Skip to main content
. 2023 Dec 4;33(12):123108. doi: 10.1063/5.0178947

ALGORITHM 1.

Continuation of gradient extremal curves on manifolds defined by point clouds.

Input: initial point p=p0 near minimum, samples per iteration N, continuation parameters, threshold ρ>0 used in the convergence
  criterion.
Output: equilibrium p of X.
   for n=1,2,3, do
            Sample N points from a neighborhood UM of pn-1.
            Use manifold learning to obtain local coordinates φ:URd
            Obtain a parameterization ψ:VU, where V=φ(U)Rd.
            Approximate Z=ψE via Gaussian process regression.
             qφ(pn1)
            if n=1 then
                   v Random direction in Rd
            else
                   vφ(q)wn1
            end if
             qn,vnresolve_extremal_curve(q,v) See Algorithm 2.
             pn,wnψ(qn),ψ(qn)vn
            if gradZ(qn)<ρ and n>1 then
                   return ppn
            end if
end for