprocess diffusion, anatomical, and functional images. T;w
images were deobliqued, reoriented to standard neuroscience orientation (LPI), corrected

for intensity nonuniformity ( ), intensity normalized, and skull stripped.
Subcortical segmentations were performed with FSL FIRST ( ;
) and tissue types were classified using FSL FAST ( ). A five-

tissue-type image segmentation was generated for anatomically constrained tractography
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( ). Cortical surface segmentations were generated with FreeSurfer
6.0 ( ; ; ).

Diffusion preprocessing was performed in native DWI space using tools from MRtrix3
( , ) and proceeded in the following sequence: (1) image denoising
( ; ; );
(2) two b = 0 s/mm? volumes with reverse phase encoding were used to correct for suscepti-
bility distortion, head motion, and eddy currents via FSL’s eddy and TOPUP tools (

; ; ); and (3) B1+ bias-field
correction ( ). These preprocessed data were used to estimate multi-shell
and multi-tissue response functions for constrained spherical-deconvolution (

; , ; ) followed by intensity normaliza-
tion. Nonlinear registration was performed with ANTSs ( ) to coregister ana-
tomical images to DWI space.

Resting-state fMRI preprocessing entailed discarding the first five TRs, reorientation (LPI),
motion correction by registering all volumes to the mean, and distortion correction using main
phase and reverse phase field maps. Nuisance signal was removed using an ICA-FIX (

) classifier and by spike regression using motion outlier outputs from FSL
( ). Volumetric time series were averaged for boundary-based registration
( ) to native FreeSurfer space and mapped to individual surfaces using
trilinear interpolation. Spatial smoothing (Gaussian, FWHM = 10 mm) was applied to
native-surface and template-mapped cortical time series.

Tractography and Microstructural Metrics

To estimate structural connectomes, anatomically constrained tractography (

) was performed on the normalized white matter FOD image using the probabilistic algo-
rithm iIFOD2 ( ). Tractograms of 5 million streamlines were generated by
seeding the gray-white matter interface using the following parameters: max length = 400, min
length = 10, angle = 22.5, step = 0.5, cutoff = 0.06, backtrack, crop_at_gmwmi (gray-matter-
white-matter interface). These tractograms were filtered in a two-stage process: (1) A temporary
whole-brain connectome weighted by NoS was computed then decomposed into its compos-
ite streamlines to derive a new tractogram in which any streamline that failed to connect two
gray matter ROlIs in the temporary connectome was excluded. This “streamline-filtering” step
typically resulted in approximately a 5% decrease in the size of the tractogram (~250,000
streamlines removed) and was undertaken to ensure that these erroneous streamlines did
not affect the COMMIT model. Streamline-filtered tractograms were used to compute NoS
and were used as inputs to both the SIFT2 and the COMMIT models. COMMIT was run using
a Stick-Zeppelin-Ball forward model and default settings (see

). (2) Any streamline with a COMMIT weight < 1e7'? (machine precision 0) was
interpreted as a false positive and filtered from the tractogram. This streamline-level
COMMIT-filtering step typically resulted in greater than a 90% decrease in the size of the trac-
togram, with most containing between ~300,000 and 600,000 streamlines. COMMIT-filtered
tractograms were used not only in the computation of COMMIT, but in all tractometry net-
works as well. This additional filtering step was performed on COMMIT streamline weights
only (not SIFT2) to reduce the impact of false positive streamlines in tractometry networks
as much as possible.

In a supplemental analysis, the COMMIT streamline weights were additionally used in the
computation of edge weights in tractometry-derived networks by performing a COMMIT-
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weighted average of a given tractometry metric (e.g., FA) over streamlines for each node pair

( -512).

Construction of Weighted Structural Networks

The streamline-specific SC networks were computed in the following manner: (1) NoS as the
summed streamline count; (2) LoS as the mean streamline length; (3) SIFT2 as the sum of SIFT2
streamline weights; and (4) COMMIT as the length-weighted sum of COMMIT streamline
weights as in . Explicitly, edgewise entries in COMMIT-weighted networks
were computed as the following:

kNll (x,’/( X Ik)

Qjj = ",

where a;; is the edge weight between nodes i and j; L; is the mean streamline length; Nj; is the

number of streamlines; x}; is the COMMIT weight of streamline k; and I is its length. Edge

weights in NoS, SIFT2, and COMMIT were normalized by node volume.

SC networks weighted by FA, RD, ICVF ( ), and Ry were derived using
multimodal tractometry ( ). Streamline weights were computed by (1) coregis-
tering the tractogram and desired image and (2) sampling the voxel-level aggregate value
along the length of each streamline. Edge weights were computed as the median along each
streamline and the mean across streamlines by node pair. Voxel-wise measures of FA and RD

were computed with a diffusion tensor model ( ) and ICVF by applying the
NODDI multicompartment model ( ) to preprocessed DWI data (
).
The 400-node Schaefer ( ) cortical parcellation is used in all results.

Subcortical ROIs corresponded to 7 bilateral regions (14 nodes): amygdala, thalamus, caudate,
accumbens, putamen, hippocampus, and pallidum. A single static, zero-lag FC network was
derived by product-moment pairwise Pearson cross-correlation of node-averaged time series.
FC network edge weights were Fisher Z-transformed.

Connectome Post-processing

COMMIT-weighted networks were used to filter all other weighted structural networks at
the edge level. This was chosen as COMMIT-weighted networks had the lowest connection
density to start, and all nonzero COMMIT edges were also nonzero in all other SC net-
works. All SC networks were thresholded at the edge level within subject by (1) setting
edges = 0 in all weighted SC networks if that edge had a COMMIT weight < 1'% and
(2) applying a 50% uniform threshold mask to facilitate group-consensus averaging. This
minimized differences in binary structural network density across subjects and enforced a
uniform binary connectivity map across weighted SC networks at the group level and
within subject. Group-level networks were computed as the subject-wise mean at each
edge excluding zero-valued edges.

Network Analysis
Network analysis was performed using tools ( ) based on graph theory
( ; ). Measures of clustering coefficient and path length

were normalized against 50 degree- and strength-preserving null networks. Clustering
coefficient was normalized within node then averaged across nodes to obtain a scalar
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value per network. The following weight (W) to length (L;) transform was used in path
length computation: L; = —log(W;;). Weighted rich-club curves were normalized against
1,000 degree- and strength-preserving null networks. The edges in all degree- and
strength-preserving null networks were rewired 1e® times total, and the strength sequence
was approximated using simulated annealing. Rich-club curves were normalized in binary
networks against 1,000 degree-preserving null networks in which each edge was rewired
100 times. All edge rewiring followed the Maslov-Sneppen rewiring model (

). Similar to , hubness scores (0-5) were com-
puted as 1 point for all nodes showing top 20% strength, betweenness, closeness, or eigen-
vector centrality; and lowest 20% clustering coefficient.

Permutation Testing

Statistical significance for the edgewise correlation of residual edge weights in NoS, SIFT2,

COMMIT, and Ry with FC ( ), as well as all connection-
strength-weighted networks with R; ( ), was quantified using
permutation testing as described in the . One-sided p values are

reported in the main text figures as pperm.
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