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Abstract

CASP assessments primarily rely on comparing predicted coordinates with experimental reference 

structures. However, experimental structures by their nature are only models themselves - their 

construction involves a certain degree of subjectivity in interpreting density maps and translating 

them to atomic coordinates. Here, we directly utilized density maps to evaluate the predictions by 

employing a method for ranking the quality of protein chain predictions based on their fit into the 

experimental density. The fit-based ranking was found to correlate well with the CASP assessment 

scores. Overall, the evaluation against the density map indicated that the models are of high 

accuracy, and occasionally even better than the reference structure in some regions of the model. 

Local assessment of predicted side chains in a 1.52 Å resolution map showed that side-chains are 

sometimes poorly positioned. Additionally, the top 118 predictions associated with 9 protein target 

reference structures were selected for automated refinement, in addition to the top 40 predictions 

for 11 RNA targets. For both proteins and RNA, the refinement of CASP15 predictions resulted 

in structures that are close to the reference target structure. This refinement was successful despite 

large conformational changes often being required, showing that predictions from CASP-assessed 

methods could serve as a good starting point for building atomic models in cryo-EM maps for both 

proteins and RNA. Loop modeling continued to pose a challenge for predictors, and together with 

the lack of consensus amongst models in these regions suggests that modeling, in combination 
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with model-fit to the density, holds the potential for identifying more flexible regions within the 

structure.

1. Introduction

Assessment of models in CASP is traditionally based on comparing predicted coordinates 

with the coordinates of reference structures provided by experimentalists. For evaluation 

purposes, the experimental structures are considered the ‘gold standard’. However, 

experimental structures by their nature are only models themselves - their construction 

involves a certain degree of subjectivity in interpreting density maps and translating them 

to atomic coordinates. In several previous CASPs, in parallel to the coordinate-to-coordinate 

evaluation, we carried out an evaluation of models versus the experimental data for a 

subset of cryo-EM-derived structures1,2. In this article, we continue this trend and check 

the fit of CASP15 models to cryo-EM density maps. We also study how the density-guided 

refinement of the best models improves their fit to map, and how the refined models fare 

with regards to the experimental structures. For the first time, besides the protein targets, we 

analyze RNA structures.

The number of structures newly solved by 3D-EM roughly doubles every two years and 

totals 14,500 as of March 2023, constituting more than 8% of protein structures in the 

whole PDB (http://www.rcsb.org/)3 (compared to around 4% only two years ago). Reflecting 

this growth, CASP also registered an uptick in the percentage of cryo-EM targets. In 

CASP14, 7 out of 54 evaluated targets (13%) were determined by cryo-EM, while in 

CASP15 the corresponding numbers were 27 out of 93 (29%), including 8 of the 12 (67%) 

RNA-containing structures.

While AlphaFold2 did not participate in the assembly category in the previous CASP 

experiment, it was noted that its predictions could have alleviated many interface modeling 

errors4. Since then, AlphaFold-Multimer5, RosettaFold6 and AF2Complex7 are a few 

examples of a growing number of deep-learning approaches to complex prediction. In 

CASP15, predictions of oligomeric targets were sufficiently good to directly refine whole 

proteins and complexes rather than smaller evaluation units. To test the applicability of the 

predictions in real-world cryo-EM structure determination tasks, we employed a method 

for ranking models. Additionally, given the improvement in the average cryo-EM map 

resolution, we decided to not only refine the best-predicted models into the corresponding 

maps but also assess higher resolution aspects of predicted models, such as their side-chain 

orientations.

For the RNA targets, predictions were ranked using their cryo-EM maps in another study 

of this special issue8. Therefore, here we used the maps to refine the best-ranked RNA 

predictions. However, whilst cryo-EM for studying proteins can often achieve near-atomic 

resolution, for RNA-only structures this method generally has not yet been able to achieve 

the same levels of resolution. Additionally, structure prediction for RNA is far less mature 

than for proteins, making RNA refinement into cryo-EM maps even more challenging.
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2. Materials and Methods

In CASP15, with the increased accuracy of modeling, we evaluated more targets, including 

multidomain and oligomeric ones (Fig. 1, Table 1). In this paper we had two aims: 1) to 

assess how well each protein chain of the predictions fitted the density if it was docked 

individually in the map (ie, in complexes, without the context of the fully predicted 

complex); and 2) to check whether the predicted models could be improved in the context 

of the experimental data. For the first aim, we ranked individual protein chains based on 

rigid cryo-EM docking (section 2.1). For the second aim, we took the top-ranked model 

for each protein target and also used all the predictions for protein and RNA targets that 

passed minimum accuracy filters (see section 2.2.1 for proteins and section 2.2.2 for RNA). 

These were superposed on their corresponding reference structures and the fit of each model 

was then optimized with ChimeraX9 (supp. Methods 1). This would show us that even 

when the prediction is not accurate enough, it can still serve as a good starting point for 

model building. For example, six targets shown in Fig. 2 (T1154, H1158, T1158, T1170o, 

R1126 and R1156v3) were generally well modelled down to the secondary structure level; 

however the overall conformations only partly fitted the density. Below we describe the 

methodologies we used for the two approaches.

2.1 Ranking of individual protein chains based on rigid cryo-EM docking

Instead of rigidly fitting the entire complex in the map, one can identify the optimal initial 

position for each of the protein components in the model using an exhaustive search or 

another heuristic. Predictions were re-ranked based on this global fitting approach using 

Cross-Correlation (CC).

The docking of models in this study was carried out using two automatic docking programs, 

Molrep10,11 and PowerFit12. Both programs use a six-dimensional search to maximize an 

overlap-correlation score between a given model and the map file. Molrep incorporates 

a Spherically Averaged Phased Translation Function (SAPTF), followed by a Rotation 

Function (RF) and Phased Translation Function (PTF), which achieves a suggested first fit 

and then improves the overlap score with a six-dimensional optimisation search10,11. On the 

other hand, PowerFit incorporates an exhaustive six-dimensional search, including rotation 

at a pre-set angle sampling density and translation across the map file. Input parameters 

for the docking included the input map file, model and resolution12. The top model was 

determined by the CC score calculated using ChimeraX9.

A group ranking was generated as follows using the complete chain submissions submitted 

by groups instead of the CASP-defined Evaluation Units (EUs)13. Predictors may submit 

five models for each target. To reduce the computational time required for the docking 

process, only the first submitted model for each target per group was considered. For each 

target, a score was assigned per group reflecting its position in the CC ranking for that 

target. The top model was given a score of 123 since this was the total number of groups. An 

automatic rank of 0 was given where a group did not submit a prediction for a given target. 

For an overall group ranking, a cumulative score for each group was tallied across all targets 

for which that group submitted a prediction. For comparison, similar rankings were done for 

each group and target using the composite SCASP15 score defined by14.
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For single chain targets, the prediction from the top group was chosen as the starting 

candidate. For oligomeric targets (H1114, H1129, H1158, T1121o, T1170o, H1185), a 

cumulative score of the individual chains was tallied. The model from the highest scoring 

group across all chains for a target was selected for refinement. For these models, no attempt 

was made to recombine individual fitted chains: instead the originally submitted multi-chain 

assembly was re-docked so that this full assembly was the starting model for the refinement 

process.

2.2 Model refinement

2.2.1 Selection of models for refinement from proteins and protein complex-
targets—Our rigid-body docking protocol is designed to test how well individual chains 

reflect the experimental density. However, we know from previous CASP competitions, that 

predictions, despite often modelling domains and SSEs to a high degree of accuracy, often 

fare less well when it comes to overall conformation. In previous papers of this series 1,2 

we have performed flexible fitting and refinement on cryo-EM targets showing that, with the 

aid of the experimental data, models oftentimes can be as good as the reference structure. 

It is important to note that flexible fitting methods require the starting models to be quite 

accurate at the SSE and domain levels, as these features are not derived from the fitting 

process. Flexible fitting routines such as the one used in this paper may not converge if the 

models are far from the global solutions. To select models which have both accurate SSEs 

and are not too far from the global optimum, we pick the highest ranking models based on 

the CASP assessment scores and the cryo-EM-based model assessment protocol (see section 

2.1). To qualify, predictions had to score above 0.7 on the lDDT (oligo-lDDT for oligomers) 

scale. Additionally, predictions for monomeric targets required a GDT_TS score greater than 

0.7. In the case of oligomeric targets, predictions with QS, TM and F1 scores4,15,16 all 

greater than 0.7, 0.8 and 0.6 respectively were eligible for refinement.

2.2.2 Selection of models for refinement from RNA targets—All RNA-

containing cryo-EM targets were considered for refinement. If there were multiple 

experimental maps, predicted models were selected separately for each map. The predictors 

were not asked to predict these conformations separately and hence, in some cases, the same 

predicted model was refined against multiple maps. Due to the low prediction accuracy all 

models submitted by each team were considered8. The best models were selected as the 

top ranked structures across all submitted models based on the previously described map-to-

model Z-score, ZEM
8. Due to the fit qualities an automatic threshold would result in few 

models per target, so manual visual inspection was additionally used to select models that, 

even without good fits, were the most promising for refinement. Based on these rankings and 

visual inspection of fit of the top 10 models by an expert, a final set of models for each target 

was selected.

2.2.3 Model fitting and refinement—The refinement protocol was an incremental 

improvement on what was used in prior CASP challenges1,2. In this CASP we additionally 

incorporated an updated version of RIBFIND (RIBFIND2)17, which can help to improve the 

refinement process by clustering secondary structure elements (in both proteins and nucleic 

acid structures). Combined with ERRASER2, a yet to be published successor to Erraser18 
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for correcting geometry in RNA structures, this allowed the refinement of both protein and 

RNA predictions, even when significant conformational changes were required. A more 

in-depth description of the pipeline is available in the Supplemental Methods along with a 

graphical overview (Fig. S1).

2.2.4 Model assessment measures for proteins—The protein predictions for cryo-

EM protein targets and the subsequent refined models were evaluated for their goodness-

of-fit to the experimental cryo-EM density map (model-to-map goodness-of-fit) using the 

following metrics: The local (per-residue) goodness-of-fit was evaluated with the TEMPy2 

Segmented Manders’ Overlap Coefficient (SMOC) score19 and global goodness-of-fit using 

the ChimeraX cross-correlation measurement. The SMOC score represents the Manders’ 

overlap coefficient for overlapping residue fragments: it is computed on local spherical 

regions around the seven residues in the current window. Overlapping windows are used, 

producing one numerical value per residue. SMOC scores can be calculated for the whole 

structure by averaging the per-residue scores. In order to compare the quality of fit to the 

density of side-chain vs. backbone, we have implemented two new “localised” SMOC scores 

in TEMPy: SMOCs and SMOCb. These scores assess the voxels around the side-chain 

atoms (SMOCs) and around the backbone atoms (SMOCb), respectively. To compute the 

SMOCs and SMOCb scores, each residue from the predictions was locally aligned to 

the target using the C-alpha atoms of the residue and its immediate neighbors. Because 

side-chains are a high-resolution feature, we did not use sliding windows in this case, i.e., 

SMOCs and SMOCb scores were computed on the aligned residues. The geometry of the 

targets, the predictions and the refined models were all assessed using MolProbity20.

2.2.5 Model assessment measures for RNA—For CASP15, we have implemented 

a new SMOC score in TEMPy – SMOCn – to assess the fit of nucleic acid chains. SMOCn 

is calculated similarly to the original SMOC score, which was designed to assess the protein 

chain in the density, by sliding windows around nucleotides instead of amino acids19. Due 

to resolution limitation, the “localized” SMOCb and SMOCs scores were not used for RNA. 

As the RNA experimental maps were generally of a lower resolution than their protein 

counterparts, assessing geometry was important to ensure models were not overfit to the 

maps. RNA Validate, which is part of the Phenix 21 software package, was used to assess 

the geometry of the RNA targets, predictions and refinements. We focussed our geometry 

analysis on the ‘average suiteness’ scores produced by RNA Validate. ‘Suites’ are defined 

by the pucker of two consecutive backbone sugars and the five torsion angles between them. 

Empirical studies have shown that these suites inhabit a number of characterized states in 

7-dimensional space. ‘Average suiteness’ is a measure of how well the suites in an RNA 

model match the discrete conformers found in the empirical data 22.

3 Results

3.1 Ranking of protein models using docking into cryo-EM maps

Our comparison of docking results from PowerFit12 and Molrep10 showed that PowerFit 

usually produced better fitting models (Supp. Methods 2). We therefore carried out the 

ranking using PowerFit.
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There was a significant, strong positive correlation between the cumulative SCASP15 

rankings and the cryo-EM-based docking rankings (Fig. 2). The top five groups from 

the docking rankings, in order, were: Yang, BAKER, GuijunLab-Assembly, FoldEver and 

PEZYFoldings. Each of these groups submitted predictions for all targets. The Yang group 

ranked consistently high on all targets and had the most (three) top ranking models 

(Table 2). Each of the top groups incorporated AlphaFold 2 style networks into their 

methods, with the exception of BAKER who used RosettaFold. For making performance 

comparisons, control representations of AlphaFold 2 are annotated (Fig. 3) with group 

names NBIS-af2-multimer, NBIS-af2-standard, Colabfold and Colabfold_human. Colabfold 

and Colabfold_human submitted predictions for every target but their results, while 

confirming the value of these readily available predictions for cryo-EM map fitting, were not 

among the very best. The best ranked prediction for each target was selected for refinement 

if it was not already selected based on the CASP criteria (see 3.2.1). These models are listed 

in Table 3. Target H1137 was excluded since, unlike other targets, there was no single group 

that had consistently suitable docked models across all interfaces.

3.2 Protein targets - refinement of top predictions

3.2.1 Selection of protein targets for refinement using CASP criteria—We 

refined the 118 predictions for multi-domain proteins and protein complexes (Table 1) that 

either passed our filter based on CASP score (section 2.2.2) or ranked first based on the 

fit of individual chains (section 2.1). For 6 targets (Table S1), the top-ranked model based 

on docking of chains was not included in the list of models which passed the CASP filter. 

However, a comparison between the poses of the top-ranked docked models and the ones 

determined by superposition and optimisation in ChimeraX shows high similarity (Fig. S3). 

Except for these 6 top-ranked best models, we used the superposed ones as a starting point 

for refinement.

The only listed target which did not have models that passed the CASP-based selection 

criteria was T1169 (Table 1). Predictions of individual domains in T1169 were good but 

the full protein models were not accurate enough to pass the threshold due to partially 

inaccurate domain organization. This protein was the largest single chain model in CASP 

history with 5 domains and over 3000 residues. Here we chose the model with the highest 

GDT_TS score (GDT_TS=57.7, lDDT=0.63) which was from Yang-server (group 229). 

Finally, we did not refine predictions for target H1114 for which the corresponding cryo-EM 

map is at 1.52 Å resolution. Given the high resolution of the map and the high quality 

of the predictions for this target (the best model had a TM-score=0.97, oligo-lDDT=0.86, 

QS-score=0.79, F1-score=84.13), we decided to use it for a fine-tuned side-chain analysis 

instead.

3.2.2 Overall model analysis—Average SMOC scores of predictions prior to 

refinement were poor with a large degree of variation among the predictions for each target 

(Fig. 4A). After refinement, average SMOC scores were closer to those of the respective 

targets, typically with significantly reduced variance. For example, the top models refined 

from the predictions of target T1154 had a SMOC curve very similar to that of the target 

SMOC curve (Fig. 4B, C). Interestingly, all top predictions for this target based on the 
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CASP criteria could be refined in the N-terminal part of the structure, despite its initial 

wrong orientation. This is likely to be attributed to the hierarchical refinement protocol, 

where the N-terminal is first pulled into the density as one rigid body. On the other hand, 

in the regions of residues 810–814 (Fig. 5B), there is a sharp drop in the SMOC plot due 

to the “loopy” characteristics of the region (see below). In fact, most targets had some 

loops which did not reach the high SMOC scores seen in the rest of the structure after 

refinement, suggesting these regions were poorly modeled thus bringing down the average 

SMOC scores. We explore specific cases where loops were poorly modelled in section 3.2.2.

Overall MolProbity scores, which are a log-weighted combination of the clash score, 

percentage of unfavoured Ramachandran dihedrals and unfavorable side-chain rotamers, 

generally improved after refinement with scores less than 2.0 being common (typically, 

MolProbity scores below 3.0 are considered good). However, for a number of targets, the 

MolProbity scores were worse. In these cases (H1129, H1185, T1154), the provided maps 

had been processed using DeepEMhancer23.

The six models that did not pass the initial CASP scoring criteria but ranked high based 

on PowerFit docking (section 3.2.1, Table S1) were improved after refinement, generally 

exceeding the cutoffs for ‘accurate’ models (section 2.2.1). However, some scores for T1154 

and T1121o were worse after refinement due to distortions. In the case of T1154, an 

incorrect interaction at the N-terminus caused a poor set of rigid-bodies to be generated 

during refinement. In the case of T1121o, a domain was misoriented and couldn’t be 

optimized.

3.2.2 Analysis of loop predictions—Given that overall the predictions were very 

accurate for proteins and that the top predictions required very little refinement in order to fit 

well into their corresponding target cryo-EM maps, we decided to focus next on examining 

how well the loops in the top predictions were refined. Below are specific targets where the 

accuracy of loops was examined in detail.

H1157 - Complex of CtEDEM and CtPDI1P at 3.3 Å resolution: This target consists 

of two proteins, each with multiple domains. These were modeled in a challenging 

experimental map with varying resolutions. These varying resolutions are clearly reflected 

by B-factor estimates produced by TEMPy-ReFF (Supp. Fig. 2). Initial inspection of the 

target revealed minor modeling issues: some aromatic side-chains were not well-fitted to 

the density and a number of loops were in regions of the map that had resolution too 

low to be modeled with confidence. Interestingly, many of the predictions managed to 

produce side-chains which better fit the density than the reference. More intriguingly, the 

best predictions modeled a loop in chain A between residues 210–230 much better than in 

the target. These were further improved upon refinement (Fig. 5A). Despite the excellent 

performance in modeling this large loop, predictors struggled to model some other loops.

T1154 - S-layer protein A (SlaA) at 3.0 Å resolution: Many bacteria and archaea have a 

protein-based barrier which encapsulates the cell known as an S-layer. A CASP target of the 

outer S-layer component of the archaea Sulfolobus acidocaldarius24 was well predicted at 

the domain level, with the model fit to the experimental data improving after the refinement. 
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Despite the overall high-resolution, a short loop between residues 810–814 had very poor 

density. Predictions were unable to produce loops close enough to the correct geometry to be 

refined into the map (Fig. 5B). Although automated refinement starting from these models 

was not possible, the general lack of consensus amongst the predictions likely reflected 

some degree of disorder which was mirrored by the poor resolution seen in this region of the 

map.

H1129 - The bacteriophage pb5 protein in complex with FhuA at 3.1 Å DeepEMhancer 
map: Much like the swift adoption of deep-learning methods in the structure prediction 

community, deep-learning has been transforming image processing and reconstruction 

methods in the cryo-EM scene. Here, a dimeric complex of the bacteriophage pb5 protein 

and its binding partner (the bacterial outer-membrane protein FhuA) is derived from a 

map which had been sharpened using the deep-learning tool DeepEMhancer23,25. Despite 

the overall high resolution of this map, residues 190 and 191 of a short loop were not 

modeled in the target structure with density dropping out in this region. Similar to the short 

loop in T1154, none of the predictions gave a “refineable” or even visually plausible fit 

in this region (Fig. 5C). However, the model provided by Wallner (group 037) was, by 

visual inspection, close and could potentially be locally fitted and refined using interactive 

tools such as Coot26 or ISOLDE27. Despite often making visual interpretation easier, an 

unfortunate side effect of DeepEMhancer is that lower-resolution regions of the map tend 

to be removed. It is possible that the unprocessed map (which we did not have) may have 

offered better information about this likely disordered region. A number of poorly resolved 

loops had a higher atomic B-factor, as determined by TEMPy-ReFF (Supp. Methods 1), 

compared to the rest of the model. Interestingly, we observed a similar pattern in the root 

mean square fluctuation (RMSF) of the best predictions (Supp. Fig. 2). We thus hypothesize 

that these poorly resolved portions of the map were caused by increased local mobility, 

which was also captured by the predictions which deviated from one another in these lower 

resolution regions.

3.2.3 Analysis of side-chain predictions—To examine how well CASP predictors 

can predict side chains, we analyzed predictions for target H1114, which was determined 

based on a high-resolution map (1.52 Å). The target is a hydrogenase isolated from 

Mycobacterium smegmatis that forms a large oligomeric complex of the HucS, HucL 

and HucM proteins28. The SMOC scores for backbone and sidechain atoms of unrefined 

predictions compared against those of the target for each residue are shown in Fig. 6. 

Sidechain SMOC scores (SMOCs) were clearly not predicted as well as the backbone 

scores (SMOCb), suggesting poor atom placement (Fig. 6A). An example is model 1 from 

Yang (group 439). In this case, although the backbone was relatively well fitted (average 

SMOCb=0.72), some side chains were incorrectly positioned, such as those of GLU15 and 

HIS166 (Fig. 6B).

3.2.4 Refinement of T1169 - the mosquito salivary gland surface protein 1 
at 3.3 Å resolution—Target T1169 is the mosquito salivary gland surface protein 1, a 

monomeric protein composed of more than 3000 residues involved in pathogen transmission 

from mosquitos. None of the predictions passed our CASP criteria for multidomain protein 
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refinement (GDT-TS > 0.7 and LDDT > 0.7). This is potentially due to the existence 

of a domain in T1169 with a previously unidentified fold, and others with low sequence 

homology to known structures29. Therefore, we decided to compare between the top-fit 

prediction based on chain ranking which was from Shennong (group 466), against the 

prediction with the highest GDT-TS score (57.7) which was from Yang-server (group 229) 

(Fig. 7A). The Shennong model was ranked third based on GDT-TS with a score of 54.1. 

Note that based on global fit-to-density using ChimeraX cross-correlation (CC) scores, the 

Yang-server model also had a better correlation with the experimental map (CC=0.55 for 

Shennong and CC=0.61 for Yang-server). The refined models of each of these predictions 

are shown in the 3.3 Å cryo-EM map (Fig. S4A). SMOC scores of the predicted models 

show that each prediction has regions that are more accurate than the other. From the 

corresponding SMOC plot (Fig. S4B), the CASP-criteria selected prediction produced a 

better refined model with a SMOC profile closer to that of the target. The poorer refinement 

of the Shennong group prediction (Table S1) is likely due to the incorrect placement of the 

N-terminal β-propeller towards the center of the molecule (residues 1–340), which could not 

be fixed during refinement (Fig S4B).

3.3 RNA targets: refinement of top predictions

3.3.1 Selection criterion of RNA targets for refinement—Six of the eight 

RNA-containing targets were selected for refinement. The two RNA-protein complexes 

(RT1189, RT1190) were not selected as targets due to poor prediction accuracy 

(RMSD>15.9Å, GDT_TS<27). A separate analysis of these predictions was performed 

instead8. Furthermore, no predictions passed the CASP-scored selection for proteins 

(GDT_TS>0.7, lDDT>0.7) so we used an alternative selection process for RNA models. 

For each target, the ZEM ranking was used to obtain a top 10 models which were then 

visually inspected to obtain a set of models we thought most likely to be refined by criteria 

such as limited geometric problems, and minimal chain distortions needed to move into 

map8 (Table 3). Targets R1126, R1128, and R1149 had a single experimental structure and 

thus their top models by ZEM were selected and after manual fitting; 6, 7, and 3 models 

were refined, respectively. For the three remaining RNA-only cryo-EM targets, multiple 

experimental maps were used for refining the predicted structures.

For R1136, the two experimental maps, representing the ligand bound and unbound 

conformations, were topologically very similar, so the same models (5 total) were selected to 

refine into both maps. R1136 included 15 submitted models with the same RNA structure - 

they differed in their ligand prediction - so only 325_1 was used for refinement. For R1138, 

all top predictors were closer to the “mature” state, with no predictions close to the “young” 

state according to global topological and fit-to-map metrics. The top models (3 total) for 

the “mature” state were thus refined to both maps. For R1156 each map was considered 

separately resulting in 8 total refinements.

3.3.2 Overall RNA model analysis—The RNA predictions had average SMOC scores 

above 0.8 after refinement for all but the young conformation of R1138 discussed below, 

despite predicted models starting far from the reference structure (all GDT_TS<0.7) 

(Fig. 7A). In fact, for R1128, R1138v2, R1149, and R1156v3 targets, refined predictions 
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surpassed the SMOC values of models fitted into the same RNA cryo-EM maps as reference 

models (Fig. 7A). Further, while prediction started with a spread of SMOC scores, the 

variance in SMOC score was reduced upon refinement. These results indicate that the 

refinement procedure was successful in fitting the models into the maps, moving all 

predictions to a similar solution, even in cases where large changes were needed. Compared 

to protein models where the fit of loops and side-chains could be assessed due to the higher 

resolution of the experimental maps, here the focus was on the overall fit of high level 

features.

R1138 a 6-helix bundle at 4.9Å resolution: A particularly interesting example for cryo-EM 

refinement of RNA models was the predictions and refinement for R1138, a designed 

6-helix bundle of RNA with a clasp (6HBC)30. This target had reference structures and 

experimental maps for two alternative conformations, a short-lived “young” conformation 

and a stable “mature” conformation. The refinements for the mature conformation gave 

a better fit to the experimental density than the target reference structure (Fig. 7B) with 

the majority of residues having higher SMOC scores than those in the target reference 

structure. These predictions required significant conformational change as seen in Fig. 7C 

and Supplemental Video 2. The overall geometry, as assessed by the ‘average suiteness’ 

score (see Methods), was also better in the refined models than the reference structure 

(Fig. 7A). However, CASP predictions for the ‘young’ conformation failed to refine to the 

same extent (Fig 7A, Supplemental Video 3). This poorer result might be attributed to the 

greater degree of rearrangement of the helices and the breaking and reforming of hydrogen 

bonds in the kissing loop clasp required to convert from models resembling the mature 

conformation to the early conformation. The breaking and forming of such hydrogen bonds 

can in principle occur, but is unlikely, in our refinement protocol.

R1126 a designed “Traptamer” at 5.6Å resolution: The refined predictions of the 

designed RNA target R1126, a designed RNA origami scaffold for a Broccoli and Pepper 

aptamer pair31, had lower average SMOC scores than the reference target structure. 

However, this result may be due to the reference structure being overfitted to the cryo-EM 

map at the expense of realistic RNA geometry, as reflected by the low suiteness scores of the 

target structure compared to the refined models (Fig. 8A). Selected predictions for this target 

had a large degree of conformational diversity with models varying between 9 and 13Å 

RMSD from the target. Despite our refinement protocol improving the overall fit-to-map 

and improving the geometry of some of these predictions, a number of predictions from 

Alchemy_RNA2 (group 232) exhibited an incorrect crossover between strands (Fig. 8A). 

Fixing such issues would require breaking and rebuilding chains which is not allowed in our 

refinement protocol.

Both Alchemy_RNA2 (group 232) and Chen (group 287) provided a number of predictions 

which offered excellent refined models. All of these predictions required significant 

conformational changes to fit the experimental map. Often these movements involved 

breaking predicted interactions. One striking example is in the second prediction from Chen 

(Fig. 8B, Supplemental Video 1). In the prediction, a stem-loop was curled around and 
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interacting with an upstream helix. In order to fit the density, the stem-loop interaction was 

broken allowing it to move into density.

R1156v3 - BtCoV-HKU5 SL5 at 7.6Å: Maps and reference structures for four alternative 

conformations of the SL5 domain from 5’UTR from the Bat coronavirus BtCoV-HKU5 

were provided for assessment in this CASP. This domain is known to have a conserved 

secondary structure in many coronaviruses32,33, which is thought to be important in the 

packaging of viral particles during infection34. Maps for this target varied in resolution from 

5.6 to 7.6 Å. The four refined predictions for the third conformation (R1156v3) exhibited 

average SMOC values slightly higher than the reference structure. Although the suiteness 

scores for the refined predictions were lower than for the reference structure, in all but 

one case they were better than the unrefined predictions. In contrast to the Traptamer 

example above, where refinement involved the breaking of an interaction of a apical loop, 

the refinement of the second prediction from Alchemy_RNA2 involved the formation of an 

interaction between a apical loop and an internal loop in another part of the model (Fig. 8C).

Discussion

In CASP15, 29% of the total targets, including 67% of the RNA-containing targets, were 

determined using cryo-EM. The accuracy of predictions for protein targets assessed in 

this paper and the overall quality of experimental maps allowed many predictions to be 

further refined to near-native conformations. Compared to most CASP assessments, where 

a single reference model has been used as the ground truth, cryo-EM assessment finds 

itself in a privileged position. To aid the assessment, cryo-EM maps are typically available 

in conjunction with target reference models - which are after all just best attempts at 

model building using the experimental map, human knowledge and current state of the art 

technology. This is particularly important, as cryo-EM data tends to have lower resolutions 

than crystallographic experiments. Because 3D reconstructions are built from averages of 

many particles, they may also capture continuous motions and flexibility of the visualized 

macromolecule, which can then manifest itself as lower resolution regions. There is thus an 

added degree of uncertainty in any static 3D structure that is derived from cryo-EM data.

One model, which particularly highlighted the importance of experimental data this year, 

was H1157. This model had an average resolution of 3.3 Å with many regions of the map 

having lower local resolution. Intriguingly, a large loop which was erroneously modeled in 

the target was much better modeled by the top predictions, with aromatic side chains well 

placed in the density. If, on the other hand, we only had the target model as ground truth 

(i.e., we did not use the experimental map for assessment), these better predictions would 

have not been noticed.

For the majority of targets, where the author’s submitted model (target reference model) 

and experimental map were in good agreement, some parts of the predicted models resulted 

in better fit to map following refinement. At the same time, many targets had loops which 

were not well predicted. Typically, the geometry of these loops varied amongst predictions, 

with many failing to be refined because they were too distant from the target. The lack of 

consensus amongst some of these loops was often reflected by lower local resolutions in the 
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experimental map (Supp Fig. 2). While we did not investigate the relationship between these 

two phenomena in this paper, in CASP14 cryo-EM assessment, we showed anticorrelation 

between the standard deviation of the SMOC scores of the predicted models (SMOC SD) 

and SMOC scores of the target structures2.

The strong correlation between the rankings based on the cryo-EM-based docking score 

and the composite SCASP15 score shows that high quality models can often be picked using 

experimental data alone. For model building practitioners, this is particularly relevant, as 

reference structures may not be available. Given the difficulty of building models into 

experimental maps and the fact that there isn’t a single prediction tool which excels across 

all targets, docking and ranking offers an approach to screen for good starting models, 

potentially from multiple structural prediction tools.

Some maps provided by the experimentalists had been sharpened with DeepEMhancer23. 

This caused a degradation in MolProbity scores, likely because the TEMPy-ReFF GMM35 

puts more weight on the sharpened map, overpowering the geometry restraints. Another 

unfortunate side-effect of DeepEMhancer maps was that low-resolution regions tended 

to disappear entirely in the sharpened maps. DeepEMhancer attempts to reproduce the 

sharpening produced by LocScale36 but without the need for an atomic model. However, 

this deep-learning approach tends to remove low resolution regions entirely, creating maps 

that look like they have been tightly masked, and may also hallucinate density. The current 

consensus on this emerging technique amongst the cryo-EM community is that such maps 

should not be used for refinement or measuring map-model quality but rather as an 

intermediate aid during model building. We would thus advocate for structure providers 

to offer raw maps with processed maps optional in future CASP challenges. Many of the 

predictions displayed a diverse set of loops in these regions. While sharpened maps may aid 

in model building, low-resolution regions can be an important indicator of flexibility and 

disorder. In future CASP cryo-EM assessments it would be useful to encourage the authors 

to provide unsharpened maps, and even half maps for further assessments.

For the first time in CASP history, RNA structures were provided as targets and the majority 

of them had associated cryo-EM density maps. Compared with the proteins, these RNA 

maps had much lower resolutions. Indeed, in some maps such as those of R1156, pitches 

of helices were not always visible. Local fit-to-map scores, such as the newly developed 

SMOCr, can aid the assessment of RNA models in these challenging resolutions. Here, 

this local fit analysis indicated that many secondary structures and important geometric 

features can be accurately predicted. Furthermore, we showed that in silico models can, 

after further refinement, offer plausible models that better reflect the experimental maps 

even at low resolutions. However, at such low resolutions, it is possible for many alternative 

structures to fit the density with equal likelihood. Due to both the known flexibility of the 

RNA molecules and the heterogeneity of the experimental maps, ensembles of models are 

arguably a more accurate way to describe the underlying experimental data8,37.

Despite the overall quality of predictions, some reorientation of domains and secondary 

structure elements was often required, particularly for RNA models. The multistage pipeline 

presented offers an approach to fitting and refinement of structural models into cryo-EM 
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maps at a variety of resolutions. The use of progressively smaller rigid-bodies has been 

shown to aid the fitting of models that require large conformational changes19. However, if 

the models contain topological errors or significant misplacements of elements even such a 

detailed approach will fail.

As mentioned above, in CASP15 there were two RNA-protein complexes (RT1189, 

RT1190). The predictions associated with these targets were not refined due to poor 

accuracy8. Given the current progress in the structure prediction field, we expect further 

improvement on this front in future CASPs.

CryoEM has been an important method for elucidating large atomic structures, albeit 

often at a lower resolution than crystallographic experiments. This CASP15 for example, 

the largest monomeric structure in the history of CASPs, T1169, was a cryo-EM target. 

Moreover, cryo-EM experiments are now not just capturing large molecules but often 

achieving atomic levels of detail. In CASP15, focussed maps for the target H1114 reached 

an astonishing resolution of 1.52 Å. While at such resolutions, computational models are not 

required for model building, high-resolution data offers an opportunity to assess accuracy 

at an even finer level. Using the SMOC score separately for backbone (SMOCb) and 

side-chains (SMOCs), allowed us to show that while the overall backbone geometry of 

H1114 predictions was well modeled, side-chain orientations did not always agree with 

the experimental map. Given the progress in both protein structure prediction and cryo-EM 

fields, we foresee such analyses becoming more routine in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Overview of the cryo-EM targets used for refinement and analysis in CASP15:
Reference structures for 10 protein targets (A) and 6 RNA targets (B) solved by cryo-EM in 

CASP15.
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Fig. 2: Docked predictions vs. the reference model for 6 CASP15 targets.
The reference models are displayed in blue within the corresponding cryo-EM maps. The 

ensembles of docked predictions are shown in rainbow colours.
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Fig. 3. Group ranking for cryo-EM targets.
Cumulative per-group docking ranking scores plotted against SCASP15 rankings across 

docking targets where SCASP15 scores were available (oligomeric reference structures were 

split into individual chains - see also Table 2). The gray line indicates the line of best 

fit with a strong positive correlation between the two rankings (r=0.827, p<0.0001). The 

top five performing docking ranking groups are labeled, as are the ‘control’ AlphaFold 2 

submissions. These groups are shown as triangles, others as blue circles.
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Fig. 4: Overview of protein refinement results.
In (A), the distribution of average SMOC scores for the qualified CASP predictions before 

and after refinement. Score for the experimental model is shown as a vertical line. Target 

T1169 and T1121o were not included as only two models for each were refined. In (B), 
the residue level SMOC plot is shown for T1154 and its predictions. The dark orange and 

blue lines are the mean refined and docked SMOC scores with the minimum and maximum 

values in light orange and blue. The N-terminal domain, which fitted poorly in all of the 

predictions (as indicated by the highlighted region), needed significant movement during 

refinement and is shown in (C) for model 1 from PEZYFoldings (group 278). Plots and 3D 

structures are in orange for refined models, in gray for reference structures and in blue for 

predictions.
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Fig. 5: Protein loop case-studies.
In all the visualizations, the target model is gray and the predictions are blue and orange 

before and after refinement, respectively. The dark orange line in the plot is the mean SMOC 

score, with the shaded region representing the minimum and maximum value for the set of 

predictions. (A) The reference model (for H1157) had a large poorly modeled loop in chain 

A as indicated by the low SMOC scores in 210–230 region. The best-refined predictions 

were a much better fit. In orange, a refined prediction from McGuffin (group 180). (B) This 

short loop, in T1154 was not modeled well enough by any predictions to be refined into the 

density. The low-intensity density may also be an indicator that this region is disordered. (C) 
Residues 190–191 of chain B were not modeled in the reference model for H1129 indicated 

by the dotted line. None of the predictions were able to produce a refinable loop that fitted 

the DeepEMhancer-sharpened map in this region. However, the model submitted by Wallner 

(group 037) which is depicted, was visually the best fitting before and after refinement.
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Fig 6. Side-chain analysis of H1114.
SMOC scores for backbone and sidechain atoms of H1114 predictions compared against 

those of the target reference structure for each residue (A). Backbone SMOCb scores (left) 

and sidechain SMOCs scores (right) of the reference structure vs the predictions. In (B) 
incorrectly positioned side-chains of GLU15 and HIS166 from model 1 prediction by Yang 

(group 439) (blue) compared to the reference (gray). These residues were consistently 

poorly placed by predictors.
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Fig. 7: Overview of RNA refinement results
(A) The average SMOC scores for the target, predictions and refined predictions are shown 

alongside the RNA Validate ‘average suiteness’. (B) The residue level SMOC plots of 

R1138 in the mature conformation map and the predicted and refined models. The dark 

blue and orange lines are the average SMOC score for the predictions and refinements 

respectively, with the lightly shaded area representing the minimum and maximum values. 

(C) An R1138 prediction by Alchemy_RNA2 (group 232) in the ‘mature’ conformation 

map. Depicted are the prediction (blue) and refined prediction (orange) with respect to the 

reference model (gray).
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Fig. 8. RNA refinement case studies.
In all the visualizations, the target model is gray and the predictions are blue and orange 

before and after refinement, respectively. The dark orange line in the plot is the mean 

SMOC score, with the shaded region representing the minimum and maximum value for 

the set of predictions. (A) A SMOC plot of R1126 predictions and their refinements. Some 

refinements had residues between 155–175 with a variable SMOC score, large shaded 

region. This was due to strands crossing over, in some of the predictions, as shown in the 

right panel. (B) A model of R1126 from Chen (group 287) and its refinement. Overall, 

the R1126 predictions were refinable despite large conformational changes often being 

required. On the right, a close-up of the highlighted area showing the breaking of loop 

interaction during refinement. (C) A model of R1156 from Alchemy_RNA2 (group 232) and 

its refinement. After refining the model into the third conformation map, it better fitted the 
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experimental density. On the right, a close-up of the highlighted area showing the formation 

of new interactions between an apical loop and an internal loop.
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Table 1.
Overview of targets with refined predictions.

Targets with predictions which met the minimum score criteria were refined. Note that for T1169 only two 

models were refined (see Section 3.2.1).

Target Type Target Num. of Predictions refined Resolution (Å) Num. residues/nucleotides

Protein H1129 9 2.6 1387

H1157 11 3.3 1524

T1158 13 3.3 1340

T1154 17 3.0 1424

H1137 40 3.1 3939

T1170o 11 3.0–3.3 1908

H1185 13 3.4 1334

T1121o 2 3.7 739

T1169 2 3.3 3364

RNA R1126 6 5.6 363

R1128 7 5.3 238

R1136v1 5 4.4 374

R1136v2 5 3.5 374

R1138v1 3 4.9 720

R1138v2 3 5.2 720

R11149 3 4.7 124

R1156v1 1 5.8 135

R1156v2 1 6.6 135

R1156v3 4 7.6 135

R1156v4 2 7.6 135
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Table 2:
Group ranking based on docking.

The top-scoring CC model for each target. Also indicated are the top-scoring groups for the same targets, in 

the general CASP assessment using the CASP15 score14. Some chain models did not receive a CASP15 score 

because certain elements used in the CASP15 score formula were not calculated since the chain in question 

was split into multiple AUs. These were given an N/A classification.

Target Top Group by Docking Rankings Top Group by SCASP15 Ranking Groups selected for Refinement

T1114s1 Gonglab-THU SHT

FoldEver-Hybrid

T1114s2 Panlab trComplex

T1114s3 Yang B11L

T1121 GuijunLab-RocketX GuijunLab-Threader GuijunLab-RocketX

T1129 Venclovas N/A Venclovas

T1137s1 BhageerathH-Pro PEZYFoldings

Venclovas*

T1137s2 SHORTLE Yang

T1137s3 RostlabUeFOFold UM-TBM

T1137s4 ACOMPMOD N/A

T1137s5 DELCLAB UM-TBM

T1137s6 RostlabUeFOFold UM-TBM

T1137s7 Shennong DMP

T1137s8 McGuffin McGuffin

T1137s9 Yang PEZYFoldings

T1154 Venclovas Elofsson Venclovas

T1157s1 Yang-Multimer N/A

Yang-MultimerT1157s2 Yang N/A

T1158 MULTICOM Asclepius MULTICOM

T1169 Shennong Shennong Shennong

T1170 FTBiot0119 MUFold_H FTBiot0119

T1185s1 BhageerathH-Pro BAKER

Yang-Multimer

T1185s2 Yang-Multimer OpenFold-SingleSeq

T1185s4 BAKER Manifold-E

*
These targets were selected in a different way - see section 3.4.3
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Table 3:

RNA predictions which were selected for refinement.

Target Group Prediction model numbers

R1126 232 1–5

287 2

R1128 232 1–5

287 1,3

R1136v1, R1136v2 232 1,3,5

287 4

325 1

R1138v1, R1138v2 232 3,4,5

R1149 054 1

125 3

416 3

R1156v1 128 5

R1156v2 128 5

R1156v3 128 1,5

232 3

287 1

R1156v4 232 3

439 2
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