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Abstract
Background: Lipids are essential components of the
structure and for the function of brain cells. The intricate
balance of lipids, including phospholipids, glycolipids,
cholesterol, cholesterol ester, and triglycerides, is crucial
for maintaining normal brain function. The roles of lipids
and lipid droplets and their relevance to neurodegener-
ative and neuropsychiatric disorders (NPDs) remain
largely unknown. Summary: Here, we reviewed the basic
role of lipid components as well as a specific lipid or-
ganelle, lipid droplets, in brain function, highlighting the
potential impact of altered lipid metabolism in the
pathogenesis of Alzheimer’s disease (AD) and NDPs. Key
Messages: Brain lipid dysregulation plays a pivotal role in
the pathogenesis and progression of neurodegenerative
and NPDs including AD and schizophrenia. Understanding
the cell type-specific mechanisms of lipid dysregulation in
these diseases is crucial for identifying better diagnostic
biomarkers and for developing therapeutic strategies
aiming at restoring lipid homeostasis.

© 2023 The Author(s).

Published by S. Karger AG, Basel

Introduction

Neuropsychiatric disorders (NPDs), including schizo-
phrenia (SZ), bipolar disorder (BD), autism spectrum dis-
order (ASD), major depressive disorder (MDD), and at-
tention deficit hyperactivity disorder (ADHD), are mental
illnesses that impact brain function, emotion, and mood.
These illnesses are prevalent (~0.64% SZ, 2.8% BD, 4.4%
ADHD, and 8.4%MDD in adults, and 2.8%ASD in children)
and highly debilitating (www.nimh.nih.gov/health/statistics),
which led to an approximately USD 5 trillion economic
burden in 2019 [1], and is projected to rise toUSD6 trillion in
2030 [2]. Another major NPD is Alzheimer’s disease (though
in this review, we usually refer to it separately as AD), a
devastating neurodegenerative disorder that also elicits some
neuropsychiatric symptoms. AD is the most common cause
of dementia and afflicts more than 6.5 million Americans
with a projected growth to 13.8million by 2060 [3], and there
are an estimated 40 million people worldwide living with
dementia [4]. Despite decades of research, mostly on β-
amyloid (Aβ) and tau lesions, effective treatment for AD
is still lacking. The lack of major breakthroughs in under-
standing the pathogenic mechanisms and subsequent de-
velopment of effective treatments of these NPDs, including
AD, supports a need for paradigmatic change in under-
standing the possible disease pathogenesis. These NPDs all
have a complex etiology, each involving polygenic and
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environmental risk factors, some possibly interacting. Recent
genome-wide association studies (GWAS) and exome se-
quencing studies have identified hundreds of reproducible
risk loci for NPD [5–17] and AD [18–23], providing un-
precedented opportunities to better understand the disease
biology of NPD andAD. However, most biological follow-up
of these genetic findings in the field are aspects that have been
explored for decades, i.e., focusing on neurodevelopmental
deficits or synaptic dysfunction in neurons for NPD and on
classical neuropathic Aβ and tau lesions for AD. On the other
hand, available effective new treatments for these disorders
remain scarce, and the therapeutic armamentarium largely
relies on old drugs. For instance, most antipsychotic drugs for
treating positive symptoms of SZ still target dopamine re-
ceptor D2, an approach taken due to a discoverymade almost
half a century ago [24]. Thus, a paradigm change in un-
derstanding the novel biology of NPD and AD is highly
needed, which may help develop more accurate biomarkers
for clinical diagnosis and identify more effective treatment
through identifying druggable targets.

Dysregulation of lipid synthesis and metabolism in the
brain may represent one such novel biological mechanism
for influencing disease progression inNPD andAD. Brain is
a lipid-rich organ, and 50% of brain dry weight is consti-
tuted by lipids [25]. The brain lipids consist of approxi-
mately 50% phospholipids, 40% glycolipids, 10% cholesterol
and cholesterol ester, and a small amount of triglycerides
[26]. Accumulating evidence, both genetic and biological,
suggests that lipid systems play critical roles in NPD such as
SZ and AD [27, 28]. In fact, Alois Alzheimer originally
described “lipoid granules” in the AD brain, suggesting that
irregular lipid metabolism may be a driving factor [29]. In
this review, we will first discuss the supportive genetic
evidence for linking lipids toNPD andAD and then address
the cell type-specific biosynthesis, metabolism, and function
of the main lipid components, including the lipid organelle
named lipid droplets (LDs). Each section is followed by a
discussion of the pathophysiological role of different types
of lipids in developing AD and NPD. We also critically
reviewed the possible link between sex-specific lipids and
sex differences of these disorders and outlined potential
disease treatment approaches targeting lipids.

Genetic Evidence That Supports the Link of Lipids
with AD and NPD

In recent years, lipid dysmetabolism has drawn much
attention for contributing to the development of AD [27].
Besides strong supporting evidence from the “lipoid
granules” originally found in the AD brain by Alois

Alzheimer [29], perhaps the clearest evidence is that
many lipid-related genes have been identified as some of
the strongest risk factors for AD by GWAS studies, such
as ApoE, ApoJ (clusterin), and ABCA7 [23, 30, 31]. Ele-
vated plasma levels of low-density lipoprotein-cholesterol
(LDL-C) and ApoB are significantly associated with in-
creased risk of early-onset AD, and this effect is only
partially mediated by the ApoE E4 genotype [32]. It was
also found that plasma lipids can differentiate AD pa-
tients from healthy controls with cholesterol esters,
phosphatidylethanolamines (PEs), and triacylglycerols
showing differential associations with separate AD genes
[33]. Collectively, with all the 568 genes curated in Re-
actome with function related to metabolism of lipids and
lipid proteins (reactome.org/PathwayBrowser/#/R-HSA-
556833), our disease risk gene enrichment analysis using
DisGeNET [34] identified the most significant enrich-
ment for AD and dementia among all major neurode-
generative and NPDs or traits (Fig. 1a).

Furthermore, an unbiased phenome-wide association
analysis between individual polygenic burden
(i.e., polygenic risk score; PRS) and a variety of disease
phenotypes or traits in the UK Biobank found that PRS of
AD is strongly associated with high plasma cholesterol
levels (Fig. 1b) [36]. Conversely, PRS of LDL levels is also
significantly associated with AD [36], suggesting a po-
tentially shared genetic risk liability (i.e., pleiotropy)
between AD and lipid disorders. Such genetic pleiotropy
is further supported by a recent coding-wide association
study (a GWAS for protein-coding SNPs only) that
showed strong correlation of the risk effect sizes of AD
and lipid disorders [37]. Interestingly, a rare missense
SNP, rs150484293 (minor allele frequency, MAF = 0.3%)
in CLPTM1, a gene at the same ApoE risk locus that has a
known role in GABA type A receptor forward trafficking
[38], showed independent association to both AD and
lipid disorders with effect sizes similar to those of ApoE
[37, 39].

Compared to the strong genetic evidence for the role of
lipids in AD or dementia, the genetic evidence, especially
directly from GWAS, for linking lipids to NPD is lacking.
However, our disease risk gene enrichment analysis using
DisGeNET [34] for all 568 genes curated in Reactome with
function related to metabolism of lipids and lipid proteins
(reactome.org/PathwayBrowser/#/R-HSA-556833) identi-
fied much less robust (compared to AD), but still sig-
nificant, enrichment for most NPDs (SZ, BD, ADHD, and
MDD) (Fig. 1a). Among those enriched NPDs, SZ showed
the strongest enrichment. Genetic study of ASD also
suggests potential involvement of lipid metabolism in
disease pathogenesis. ASD children and their close
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relatives are more likely to carry genetic mutations within
genes known to regulate lipid metabolism [40]. None-
theless, the lack of strong risk genes directly involved in
lipid pathways for NPD does not exclude the importance
of lipids in the pathogenesis of NPD; for instance, a mouse
model of the SZ-associated CNV 3q29 deletion (40-fold
increase of SZ risk) showed strong global alteration of
genes related to fatty acid synthesis and other lipid me-
tabolisms, suggesting amechanistic link between abnormal
lipid levels and NPD.

Role of Glycerophospholipids and Sphingolipids in
AD and NPD

Glycerophospholipids (GPLs) and sphingolipids are
the two types of phospholipids that are essential com-
ponents of the cellular membrane. Phosphatidylcholine
(PC), PE, and phosphatidylserine are the three most
common GPL species. Sphingolipids, together with
cholesterol, form lipid rafts [41] that are also considered
key membrane components. Sphingolipids encompass a
broad spectrum of lipids derived from their precursor

ceramide, and the main bioactive ones include sphin-
gomyelin, sphingosine, sphingosine-1-phosphate (S1P),
ceramide-1-phosphate (C1P), dihydroceramide, and
glycosphingolipids [42]. Phospholipids utilize the long
chain (>20 carbons) polyunsaturated fatty acids to
constitute hydrophobic membrane bilayers. As for their
biosynthesis and metabolism, phosphatidic acid (PA)
and diacylglycerol are two common precursors for GPLs
with the final products being PC, PE, PS, and phos-
phatidylinositol (PI). The biosynthesis of sphingolipids
starts from sphingosine, which is converted to dihy-
droceramide by ceramide synthase enzymes and further
to ceramide by ceramidase [43]. Phospholipids are de-
graded in the lysosome, where GPLs are catabolized by
phospholipases into second messengers such as DAG,
inositol 1,4,5-trisphosphate, lysoglycerophospholipid,
platelet-activating factor, and long-chain polyunsaturated
fatty acids [44, 45], while sphingolipids are hydrolyzed to
ceramide then to sphingosine [43]. Despite their funda-
mental role as building blocks of cell membranes and their
conserved cellular mechanism of biosynthesis and meta-
bolism, phospholipids show brain cell type-specific
functions.

a b

Fig. 1. Genetic evidence that supports the link of lipids to AD and
NPDs. a Disease gene set enrichment analysis by using DisGeNET
in Enrichr (maayanlab.cloud/Enrichr/). Lipid- and lipid protein-
related genes are from Reactome (reactome.org/PathwayBrowser/
#/R-HSA-556833). Shown are the adjusted enrichment p values (in

–log10 scale). b PheWAS-polygenic burden associations with hu-
man phenome in the UK Biobank (mrcieu.mrsoftware.org/PRS_
atlas/). PRS of AD is calculated using a GWAS dataset with 74,046
individuals [21], and PRS of LDL is calculated using a GWAS dataset
with 173,082 individuals [35]. PRS, polygenic risk score.
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Function of Phospholipids in Neurons
Phospholipids play an important role in regulating

dendrite branch formation, neurite outgrowth, and
synaptic vesicle shuttling in neurons. Phosphoinositides
(PPIs), the phosphorylated derivatives of PI, are the
docking sites of actin cytoskeleton regulators (Wiskott-
Aldrich syndrome proteins) [46]. PPIs can also bind with
lipid-binding proteins (e.g., Bin-amphiphysin-Rvs),
which further interact with actin regulators and con-
tribute to neurite branching [47]. PA supports neurite
elongation by stimulating vesicle fusion for plasma
membrane expansion, although it only represents a small
fraction of the membrane [48]. As major types of gly-
cosphingolipids mainly present in neurons [49] and
highly enriched at synapses [50], gangliosides and other
sphingolipids are essential for driving neural stem cell
(NSC) proliferation and differentiation and neuronal
synaptogenesis, myelination, and axonal arborization
during CNS development [43, 51]. For instance, depletion
of GD3, a minor ganglioside that is converted from
ganglioside GM3 by the enzyme α-2,8-sialyltransferase
(GD3 synthase), impairs neurogenesis and reduces
dendritic complexity and spine density [52]. In addition,
GM1 interacts with neurotrophic factors and their re-
ceptors, further promoting neuron growth and survival
[53, 54].

Function of Phospholipids in Glial Cells
For astrocytes and microglia, brain cell types that may

be more relevant to neurodegenerative disorders, lipids
are also instrumental for normal cellular function. In-
flammatory response is one of key capacities of astrocytes
and microglia, which need inflammatory cell signaling to
induce cytokine secretion. An important inflammatory
cell signaling molecule is PPI 3-kinase (PI3K) that can
phosphorylate the 3-position hydroxyl group of the
inositol ring of PI. Lipid secondary signaling molecules
including PPIs and lactosylceramide are either directly or
indirectly involved in the PI3K signaling process. Spe-
cifically, PIP2 is the substrate of PI3K that activates the
downstream AKT pathway [55], while lactosylceramide
interacts with inflammatory pathways and induces
gliosis, pro-inflammatory cytokines, and inducible nitric
oxide synthase secretion [56]. PPIs also regulate micro-
glial phagocytosis [57]. In addition, sphingomyelin,
galactosylceramide, and its sulfatide are highly enriched
in oligodendrocytes, where the myelin sheath is used to
wrap the axon and accelerate neurotransmission and
support neuronal function [58]. Sphingomyelin also in-
teracts with cholesterol to regulate ion channel
function [58].

GPLs and Sphingolipids in AD
Consistent with the strong genetic evidence that

supports the involvement of abnormal lipids in AD
pathogenesis (Fig. 1), membrane lipid composition and
integrity along with neuroinflammation and oxidative
stress have been suggested to play an important role in
AD pathogenesis [59–61]. Decreased phospholipids (PC,
PE, and PI) have been reported in AD cohorts (reviewed
in [62]). The phospholipid composition determines the
biolayer’s phase, fluidity, charge, and thickness, which
directly affects Aβ binding and permeation and further
alters Aβ aggregation [63, 64]. For instance, specifically
disturbing PE (with an intrinsic negative curvature of the
membrane) disrupts Aβ membrane binding and blocks
its toxicity [65]. In addition, phospholipase A2 (PLA2),
which hydrolyzes fatty acid from membrane phospho-
lipids, and its derivative product, arachidonic acid (AA),
have been reported to mediate the Aβ-induced ex-
citotoxicity in AD and contribute to the observed learning
and memory deficits in mouse models of AD [66].

As precursors of sphingolipids, ceramide, C1P, and
S1P are reported as signaling molecules involving stress
response, cell proliferation, and differentiation [67, 68].
In an early stage of AD, ceramide, which assists pro-
apoptotic signaling, is elevated; conversely, the anti-
apoptotic S1P level is decreased [69, 70]. Based on these
observations, the C1P/SIP pro-survival signaling pathway
has been proposed as a therapeutic target for AD [71]. In
addition, ceramide facilitates Aβ production through
stabilizing β-secretase, which produces Aβ by proteolytic
cleavage [72]. Lipid raft regions that are rich in choles-
terol and sphingolipid could serve as an anchor for β-
secretase and γ-secretase and are directly associated with
Aβ production [73]. Besides the effects of lipids on the
classical Aβ lesion in AD, the glial function of lipid
secondary signaling in glial cell activation and oxidative
stress is strongly congruent with the well-established
neuroinflammatory pathogenic theory in AD [74].

GPLs and Sphingolipids in NPD
Given that and synaptic dysfunction are the major

postulated pathophysiological mechanisms of NPD, it is
conceivable that dysregulation of phospholipids in neu-
rons plays an important role in developing NPD. Despite
the much weaker genetic evidence for the role of lipids in
NPD than in AD (Fig. 1), abnormal lipid levels in the
brain have been implicated in multiple NPDs. In post-
mortem brain, lower levels of lipids including free fatty
acids (FFAs), PC, and ceramides, and decreased ex-
pression levels of lipid metabolism-related genes are
detected in SZ cohorts in different brain regions [75–77].
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Along with decreased phospholipids, PLA2 over-
activation and reduced AA levels have been found in SZ
[78]. Increased PLA2 activity is also found in MDD, BD,
and substance use [79]. Such changes of PLA2 and AA are
found to be associated with monoaminergic neuro-
transmission dysregulation [78]. It is noteworthy that the
reduced AA level in SZ is expected to result in neural
hypofunction, which is opposite to the AA-mediated Aβ-
induced neural hyperexcitability in AD [66].

Consistently, a recent study of lipidome composition
of prefrontal cortex gray matter in 396 cognitively healthy
individuals and 67 adult individuals diagnosed with ASD,
SZ, and Down syndrome found that 95% of the 5,024
detected lipids showed significant age-dependent con-
centration differences, and a concentration decrease of
those in the category of GP metabolism was found for all
three disorders [80]. Interestingly, the lipid concentration
decrease in SZ can be further linked to genetic risk
variants in genes involved in PI signaling [80], indicating
the relevance of the brain lipidomic decrease for SZ. The
PI3K-AKT pathway, which uses PI as a substrate, has also
been postulated to be involved in the pathophysiological
development of MDD and suicide, with significantly
reduced activity of PI3K and AKT in the patients’ brains
[81, 82].

The observed alteration of PI-related function in NPD
also seems to be supported by animal studies of stress
models that mimic the depressive state of MDD, which
consistently showed reduced PI in the prefrontal cortex
and some other brain regions [83]. In addition to PI,
other lipids like PC and PE were also reduced, while LPC,
LPE, ceramide, DAG, and TAG levels were elevated in
induced depressive states [83]. In addition, the elevated
activity of acid sphingomyelinase and the increase of its
product ceramide were also found in BD and MDD
patients’ brain or peripheral samples [76, 84]. Such
studies suggest a plausible pathway that may link chronic
stress, lipidomic dysregulation, and the development of
MDD and other NPDs [83]. However, the emerging
pattern of the reduced PC, PE, and PI and the increased
LPC, LPE, ceramide, TAG, and DAG levels in response to
depressed states in NPD needs to be replicated in more
independent studies.

Role of Cholesterol in AD and NPD

Cholesterol accounts for about 20% of the entire body
weight of human and around 25% of the body’s cho-
lesterol is found in the brain [85]. In the brain, there are
two major locations of cholesterol: myelin sheath and cell

membranes. About 70% of cholesterol is made from de
novo synthesis in local organs themselves rather than
being directly transported from the liver, and almost all
brain cholesterol is synthesized locally due to the sepa-
ration of brain from peripheral sources of cholesterol by
the blood-brain barrier (BBB) [86]. Brain cholesterol
mostly exists in an unesterified form, with only about 1%
esterified cholesterol stored in LD (see below) [42]. Brain
cholesterol biosynthesis, metabolism, and transport are
highly cell-type-specific, contributing to NPD and AD in
a cell-type-specific manner.

Cholesterol in Neurons
Mature neurons gradually abandon cholesterol syn-

thesis after the embryogenesis stage and rely on it being
supplied from astrocytes. However, upon cellular stress,
neurons can regain the ability of cholesterol synthesis to
a limited extent [87] (Fig. 2). Cholesterol is synthesized
in the subcellular organelle, endoplasmic reticulum
(ER), involving more than 15 enzymes in about 30 re-
actions [88]. This process can be further divided into two
main steps: (1) from acetyl-CoA to lanosterol, which
involves two rate-limiting enzymes, 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) and
squalene monooxygenase (SM) and (2) through two cell
type-dependent pathways to complete final cholesterol
synthesis, the K-R (neurons) and Bloch (astrocytes)
pathways [88–90]. In human-induced pluripotent stem
cell (hiPSC)-derived neurons, suppression of cholesterol
levels by HMGCR inhibition from statins can impair
synaptic function in a way that is similar to the effect of
γ-secretase suppression, which increases synapse
numbers but decreases synaptic transmission by low-
ering neuronal cholesterol levels [91]. Neuronal cho-
lesterol can also mediate the neural-glial interaction;
neuronal de novo cholesterol synthesis was recently
suggested to be essential for remyelination of damaged
neurons in aging and AD, likely due to cholesterol-
mediated oligodendrocyte progenitor cell proliferation
[92–94] (Fig. 2).

Generally, cholesterol cannot be degraded in mammals
and is usually excreted or locally recycled. One exception
is that a small amount of cholesterol can be hydroxylated
to 24-hydroxycholesterol by cholesterol 24-hydroxylase
in some neurons such as pyramidal neurons in the
hippocampus and cortex or Purkinje cells in the cere-
bellum. The addition of a hydroxyl group at the 24-
position makes it more lipophilic with easier penetration
of the BBB [95], thereby promoting a rapid diffusion to
systematic circulation and cerebrospinal fluid (CSF).
Despite some inconsistent findings, several studies

158 Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

Zhao/Zhang/Sanders/Duan

https://doi.org/10.1159/000535131


suggest 24-hydroxycholesterol as a biomarker of the
dysregulated cholesterol in AD and other neurodegen-
erative disorders [96, 97].

In the periphery, cholesterol transport is carried outmainly
through the formation of chylomicrons, very low-density li-
poprotein, intermediate-density lipoprotein, LDL, and high-
density lipoprotein (HDL) with assistance of apolipoproteins.
However, only a few LDL and HDL can cross the BBB
through LDL receptor or scavenger receptor class B type I in
normal conditions, and thus are usually considered negligible
sources of cholesterol [98]. As a separate pool, the brain has
different lipoproteins for cholesterol trafficking, named
“HDL-like” particles with a wider range of sizes (10–22 nm)
and similar density. Although the main apolipoproteins such
as ApoE, ApoA-I, and ApoJ (clusterin, also known as CLU)
are all highly expressed in astrocytes and presumably function
in astrocytes, ApoJ also shows robust expression in neurons,

and neural ApoE also seems to play an important role in lipid
transfer from neurons to astrocytes under stress [99]. As one
of the main lipoprotein endocytic receptors responsible for
lipoprotein particle metabolism in the CNS, LRP1 is mainly
expressed in neurons and metabolizes the ApoE-containing
lipoproteins [100]. Moreover, among the ATP-binding cas-
sette (ABC) transporters that are also involved in cholesterol
transport in the brain [101], ABCA1 is the most studied and
predominately expressed in neurons to remove excess cho-
lesterol [100]. The ABCA1 expression level is tightly con-
trolled by liver X receptors, a sterol-sensitive transcription
factor from a nuclear receptor family [88]. ABCA1 expression
can also be similarly regulated by another steroid hormone
nuclear receptor, retinoid X receptor [102]. It would be in-
teresting to test whether the steroid-related cholesterol
transport regulation throughABCA1 in neuronsmaymediate
the sex-specific role of lipids in AD and NPD.

Fig. 2. Schematic diagram of neuronal LD formation and cholesterol synthesis and lipids transport between brain
cell types. Also shown are genetic risk factors and other risk factors (stress or aging) that may affect neural lipid
synthesis, metabolism, and transport in developing AD or NPDs. OPC, oligodendrocyte precursor cells; CE,
cholesterol ester; FFA, free fatty acids; LDs, lipid droplets; TC, triacsin C; AD, Alzheimer’s disease; NPDs, non-AD
neuropsychiatric disorders. The figure was partially created with www.biorender.com.
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Cholesterol in Glial Cells
Astrocytes are the main source of cholesterol, which

can be further transported by lipoproteins to support
neurite maintenance and synapse connectivity [103].
Although the cholesterol synthesis process in astrocytes
shares some steps with neurons such as HMGCR-
mediated conversion of acetyl-CoA to lanosterol, the
final cholesterol synthesis follows an astrocyte-specific
Bloch pathway [88–90]. For cholesterol trafficking, the
“HDL-like” particles are mainly generated from astro-
cytes and cycled to the CSF [104]. The most abundant
apolipoproteins found in the CSF are ApoE and ApoA-I,
both of which can constitute lipoprotein particles inde-
pendently from each other [100, 105]. ApoJ is also found
in the CSF but is specifically enriched there in smaller
sized (10–12 nm) lipoprotein particles that have limited
lipid content without ApoE or ApoA-I [105]. Lipoprotein
particle metabolism in astrocytes is mediated by LDLR
and heparan sulfate proteoglycan, which mainly me-
tabolize ApoE-containing lipoproteins [100]. Among
ABC transporters that are also involved in cholesterol
transport in the brain [101], unlike the major role of
ABCA1 in neurons, ABCA7, ABCA8, ABCG1, and
ABCG4 tend to be more involved in astrocytes [101].

Cholesterol biosynthesis in microglia is usually
deemed an emergent response to abnormal conditions,
i.e., during myelin damage (Fig. 2). In this case, microglia
engulf and digest myelin debris and myelin associated
cholesterol, and simultaneously synthesize desmosterol,
an immediate precursor of cholesterol from the Bloch
pathway. Microglia then excrete cholesterol, activate liver
X receptor-signaling, and facilitate the cholesterol re-
cycling process to assist remyelination [106]. As men-
tioned above, one of main uses of cholesterol is consti-
tuted myelin (~80%). Oligodendrocytes are the main cell
type that synthesizes cholesterol for myelination by itself,
only with some complements from astrocytes during the
developmental stages [85, 107, 108]. Once myelination is
completed, oligodendrocytes only keep low rates of
cholesterol synthesis for myelin maintenance, while as-
trocytes continue to synthesize and supply cholesterol to
support all neighboring cells [107, 108]. Lipoprotein
particle metabolism in microglia is dominated by the
lipoprotein endocytic receptor, triggering receptor ex-
pressed on myeloid cells 2, which mainly mediates myelin
phagocytosis [100].

Cholesterol in AD
Cholesterol plays a central role in AD by affecting the

twomain pathogenic hallmarks of AD: Aβ plaque and tau
accumulation. As discussed above, AD risk genes ApoE,

ApoJ, and ABCA7 are all involved in cholesterol traf-
ficking. As the strongest AD risk variant, ApoE4 is as-
sociated with higher Aβ plaque burden and more severe
tau pathology in the postmortem brain, whereas the
opposite effect was observed for ApoE2, a protective
isoform [109–111]. Some mechanistic studies show that
ApoE4 directly dysregulates the cholesterol pathway in
different cell types, which further impairs myelination of
oligodendrocytes [112], induces malfunction of astro-
cytes and microglia [113–115], and promotes patho-
genesis of AD [111, 116, 117]. ApoE4 also affects
sphingolipid metabolism [118] and LD storage [115, 116,
119–122] to facilitate AD progression. ApoJ, besides its
direct involvement in lipid transport andmetabolism, can
bind to Aβ oligomers and interfere with Aβ aggregation,
which further induces neurotoxicity with excess amounts
of Aβ [123]. ApoJ can also enhance tau aggregates,
promoting tau pathology [124]. For ABCA7, different
splicing isoforms and methylation levels of its CpG sites
are all strongly associated with AD [125]. At a functional
level, studies show that ABCA7 mediates phagocytosis
and immune responses, which could contribute to AD
development [126, 127].

Although it remains largely unclear how abnormal
brain cholesterol leads to AD pathogenesis, recent studies
seem to suggest the involvement of different brain cell
types. Studying AD postmortem with different numbers
of copies of the ApoE4 allele found that ApoE4 affected
gene expression across all assayed brain cell types [112].
Specifically for cholesterol changes, the APOE4 allele was
associated with increased expression of cholesterol-
manufacturing genes and dysregulated cholesterol-
transporting genes in oligodendrocytes, which may ex-
plain the observed accumulation of abnormal amounts of
cholesterol in oligodendrocytes rather than using it to
make healthy myelin sheaths around axons [112]. As the
main source of cholesterol in the CNS, astrocytes also
play an important role in mediating the effect of cho-
lesterol on AD. For instance, compared to ApoE3 as-
trocytes, ApoE4 astrocytes express higher levels of genes
involved in cholesterol biosynthesis and displayed cho-
lesterol accumulation in lysosomes [113]. The role of
neuronal cholesterol in AD is relatively understudied, but
neuronal de novo cholesterol synthesis was recently
suggested to be essential for remyelination of damaged
neurons in aging and AD, likely due to cholesterol-
mediated oligodendrocyte progenitor cell proliferation
[92–94].

It is interesting to note that the peripheral cholesterol
level is similarly associated with AD. High levels of
cholesterol, particularly LDL-C, are a well-established
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risk factor for coronary artery disease and stroke, and
numerous studies have implicated a high blood choles-
terol level as the risk factor for AD [128]. The link be-
tween the elevated level of blood cholesterol and AD is
further confirmed by a recent large study with 1.8 million
UK adults aged over 40 who had a blood cholesterol
measurement between 1992 and 2009 [129]. Both total
cholesterol levels and LDL-C in midlife were found as-
sociated with an increased risk of developing dementia
and AD over a decade later, although the association with
total cholesterol level was much weaker than LDL-C
[129]. Whether or how the elevated peripheral cholesterol
level is correlated with the accumulation of abnormal
amounts of cholesterol in oligodendrocytes or other brain
cell types in AD [112] remains to be addressed.

Cholesterol in NPD
In the cell membrane, cholesterol is enriched in lipid

rafts that serve as hubs to cluster proteins such as neu-
rotransmitter receptors, ion channels, and synaptic
proteins [130]. Cholesterol homeostasis is thus essential
for maintaining neuronal activity. Furthermore, choles-
terol constitutes the basic cellular components for syn-
aptic outgrowth and myelin formation. In addition,
cholesterol is the substrate of steroid hormones acting on
the hypothalamic-pituitary-adrenal axis, and an aberrant
hypothalamic-pituitary-adrenal axis has been suggested
to contribute to the pathophysiology of NPD, especially
for MDD and anxiety disorders [131]. It is thus con-
ceivable that abnormal cholesterol in the brain plays an
important role in developing NPD. However, reports on
brain cholesterol and NPD have been scarce. The most
relevant studies are on the role of apolipoproteins in NPD
and have yielded inconsistent results. Increased ApoE
expression has been reported in the brains of SZ patients
[132, 133], supporting the association of ApoE allele with
SZ [134], but this was not confirmed by others [135].
Similarly inconsistent, several studies reported the decline
of APOA1 level in SZ [136, 137], while others supported
its elevation in CNS [132].

Compared to the lack of studies on the role of brain
cholesterol in NPD, there have been numerous studies of
the link between blood cholesterol levels and multiple
NPDs. Higher levels of serum lipids including cholesterol
and TAGs in SZ cohorts have been found in multiple
studies [138, 139]. However, for the first-episode psy-
chosis, a recent meta-analysis found that while blood
triglycerides were greater in patients, the mean total
cholesterol and HDL-C were reduced in patients [140].
Consistently, lower total cholesterol and HDL-C were
also found in a cohort of drug-naïve patients with BD

[141]. These observations in drug-naïve patients with SZ
and BD seem to be supported at a molecular level by a
recent transcriptomic profiling of blood samples of SZ
and BD, in which the expression of a disease-associated
innate immunity signature gene was found to show a
positive correlation with triglyceride and a negative
correlation with HDL cholesterol [142]. These studies
strongly suggest that lipid levels including cholesterol
may be a credible blood biomarker for the disease pro-
gression of NPD.

It is unclear how to reconcile decreased brain lipids
and elevated serum lipids with reduced cholesterol in SZ
and some other NPDs. One possibility is that serum lipid
levels may be associated with antipsychotic treatments
[139]. In this regard, it is noteworthy that antipsychotic
clozapine can strongly upregulate cholesterol biosyn-
thesis genes including dihydropyrimidinase like 2 in
iPSC-derived neurons [143]. It would be interesting to
test for possible “lipid deficiencies” in neural models
derived from SZ donors and see whether they can be
restored or reversed by clozapine.

Lipid Droplets

LDs are a conserved organelle that stores intracellular
neutral lipids including TAGs, cholesteryl esters, and a small
amount of retinyl esters [144–146]. Unlike other organelles
with similar sizes such as lysosomes and endosomes, there is
a phospholipid monolayer embedded with LDs-associated
proteins, which can regulate LDs function [144] (Fig. 2). As a
lipid reservoir, LDs play a significant role in membrane
formation and energymetabolism [147]. Phase separation of
hydrophobic lipids by LDs also protects the cell from toxic
fatty acid accumulations [148]. LDs are found in all types of
brain cells, but mostly in glial cells [149, 150]. Aging, in-
flammation, and oxidative stress are believed to be themajor
factors that trigger LDs accumulation in brain cells [149].
However, whether LDs are beneficial or detrimental remains
controversial; for instance, heavily LDs-accumulated astro-
cytes or microglia often become inflammatory or toxic to
neurons [150], and neurotoxic reactive astrocytes can secrete
FFA and other lipids that kill neurons and oligodendrocytes
[151]. Addressing this question will benefit from a better
understanding of the cell type-specific LDs biogenesis,
turnover, and function in the brain.

Neuronal LDs
LDs are formed de novo from the ER and budded off

from its leaflet. Generally, TAGs and cholesteryl esters are
synthesized between ER leaflets by recruiting and
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converting fatty acids and cholesterol. The formation of
LDs is further facilitated by Seipin, a conserved ER
membrane protein, and other LDs biogenesis factors such
as lipid binding protein perilipin-1 localized at the ER
interface. Finally, LDs are expanded and maturated
through LD-LD fusion or via increasing TAG content by
transferring TAGs from the ER or directly synthesized on
the LDs surface [144]. Catabolism of LDs has two main
mechanisms: lipolysis and lipophagy. Lipolysis is induced
by lipase, which binds to the surface of LDs and hy-
drolyzes the TAGs into FFA and glycerol [150, 152].
Lipophagy is the autophagy of LDs, which involves the
lysosome pathway [150, 152]. An important component
of lipophagy is microtubule-associated protein 1A/1B-
light chain 3, that help engulf and fuse LDs to the ly-
sosome, and then catabolized it by lysosomal acid hy-
drolase [150, 152].

Unlike glial cells, neurons usually do not store and
utilize neutral lipid as an energy source due to the limited
capacity for fatty acid catabolism; instead, they constantly
convert TAGs to phospholipids to maintain neurite in-
tegrity [150, 153, 154]. Thus, LDs accumulation is rarely
detected in neurons. Usually, FFAs are transferred from
neurons to astrocytes and stored as LDs, and ApoE plays
the pivotal role during the process [99, 154]. However,
emerging evidence suggests that hyperactive neurons
under stress, such as in aging or AD, can synthesize lipids
that are sequestered as LDs (Fig. 2). When these LDs
cannot be efficiently cleaned up by dysfunctional astro-
cytes, they may lead to neuronal damage [99, 150,
154–156] (Fig. 2). In other stress conditions, such as
overloading with fatty acid or carrying toxic ApoE4 [99,
154, 157], neurons can also accumulate LDs (Fig. 2). Due
to different circumstances of the in vivo system, cultured
neurons are considered a stress model that often leads to
LDs formation in their cell body [150]. One possible
mechanism for neuronal LDs formation is that due to the
relatively poor antioxidant defense system in neurons, the
mitochondrial reactive oxygen species (ROS) generation
stimulated by the FFA β-oxidation becomes toxic to
neurons [158]. However, it is still controversial whether it
is ROS generation that induces LDs or vice versa. The
functional implications of neuronal LDs in normal aging
or under pathogenic conditions such as AD or other
NPDs remain largely unknown.

Glial LDs
LDs in astrocytes could serve as an alternative energy

source in case glucose energy becomes exhausted [159]. It
is estimated that around 20% of brain energy production
comes from FFA metabolism [160, 161]. Astrocytes

utilize this function to support neuronal energy con-
sumption, particularly in starving conditions. LDs are
also found in ependymal cells, a special glial cell type that
forms the epithelial lining of the ventricles to maintain
CSF homeostasis. It is believed that CSF lipoprotein
particle internalization by ependymal cells facilitates LDs
formation [150]. In the nonpathological in vivo context,
abundant LDs are indeed observed in ependymal cells
[162–164], which is even more pronounced in the AD
brain [165].

LDs accumulation in microglia is often correlated with
its phagocytic function. Many lipid-rich contents, in-
cluding dead cells, myelin debris, lipoprotein particles,
and neuron-derived lipid particles, can be engulfed by
microglia to form LDs [150]. Recently, a special microglia
subpopulation with LDs has been identified in aged brain
and named as LD-accumulating microglia [166]. LD-
accumulating microglia have a unique transcriptomic
signature that further contributes to age-related neuronal
inflammation and neurodegeneration [166]. In oligo-
dendrocytes, LDs accumulation usually occurs during the
developmental stage with a high rate of myelination and
demyelination, when a considerable amount of choles-
terol is synthesized [150].

Given that the LDs levels often rise in glial cells under
stress or inflammation conditions, e.g., neurodegenerative
disease, hypoxia, metabolic stress, cancer, and BBB leakage
[166–171] but stays low under normal physiological
conditions [172], it is conceivable to speculate that the
main role of LDs in glial cells is protective. Such protective
effects of LDs may be reflected by buffering the release of
lipid-rich content induced by abnormal or pathogenic
conditions, and/or serving as an energy resource. On the
other hand, LDs in brain cells may also impair their
normal cellular functions, e.g., lipopolysaccharide-treated
microglia result in fatty acid accumulation that further
leads to more LDs, which makes microglia lose their
phagocytic capacity [166, 173]. A reasonable hypothesis
could be that homeostasis of LDs in glial cells, astrocytes or
microglia, is important for maintaining normal glial cell
and neuron function.

LDs in AD
Despite Alois Alzheimer noticing LDs or “adipose

saccules” in glial cells of the AD brain in 1907 [174], the
importance of LDs in AD has been largely neglected until
recently. LDs accumulation appears earlier than senile
plaques and neurofibrillary tangles in an animal model of
AD and was also found in AD postmortem brain [165],
suggesting LDs may be a more upstream “causal” factor
for AD pathogenesis. Transgenic mouse models of AD
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have yielded contradictory findings on the effect of LDs
on NSC proliferation [165, 167]. While the relevance of
NSC proliferation to AD remains to be established, these
interesting findings on the cellular effects of LDs in AD
mouse models highlight the potential significance of
further exploring the role of LDs in AD pathogenesis.

The most direct supporting evidence for the link of
LDs to AD comes from studying the effect of the
strongest AD risk factor, ApoE4, on LD formation in
glial cells and neurons (Fig. 2). In the absence of
neurons, ApoE4 glial cells accumulate more LDs than
ApoE3 or ApoE2 [99]. Similarly, ApoE4 microglia
(hiPSC-derived) also accumulate more LDs than other
APOE variants [116]. The observed upregulation of
genes involved in lipid production such as acyl-CoA
synthetase 1 in both iPSC-derived ApoE4 microglia
and astrocytes [116, 119] suggests excess lipid pro-
duction may also partially explain LDs accumulation
in ApoE4 cells. Some other observations at the tran-
scriptional level may also explain increased LDs in
ApoE4 cells. For instance, ApoE4 microglia showed a
dramatic decrease of expression of genes relating to
mitochondrial oxidative phosphorylation [116], a
process that may impair fatty acid oxidation and
consequently lead to cellular lipid accumulation [155].
Moreover, ApoE4 microglia also showed significant
downregulation of genes related to lipid catabolic
processes [116], which would also contribute to the
accumulation of lipids and LDs. Although the dys-
function of APOE, i.e., the impaired lipid transport
capacity of the APOE4 allele, has been commonly used
to explain lipid accumulation in glial cells, this would
contradict the observations that knockdown of APOE
in either the neurons or glia can reduce LDs formation
[99, 154]. Therefore, mechanistically, it remains un-
clear how the APOE4 allele is linked to more LDs in
glial cells or microglia.

The relevance of LDs to AD in neurons is less clear
than in glial cells and microglia. Interestingly, when
cultured in vitro in the absence of glial cells, mouse
ApoE3 neurons exhibited stronger LDs accumulation
than ApoE4 neurons; however, when cocultured with
glial cells, mouse ApoE4 neurons retained more LDs than
in ApoE3 neurons [99]. This observation seems to
support the hypothesis that dysfunctional neuronal
ApoE4 may impair neuronal cleanup of lipids by as-
trocytes. It would be interesting to see whether the
neuronal ApoE4-induced LDs accumulation in mouse
neurons can also be observed in human neurons and what
would be the functional implications of neuronal LDs for
AD pathogenesis.

From a functional perspective, cholesterol inclusion in
LDs significantly increases p-tau levels, which can be
reversed by inhibiting the cholesterol synthesis pathway
[175]. Also, neuronal hyperactivity alone can sufficiently
induce LDs accumulation in astrocytes and accelerate AD
pathologies [175]. In microglia, LDs accumulation has
been considered to represent a dysfunctional and pro-
inflammatory state in aging brains [166]. Recently,
ApoE4-induced LDs accumulation was found to render
microglia weakly responsive to neuronal activity [116].
However, as addressed above, LDs accumulationmay also
be an adaptive process to neurotoxicity because blocking
glial LDs formation worsens neurodegeneration [169].
Therefore, whether LDs are detrimental or beneficial in
AD remains controversial.

LDs in NPD
The role of LDs in other (non-AD) NPDs has been

understudied and is not well established. Despite the
polygenic nature and complex etiology of NPDs, dys-
functional dopaminergic, glutamatergic, GABAergic,
and/or serotoninergic neurotransmission have been
implicated in these disorders [176]. Given the known role
of sphingolipids and cholesterol in synaptogenesis and
neurogenesis (see review [177]), it is conceivable that
lipids and neuronal LDs may play a significant role in
NPD pathogenesis. Furthermore, because inflammation
and oxidative stress are among the major factors besides
aging that trigger LD accumulation in brain cells [149]
and given the well-established role of inflammation and
oxidative stress in NPDs [178, 179], it is tempting to
postulate that LDs in brain cells may contribute to the risk
of developing NPDs.

Unlike neurodegenerative disorders such as AD, the
neurodevelopmental feature of NPDs may point to dif-
ferent stages and brain cell types in which LDs may play a
role in disease pathogenesis or act as a biomarker. For
instance, for ASD that has the strongest neuro-
developmental aspect, abnormal LDs have been impli-
cated in NSC or neural precursor cells (NPCs). It has been
reported that NSC-autonomous insufficiencies in the
activity of TMLHE, an ASD risk factor that supports
long-chain fatty acid oxidation by catalyzing carnitine
biosynthesis, may alter fatty acid mobilization from LDs,
thereby reducing NSC pools in the mouse embryonic
neocortex [180]. Similarly, NPCs in the subventricular
zone and dentate gyrus niches of adult mouse brain
express the LDsmarker gene perilipin 2 (plin2) and, when
cultured in vitro, they accumulate abundant Plin2+ LDs
[181]. Interestingly, Plin2+ LDs content per NPC varies
and correlates positively with oxygen consumption and

Brain Lipids and Alzheimer’s Disease and
Neuropsychiatric Disorders

Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

163

https://doi.org/10.1159/000535131


cell proliferative ability [181]. In SZ, a proteomic screen of
anterior cingulate cortex showed a 2.4-fold increase of the
expression of Mover (also known as RP11-46F15.3 and
TPRG1L) [182], a presynaptic protein that also serves as
an LDs coat and induces accumulation of LDs in as-
trocytes [183].

As a neurodevelopmental cellular model, hiPSC-
derived neuronal cells may help provide some novel
insights on the role of LDs in NPD. The iPSC-derived
neural cells from SZ patients often show alterations in
oxidative phosphorylation and ROS levels (see review
[184]), which may directly link to LDs formation. Fur-
thermore, patient-specific iPSCmodels carrying a specific
genetic risk factor of SZ, e.g., 22qdeletion, have suggested
a link between SZ risk factors to dysfunctional mito-
chondria (see review [184]), which may induce LDs
formation as a generalized response to stress or affect the
mitochondria-LD bond [185, 186]. In this regard, it
would be interesting to test whether such NPD genetic
risk factors may affect LDs formation in iPSC-derived
neurons and whether abnormal LDs may contribute to
the altered neuronal phenotypic changes such as neuronal
hyperexcitability [184, 187].

Sex Differences of Lipids in AD and NPDs

Lipid levels and lipid metabolism vary substantially
between males and females and across the life span [188].
The sex differences of lipids have been commonly at-
tributed to effects of sex hormones [188]; however, po-
tential genetic contributions from sex chromosome dif-
ferences between males and females are becoming more
appreciated. For instance, a recent meta-analysis of
GWAS on blood lipid levels with over 1.5 million par-
ticipants identified over 2,000 lipid loci, including 21
novel lipid loci on the X chromosome [189]. Interestingly,
the population effect sizes of those sex-specific lipid loci
were often larger in females, i.e., “risk” variants often had
stronger effects in females than in males [189]. It is thus
likely that both sex hormones and genetic factors in-
teractively contribute to the sex differences of lipids and,
given the role of lipids in NPDs and AD, may partially
explain the sex difference of these disorders or conditions.

For AD, it has been well established that females are
more affected, with approximately two-thirds of the
patients being female [190]. Although higher AD prev-
alence in females is partially explained by longer life
expectancy of females, other sex-specific changes during
aging and AD development such as lipid metabolismmay
also play an important role. The clearest evidence of sex-

specific contributions has been built upon the interplay
between sex hormone and the ApoE4 allele [191]. Spe-
cifically, estrogen elevates the expression of ApoE in the
brain through estrogen receptor α activation [192, 193],
providing a neuroprotective effect [194]. After meno-
pause, the sudden drop of estrogen in womenmakes them
more vulnerable to develop AD. This is in line with fe-
male ApoE4 carriers being more likely to develop LOAD
and exhibit more severe Aβ, tau pathology, and worse
cognitive decline [195–198]. In addition, ApoE4 directly
impairs the beneficial effects of estrogen on anti-
inflammatory effects of microglia and neurite growth
[194, 199]. Moreover, ApoE4 regulates sex-specific
transcriptional activity of genes involved in immune
response, inflammation, oxidative stress, and aging,
making females more vulnerable to develop AD [200]. In
general, besides the interplay between sex hormones and
ApoE risk loci, the drastic metabolic changes occurring
during the critical period of perimenopause in women
also increase oxidative stress in the brain [191], which
may further lead to accumulation of LDs in specific brain
cell types and contribute to sex-specific AD vulnerability.
For example, female microglia show an increase of several
long-chain species of TAGs with more LDs; such LD-
laden microglia that are chronically exposed to Aβ exhibit
a dysfunctional phagocytosis [201].

For NPDs, sex differences in prevalence and severity
have been well documented. Those with neuro-
developmental aspects such as SZ and ASD affect more
males and often with more severe symptoms than fe-
males, while some other NPDs such as MDD and anxiety
are more prevalent in females (see review [202]). How-
ever, the link between sex differences of NPDs and lipids
is not as well established as for AD. An earlier study with a
small sample found increased blood cholesterol fractions
of HDL and LDL during acute psychological stress, and
interestingly, males had larger increases of LDL-C and
blood pressure [203]. Another study of fatty acid levels in
blood cells showed that SZ patients and men had higher
levels of lipid peroxidation [204]. While it is not clear that
these sex-specific blood lipids in SZ and under psycho-
logical stress conditions reflect a sex-specific response to
stress in human brains, a recent cell type-specific single-
cell transcriptomic profiling in mouse brains did find that
oligodendrocytes in males showed a much stronger
transcriptomic response than females under stress con-
ditions [205]. Male mice also seem to more likely exhibit
LPS-induced depressive behavior and an increase of
oxidative stress in the hippocampus [206]. Given that
oxidative stress is a major factor that may drive LD ac-
cumulation in brain cells [149], it would be interesting to
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test whether NPDs show sex-specific LD accumulation in
human postmortem brains, iPSC-derived neurons, or
mouse models. Independent from the sex-specific stress
response, lower levels of docosahexaenoic acid (DHA)
were found in blood cells of the first-episode male psy-
chotic patients [207] and in the orbitofrontal cortex of
male patients with SZ compared to females [208].

Treatment Strategies for AD and NPDs by Targeting
Lipids

Because of the potential pathogenic role of lipids,
including cholesterol and LDs, in developing AD and
NPDs, it is tempting to explore the treatment of these
disorders by modulating lipid levels. For AD that often
exhibits elevated cholesterol levels (especially LDL-C) in
the plasma and some brain cells, the use of statins, a class
of drugs that are commonly used to lower blood cho-
lesterol, seems to be a rational choice for reducing AD risk
[209]. Some studies show that statins indeed can alleviate
AD pathology, possibly through inhibition of cholesterol
biosynthesis, thereby reducing Aβ production [210, 211].
However, some randomized trials find no beneficial ef-
fects of statins on AD symptoms, or even with a negative
effect on cognition under high-dose statins [212, 213].
The negative impact of high-dose statins may be at-
tributed to the excess reduction of cholesterol synthesis in
some brain cell types where cholesterol is essential for
neuronal function as discussed above. It is noteworthy
that a recent study of the UK Biobank database finds
potential beneficial effects of statins in ApoE4 carriers
[214], suggesting the need for stratifying study partici-
pants by disease risk genotypes for evaluating the effects
of cholesterol-lowering drugs for AD.

Compared to AD that seems to have consistent ele-
vation of lipids in both serum and some brain cells, NPDs
often show elevated serum lipids (TAGs) and cholesterol
but reduced brain lipids (see above). Thus, cholesterol-
lowering drugs like statins may not seem to be a rational
choice for treating NPDs. Statins were found to be able to
improve the depression score in MDD and alleviate the
symptoms of SZ and BD in some studies [215–218], but
not in others [219–221]. The beneficial effects of statins
observed in some studies for NPDs may be due to its
ability to reducing the serum cholesterol level, which
subsequently positively influences brain function; alter-
natively, statins may confer neuroprotective effects by
inhibiting neuroinflammatory and oxidative stress
pathways that are involved in NPDs [130]. Besides tar-
geting cholesterol, the possible deficit of DHA in the first-

episode male psychotic patients or SZ [207, 208] also
makes supplementing dietary marine omega-3 fatty acids
(eicosapentaenoic acid [EPA] and DHA) a promising
approach to reduce depression risk and promote favor-
able mood [222, 223].

Conclusion and Perspective

Lipids constitute the cell membrane, transduce cell
signaling, and store energy. Lipids also regulate neuronal
growth and synaptic plasticity, mediate cell toxicity and
apoptosis, and assist in coping with stress, inflammation,
and aging process. All these functions make lipids a
prominent target for understanding the etiology of NPD
and AD. However, the roles of cell type-specific lipids and
LDs, and their relevance to neurodegenerative and NPDs
remain largely unknown. Lipids can directly or indirectly
affect chromatin accessibility and subsequently gene
expression; for instance, a transcription factor, brain acid
soluble protein 1, can recruit cholesterol to open chro-
matin regions and regulate gene expression [156, 224].
Therefore, a comprehensive ascertainment of cellular and
molecular effects of lipids in disease states and health
conditions will provide better mechanistic insight on the
role of lipids in AD and NPDs. In addition, although glial
LDs are known to be largely neuroprotective [150], the
cellular and molecular ramifications of LDs in human
neurons are less clear [150]. Furthermore, despite the
supportive genetic evidence for the involvement of lipid-
related genes in AD and NPDs, whether neural LDs, FFA,
and cholesterol are correlated with peripheral plasma
lipid levels and other clinical outcomes of AD and NPDs
during disease progression is unknown. To address these
challenging questions, besides the traditionally used
postmortem brains and animal models, iPSC-derived
neurons, astrocytes, and microglia may provide invalu-
able in vitro cellular models [184, 187, 225–231] for
studying cell type-specific lipids and LDs in the context of
different disease states, which will significantly advance
our understanding of how cell type-specific abnormal
lipids contribute to the risk for AD and someNPDs. Some
cellular lipid metrics may serve as biomarkers for early
AD diagnosis and progression, and the downstream gene
pathways of lipids and LDs may be promising targets for
developing more tailored and effective treatments for AD.

Conflict of Interest Statement

The authors declare no conflicts of interests.

Brain Lipids and Alzheimer’s Disease and
Neuropsychiatric Disorders

Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

165

https://doi.org/10.1159/000535131


Funding Sources

The time effort for preparation of the manuscript is supported
by the National Institute of Health (NIH) grants R01AG081374,
R01AG063175, R01MH106575, and R01MH116281 (Xiaojie
Zhao, Siwei Zhang, Alan R. Sanders, and Jubao Duan).

Author Contributions

X.Z. wrote the manuscript. S.Z. collected the data and prepared
the graphs. A.R.S. and J.D. edited and wrote the manuscript. J.D.
supervised the work. All authors have approved the final
manuscript.

References

1 Arias D, Saxena S, Verguet S. Quantifying
the global burden of mental disorders and
their economic value. EClinicalMedicine.
2022;54:101675.

2 Bloom DE, Cafiero E, Jané-Llopis E,
Abrahams-Gessel S, Bloom LR, Fathima S,
et al. The global economic burden of non-
communicable diseases. Program on the
Global Demography of Aging; 2012.

3 2021 Alzheimer’s disease facts and figures.
Alzheimers Dement. 2021;17(3):327–406.

4 Scheltens P, Blennow K, Breteler MM, de
Strooper B, Frisoni GB, Salloway S, et al.
Alzheimer’s disease. Lancet. 2016;
388(10043):505–17.

5 Shi J, Levinson DF, Duan J, Sanders AR,
Zheng Y, Pe’er I, et al. Common variants on
chromosome 6p22.1 are associated with
schizophrenia. Nature. 2009;460(7256):
753–7.

6 International Schizophrenia Consortium;
Purcell SM, Wray NR, Stone JL, Visscher
PM, O’Donovan MC, et al. Common
polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature.
2009;460(7256):748–52.

7 Stefansson H, Ophoff RA, Steinberg S, An-
dreassen OA, Cichon S, Rujescu D, et al.
Common variants conferring risk of schizo-
phrenia. Nature. 2009;460(7256):744–7.

8 Schizophrenia Psychiatric Genome-Wide
Association Study GWAS Consortium.
Genome-wide association study identifies
five new schizophrenia loci. Nat Genet.
2011;43(10):969–76.

9 Ripke S; Concortium; SGoPG. Psychiatric
genomics consortium quadruples schizo-
phrenia GWAS sample size to 35,000 cases
and 47,000 controls. Abstract. American
Society of Human Genetics Annual Meet-
ing. 2013;63.

10 Schizophrenia Working Group of the Psy-
chiatric Genomics Consortium. Biological
insights from 108 schizophrenia-associated
genetic loci. Nature. 2014;511(7510):421–7.

11 Mullins N, Forstner AJ, O’Connell KS,
Coombes B, Coleman JRI, Qiao Z, et al.
Genome-wide association study of more
than 40,000 bipolar disorder cases provides
new insights into the underlying biology.
Nat Genet. 2021;53(6):817–29.

12 Ripke S, Walters JT, O’Donovan MC.
Mapping genomic loci prioritises genes and
implicates synaptic biology in schizophre-
nia. medRxiv. 2020.

13 Trubetskoy V, Pardiñas AF, Qi T, Pan-
agiotaropoulou G, Awasthi S, Bigdeli TB,
et al. Mapping genomic loci implicates genes
and synaptic biology in schizophrenia.
Nature. 2022;604(7906):502–8.

14 Singh T, Poterba T, Curtis D, Akil H, Al
Eissa M, Barchas JD, et al. Rare coding
variants in ten genes confer substantial risk
for schizophrenia. Nature. 2022;604(7906):
509–16.

15 Satterstrom FK, Kosmicki JA,Wang J, Breen
MS, De Rubeis S, An JY, et al. Large-scale
exome sequencing study implicates both
developmental and functional changes in
the neurobiology of autism. Cell. 2020;
180(3):568–84.e23.

16 Stahl EA, Breen G, Forstner AJ, McQuillin
A, Ripke S, Trubetskoy V, et al. Genome-
wide association study identifies 30 loci
associated with bipolar disorder. Nat Genet.
2019;51(5):793–803.

17 Demontis D, Walters RK, Martin J, Mat-
theisen M, Als TD, Agerbo E, et al. Dis-
covery of the first genome-wide significant
risk loci for attention deficit/hyperactivity
disorder. Nat Genet. 2019;51(1):63–75.

18 Hollingworth P, Harold D, Sims R, Gerrish
A, Lambert JC, Carrasquillo MM, et al.
Common variants at ABCA7, MS4A6A/
MS4A4E, EPHA1, CD33 and CD2AP are
associated with Alzheimer’s disease. Nat
Genet. 2011;43(5):429–35.

19 Naj AC, Jun G, Beecham GW, Wang LS,
Vardarajan BN, Buros J, et al. Common var-
iants at MS4A4/MS4A6E, CD2AP, CD33 and
EPHA1 are associated with late-onset Alzhei-
mer’s disease. Nat Genet. 2011;43(5):436–41.

20 Karch CM, Goate AM. Alzheimer’s disease
risk genes and mechanisms of disease
pathogenesis. Biol Psychiatry. 2015;77(1):
43–51.

21 Lambert JC, Ibrahim-Verbaas CA, Harold
D, Naj AC, Sims R, Bellenguez C, et al.
Meta-analysis of 74,046 individuals iden-
tifies 11 new susceptibility loci for Alzhei-
mer’s disease. Nat Genet. 2013;45(12):
1452–8.

22 Jansen IE, Savage JE, Watanabe K, Bryois J,
Williams DM, Steinberg S, et al. Genome-
wide meta-analysis identifies new loci and
functional pathways influencing Alzhei-
mer’s disease risk. Nat Genet. 2019;51(3):
404–13.

23 Bellenguez C, Küçükali F, Jansen IE, Klei-
neidam L, Moreno-Grau S, Amin N, et al.

New insights into the genetic etiology of
Alzheimer’s disease and related dementias.
Nat Genet. 2022;54(4):412–36.

24 Snyder SH. The dopamine hypothesis of
schizophrenia: focus on the dopamine re-
ceptor. Am J Psychiatry. 1976;133(2):
197–202.

25 Hamilton JA, Hillard CJ, Spector AA,
Watkins PA. Brain uptake and utilization of
fatty acids, lipids and lipoproteins: appli-
cation to neurological disorders. J Mol
Neurosci. 2007;33(1):2–11.

26 Sastry PS. Lipids of nervous tissue: com-
position and metabolism. Prog Lipid Res.
1985;24(2):69–176.

27 Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ.
Lipids and alzheimer’s disease. Int J Mol Sci.
2020;21(4):1505.

28 Yang AC, Tsai SJ. New targets for schizo-
phrenia treatment beyond the dopamine
hypothesis. Int J Mol Sci. 2017;18(8):1689.

29 Foley P. Lipids in Alzheimer’s disease: a
century-old story. Biochim Biophys Acta.
2010;1801(8):750–3.

30 Lyssenko NN, Praticò D. ABCA7 and the
altered lipidostasis hypothesis of Alzhei-
mer’s disease. Alzheimers Dement. 2021;
17(2):164–74.

31 Kunkle BW, Grenier-Boley B, Sims R, Bis
JC, Damotte V, Naj AC, et al. Genetic meta-
analysis of diagnosed Alzheimer’s disease
identifies new risk loci and implicates Aβ,
tau, immunity and lipid processing. Nat
Genet. 2019;51(3):414–30.

32 Wingo TS, Cutler DJ, Wingo AP, Le NA,
Rabinovici GD, Miller BL, et al. Association
of early-onset alzheimer disease with ele-
vated low-density lipoprotein cholesterol
levels and rare genetic coding variants of
APOB. JAMA Neurol. 2019;76(7):809–17.

33 Liu Y, Thalamuthu A,Mather KA, Crawford
J, Ulanova M, Wong MWK, et al. Plasma
lipidome is dysregulated in Alzheimer’s
disease and is associated with disease risk
genes. Transl Psychiatry. 2021;11(1):344.

34 Piñero J, Bravo À, Queralt-Rosinach N,
Gutiérrez-Sacristán A, Deu-Pons J, Centeno
E, et al. DisGeNET: a comprehensive plat-
form integrating information on human
disease-associated genes and variants. Nu-
cleic Acids Res. 2016;45(D1):D833–D9.

35 Willer CJ, Schmidt EM, Sengupta S, Peloso
GM, Gustafsson S, Kanoni S, et al. Discovery
and refinement of loci associated with lipid
levels. Nat Genet. 2013;45(11):1274–83.

166 Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

Zhao/Zhang/Sanders/Duan

https://doi.org/10.1016/j.eclinm.2022.101675
https://doi.org/10.1016/S0140-6736(15)01124-1
https://doi.org/10.1038/nature08192
https://doi.org/10.1038/nature08185
https://doi.org/10.1038/nature08186
https://doi.org/10.1038/ng.940
https://doi.org/10.1038/nature13595
https://doi.org/10.1038/s41588-021-00857-4
https://doi.org/10.1101/2020.09.12.20192922
https://doi.org/10.1038/s41586-022-04434-5
https://doi.org/10.1038/s41586-022-04556-w
https://doi.org/10.1016/j.cell.2019.12.036
https://doi.org/10.1038/s41588-019-0397-8
https://doi.org/10.1038/s41588-018-0269-7
https://doi.org/10.1038/ng.803
https://doi.org/10.1038/ng.803
https://doi.org/10.1038/ng.801
https://doi.org/10.1016/j.biopsych.2014.05.006
https://doi.org/10.1038/ng.2802
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1038/s41588-022-01024-z
https://doi.org/10.1176/ajp.133.2.197
https://doi.org/10.1007/s12031-007-0060-1
https://doi.org/10.1007/s12031-007-0060-1
https://doi.org/10.1016/0163-7827(85)90011-6
https://doi.org/10.3390/ijms21041505
https://doi.org/10.3390/ijms18081689
https://doi.org/10.1016/j.bbalip.2010.05.004
https://doi.org/10.1002/alz.12220
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1001/jamaneurol.2019.0648
https://doi.org/10.1038/s41398-021-01362-2
https://doi.org/10.1038/ng.2797
https://doi.org/10.1159/000535131


36 Richardson TG, Harrison S, Hemani G,
Davey Smith G. An atlas of polygenic risk
score associations to highlight putative
causal relationships across the human
phenome. Elife. 2019;8:e43657.

37 Sun BB, Kurki MI, Foley CN, Mechakra A,
Chen CY, Marshall E, et al. Genetic asso-
ciations of protein-coding variants in hu-
man disease. Nature. 2022;603(7899):
95–102.

38 Han W, Shepard RD, Lu W. Regulation of
GABAARs by transmembrane accessory
proteins. Trends Neurosci. 2021;44(2):
152–65.

39 Yang T, Wei P, Pan W. Integrative analysis
of multi-omics data for discovering low-
frequency variants associated with low-
density lipoprotein cholesterol levels. Bio-
informatics. 2021;36(21):5223–8.

40 Luo Y, Eran A, Palmer N, Avillach P, Levy-
Moonshine A, Szolovits P, et al. A multi-
dimensional precision medicine approach
identifies an autism subtype characterized
by dyslipidemia. Nat Med. 2020;26(9):
1375–9.

41 Bieberich E. Sphingolipids and lipid rafts:
novel concepts and methods of analysis.
Chem Phys Lipids. 2018;216:114–31.

42 Hannun YA, Obeid LM. Sphingolipids and
their metabolism in physiology and disease.
Nat Rev Mol Cell Biol. 2018;19(3):175–91.

43 Bouscary A, Quessada C, René F, Spedding
M, Turner BJ, Henriques A, et al. Sphingo-
lipids metabolism alteration in the central
nervous system: amyotrophic lateral sclerosis
(ALS) and other neurodegenerative diseases.
Semin Cell Dev Biol. 2021;112:82–91.

44 Farooqui AA, Horrocks LA, Farooqui T.
Glycerophospholipids in brain: their meta-
bolism, incorporation into membranes,
functions, and involvement in neurological
disorders. Chem Phys Lipids. 2000;
106(1):1–29.

45 Schulze H, Sandhoff K. Lysosomal lipid
storage diseases. Cold Spring Harb Perspect
Biol. 2011;3(6):a004804.

46 Papayannopoulos V, Co C, Prehoda KE,
Snapper S, Taunton J, Lim WA. A polybasic
motif allows N-WASP to act as a sensor of
PIP(2) density. Mol Cell. 2005;17(2):
181–91.

47 Peter BJ, Kent HM, Mills IG, Vallis Y, Butler
PJ, Evans PR, et al. BAR domains as sensors
of membrane curvature: the amphiphysin
BAR structure. Science. 2004;303(5657):
495–9.

48 Zeniou-Meyer M, Zabari N, Ashery U,
Chasserot-Golaz S, Haeberlé AM, Demais
V, et al. Phospholipase D1 production of
phosphatidic acid at the plasma membrane
promotes exocytosis of large dense-core
granules at a late stage. J Biol Chem.
2007;282(30):21746–57.

49 Schaeren-Wiemers N, van der Bijl P,
Schwab ME. The UDP-galactose:ceramide
galactosyltransferase: expression pattern in
oligodendrocytes and Schwann cells during

myelination and substrate preference for
hydroxyceramide. J Neurochem. 1995;65(5):
2267–78.

50 West RJH, Briggs L, Perona Fjeldstad M,
Ribchester RR, Sweeney ST. Sphingolipids
regulate neuromuscular synapse structure
and function in Drosophila. J Comp Neurol.
2018;526(13):1995–2009.

51 Yu RK, Tsai YT, Ariga T. Functional roles of
gangliosides in neurodevelopment: an
overview of recent advances. Neurochem
Res. 2012;37(6):1230–44.

52 Tang FL, Wang J, Itokazu Y, Yu RK. Gan-
glioside GD3 regulates dendritic growth in
newborn neurons in adult mouse hippocam-
pus via modulation of mitochondrial dy-
namics. J Neurochem. 2021;156(6):819–33.

53 Cuello AC. Gangliosides, NGF, brain aging and
disease: amini-reviewwith personal reflections.
Neurochem Res. 2012;37(6):1256–60.

54 Ferrari G, Greene LA. Promotion of neu-
ronal survival by GM1 ganglioside. Phe-
nomenology and mechanism of action. Ann
N Y Acad Sci. 1998;845:263–73.

55 Hemmings BA, Restuccia DF. PI3K-PKB/
Akt pathway. Cold Spring Harb Perspect
Biol. 2012;4(9):a011189.

56 Won JS, Singh AK, Singh I. Lactosylcer-
amide: a lipid second messenger in neuro-
inflammatory disease. J Neurochem. 2007;
103(Suppl 1):180–91.

57 Desale SE, Chinnathambi S. Phosphoino-
sitides signaling modulates microglial actin
remodeling and phagocytosis in Alzheimer’s
disease. Cell Commun Signal. 2021;19(1):28.

58 Olsen ASB, Færgeman NJ. Sphingolipids:
membrane microdomains in brain devel-
opment, function and neurological diseases.
Open Biol. 2017;7(5):170069.

59 Fabiani C, Antollini SS. Alzheimer’s disease
as a membrane disorder: spatial cross-talk
among beta-amyloid peptides, nicotinic
acetylcholine receptors and lipid rafts. Front
Cell Neurosci. 2019;13:309.

60 Valappil DK, Mini NJ, Dilna A, Nath S.
Membrane interaction to intercellular
spread of pathology in Alzheimer’s disease.
Front Neurosci. 2022;16:936897.

61 Drolle E, Negoda A, Hammond K, Pavlov
E, Leonenko Z. Changes in lipid mem-
branes may trigger amyloid toxicity in
Alzheimer’s disease. PLoS One. 2017;12(8):
e0182194.

62 Frisardi V, Panza F, Seripa D, Farooqui T,
Farooqui AA. Glycerophospholipids and
glycerophospholipid-derived lipid media-
tors: a complex meshwork in Alzheimer’s
disease pathology. Prog Lipid Res. 2011;
50(4):313–30.

63 Williams TL, Serpell LC. Membrane and
surface interactions of Alzheimer’s Aβ
peptide-insights into the mechanism of
cytotoxicity. FEBS J. 2011;278(20):3905–17.

64 Niu Z, Zhang Z, Zhao W, Yang J. Interac-
tions between amyloid beta peptide and
lipid membranes. Biochim Biophys Acta
Biomembr. 2018;1860(9):1663–9.

65 Cazzaniga E, Bulbarelli A, Lonati E, Orlando
A, Re F, Gregori M, et al. Abeta peptide
toxicity is reduced after treatments de-
creasing phosphatidylethanolamine content
in differentiated neuroblastoma cells. Neu-
rochem Res. 2011;36(5):863–9.

66 Sanchez-Mejia RO, Mucke L. Phospholipase
A2 and arachidonic acid in Alzheimer’s
disease. Biochim Biophys Acta. 2010;
1801(8):784–90.

67 Jesko H, Stepien A, Lukiw WJ, Strosznajder
RP. The cross-talk between sphingolipids and
insulin-like growth factor signaling: signifi-
cance for aging and neurodegeneration. Mol
Neurobiol. 2019;56(5):3501–21.

68 Mencarelli C, Martinez-Martinez P. Ce-
ramide function in the brain: when a slight
tilt is enough. Cell Mol Life Sci. 2013;70(2):
181–203.

69 Katsel P, Li C, Haroutunian V. Gene ex-
pression alterations in the sphingolipid
metabolism pathways during progression of
dementia and Alzheimer’s disease: a shift
toward ceramide accumulation at the earliest
recognizable stages of Alzheimer’s disease?
Neurochem Res. 2007;32(4–5):845–56.

70 Czubowicz K, Jesko H,Wencel P, LukiwWJ,
Strosznajder RP. The role of ceramide and
sphingosine-1-phosphate in alzheimer’s
disease and other neurodegenerative disor-
ders. Mol Neurobiol. 2019;56(8):5436–55.

71 Custodia A, Romaus-Sanjurjo D, Aramburu-
Núñez M, Alvarez-Rafael D, Vázquez-Váz-
quez L, Camino-Castiñeiras J, et al. Ceram-
ide/sphingosine 1-phosphate Axis as a key
target for diagnosis and treatment in alz-
heimer’s disease and other neurodegenerative
diseases. Int J Mol Sci. 2022;23(15):8082.

72 Hur JY. γ-Secretase in Alzheimer’s disease.
Exp Mol Med. 2022;54(4):433–46.

73 Hicks DA, Nalivaeva NN, Turner AJ. Lipid
rafts and Alzheimer’s disease: protein-lipid
interactions and perturbation of signaling.
Front Physiol. 2012;3:189.

74 HensleyK.Neuroinflammation inAlzheimer’s
disease: mechanisms, pathologic conse-
quences, and potential for therapeutic ma-
nipulation. J Alzheimers Dis. 2010;21(1):1–14.

75 Ghosh S, Dyer RA, Beasley CL. Evidence for
altered cell membrane lipid composition in
postmortem prefrontal white matter in bi-
polar disorder and schizophrenia.
J Psychiatr Res. 2017;95:135–42.

76 Schwarz E, Prabakaran S,Whitfield P,Major
H, Leweke FM, Koethe D, et al. High
throughput lipidomic profiling of schizo-
phrenia and bipolar disorder brain tissue
reveals alterations of free fatty acids, phos-
phatidylcholines, and ceramides. J Proteome
Res. 2008;7(10):4266–77.

77 Shimamoto-Mitsuyama C, Nakaya A, Esaki
K, Balan S, Iwayama Y, Ohnishi T, et al.
Lipid pathology of the corpus callosum in
schizophrenia and the potential role of ab-
normal gene regulatory networks with re-
duced microglial marker expression. Cereb
Cortex. 2021;31(1):448–62.

Brain Lipids and Alzheimer’s Disease and
Neuropsychiatric Disorders

Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

167

https://doi.org/10.7554/eLife.43657
https://doi.org/10.1038/s41586-022-04394-w
https://doi.org/10.1016/j.tins.2020.10.011
https://doi.org/10.1093/bioinformatics/btaa898
https://doi.org/10.1093/bioinformatics/btaa898
https://doi.org/10.1038/s41591-020-1007-0
https://doi.org/10.1016/j.chemphyslip.2018.08.003
https://doi.org/10.1038/nrm.2017.107
https://doi.org/10.1016/j.semcdb.2020.10.008
https://doi.org/10.1016/s0009-3084(00)00128-6
https://doi.org/10.1101/cshperspect.a004804
https://doi.org/10.1101/cshperspect.a004804
https://doi.org/10.1016/j.molcel.2004.11.054
https://doi.org/10.1126/science.1092586
https://doi.org/10.1074/jbc.M702968200
https://doi.org/10.1046/j.1471-4159.1995.65052267.x
https://doi.org/10.1002/cne.24466
https://doi.org/10.1007/s11064-012-0744-y
https://doi.org/10.1007/s11064-012-0744-y
https://doi.org/10.1111/jnc.15137
https://doi.org/10.1007/s11064-012-0770-9
https://doi.org/10.1111/j.1749-6632.1998.tb09679.x
https://doi.org/10.1111/j.1749-6632.1998.tb09679.x
https://doi.org/10.1101/cshperspect.a011189
https://doi.org/10.1101/cshperspect.a011189
https://doi.org/10.1111/j.1471-4159.2007.04822.x
https://doi.org/10.1186/s12964-021-00715-0
https://doi.org/10.1098/rsob.170069
https://doi.org/10.3389/fncel.2019.00309
https://doi.org/10.3389/fncel.2019.00309
https://doi.org/10.3389/fnins.2022.936897
https://doi.org/10.1371/journal.pone.0182194
https://doi.org/10.1016/j.plipres.2011.06.001
https://doi.org/10.1111/j.1742-4658.2011.08228.x
https://doi.org/10.1016/j.bbamem.2018.04.004
https://doi.org/10.1016/j.bbamem.2018.04.004
https://doi.org/10.1007/s11064-011-0415-4
https://doi.org/10.1007/s11064-011-0415-4
https://doi.org/10.1016/j.bbalip.2010.05.013
https://doi.org/10.1007/s12035-018-1286-3
https://doi.org/10.1007/s12035-018-1286-3
https://doi.org/10.1007/s00018-012-1038-x
https://doi.org/10.1007/s11064-007-9297-x
https://doi.org/10.1007/s12035-018-1448-3
https://doi.org/10.3390/ijms23158082
https://doi.org/10.1038/s12276-022-00754-8
https://doi.org/10.3389/fphys.2012.00189
https://doi.org/10.3233/JAD-2010-1414
https://doi.org/10.1016/j.jpsychires.2017.08.009
https://doi.org/10.1021/pr800188y
https://doi.org/10.1021/pr800188y
https://doi.org/10.1093/cercor/bhaa236
https://doi.org/10.1093/cercor/bhaa236
https://doi.org/10.1159/000535131


78 Berger GE, Smesny S, Amminger GP. Bio-
active lipids in schizophrenia. Int Rev Psy-
chiatry. 2006;18(2):85–98.

79 Noponen M, Sanfilipo M, Samanich K, Ryer
H, Ko G, Angrist B, et al. Elevated PLA2
activity in schizophrenics and other psy-
chiatric patients. Biol Psychiatry. 1993;
34(9):641–9.

80 Yu Q, He Z, Zubkov D, Huang S, Kurochkin
I, Yang X, et al. Lipidome alterations in
human prefrontal cortex during develop-
ment, aging, and cognitive disorders. Mol
Psychiatry. 2020;25(11):2952–69.

81 Karege F, Perroud N, Burkhardt S, Fer-
nandez R, Ballmann E, La Harpe R, et al.
Alterations in phosphatidylinositol 3-kinase
activity and PTEN phosphatase in the
prefrontal cortex of depressed suicide vic-
tims. Neuropsychobiology. 2011;63(4):
224–31.

82 Dwivedi Y, Rizavi HS, Teppen T, Zhang H,
Mondal A, Roberts RC, et al. Lower phos-
phoinositide 3-kinase (PI 3-kinase) activity
and differential expression levels of selective
catalytic and regulatory PI 3-kinase subunit
isoforms in prefrontal cortex and hippo-
campus of suicide subjects. Neuro-
psychopharmacology. 2008;33(10):2324–40.

83 Walther A, Cannistraci CV, Simons K,
Durán C, Gerl MJ, Wehrli S, et al. Lip-
idomics in major depressive disorder. Front
Psychiatry. 2018;9:459.

84 Gracia-Garcia P, Rao V, Haughey NJ,
Bandaru VV, Smith G, Rosenberg PB, et al.
Elevated plasma ceramides in depression.
J Neuropsychiatry Clin Neurosci. 2011;
23(2):215–8.

85 Turri M, Marchi C, Adorni MP, Calabresi L,
Zimetti F. Emerging role of HDL in brain
cholesterol metabolism and neurodegener-
ative disorders. Biochim Biophys Acta Mol
Cell Biol Lipids. 2022;1867(5):159123.

86 Grundy SM. Absorption and metabolism of
dietary cholesterol. Annu Rev Nutr. 1983;3:
71–96.

87 Liu Q, Trotter J, Zhang J, Peters MM, Cheng
H, Bao J, et al. Neuronal LRP1 knockout in
adult mice leads to impaired brain lipid
metabolism and progressive, age-dependent
synapse loss and neurodegeneration.
J Neurosci. 2010;30(50):17068–78.

88 Luo J, Yang H, Song BL. Mechanisms and
regulation of cholesterol homeostasis. Nat
Rev Mol Cell Biol. 2020;21(4):225–45.

89 Fünfschilling U, Saher G, Xiao L, MöbiusW,
Nave KA. Survival of adult neurons lacking
cholesterol synthesis in vivo. BMCNeurosci.
2007;8:1.

90 Nieweg K, Schaller H, Pfrieger FW. Marked
differences in cholesterol synthesis between
neurons and glial cells from postnatal rats.
J Neurochem. 2009;109(1):125–34.

91 Essayan-Perez S, Südhof TC. Neuronal γ-
secretase regulates lipid metabolism, linking
cholesterol to synaptic dysfunction in Alz-
heimer’s disease. Neuron. 2023;111(20):
3176–94.e7.

92 Berghoff SA, Spieth L, Sun T, Hosang L,
Depp C, Sasmita AO, et al. Neuronal cho-
lesterol synthesis is essential for repair of
chronically demyelinated lesions in mice.
Cell Rep. 2021;37(4):109889.

93 Lin JP, Mironova YA, Shrager P, Giger RJ.
LRP1 regulates peroxisome biogenesis and
cholesterol homeostasis in oligodendrocytes
and is required for proper CNS myelin
development and repair. Elife. 2017;6:
e30498.

94 Xie Y, Zhang X, Xu P, Zhao N, Zhao Y, Li Y,
et al. Aberrant oligodendroglial LDL re-
ceptor orchestrates demyelination in
chronic cerebral ischemia. J Clin Invest.
2021;131(1):e128114.

95 Gamba P, Giannelli S, Staurenghi E, Testa G,
Sottero B, Biasi F, et al. The controversial
role of 24-S-hydroxycholesterol in alzhei-
mer’s disease. Antioxidants. 2021;10(5):740.

96 Hughes TM, Rosano C, Evans RW, Kuller
LH. Brain cholesterol metabolism, oxy-
sterols, and dementia. J Alzheimers Dis.
2013;33(4):891–911.

97 Sodero AO. 24S-hydroxycholesterol: cellu-
lar effects and variations in brain diseases.
J Neurochem. 2021;157(4):899–918.

98 Corraliza-Gomez M, Sanchez D, Ganfor-
nina MD. Lipid-binding proteins in brain
health and disease. Front Neurol. 2019;10:
1152.

99 Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F.
ApoE4 impairs neuron-astrocyte coupling
of fatty acid metabolism. Cell Rep. 2021;
34(1):108572.

100 Raulin AC, Martens YA, Bu G. Lipoproteins
in the central nervous system: from biology
to pathobiology. Annu Rev Biochem. 2022;
91:731–59.

101 KimWS, Guillemin GJ, Glaros EN, Lim CK,
Garner B. Quantitation of ATP-binding
cassette subfamily-A transporter gene ex-
pression in primary human brain cells.
Neuroreport. 2006;17(9):891–6.

102 Koldamova RP, Lefterov IM, Ikonomovic
MD, Skoko J, Lefterov PI, Isanski BA, et al.
22R-hydroxycholesterol and 9-cis-retinoic
acid induce ATP-binding cassette trans-
porter A1 expression and cholesterol efflux
in brain cells and decrease amyloid beta
secretion. J Biol Chem. 2003;278(15):
13244–56.

103 Jin U, Park SJ, Park SM. Cholesterol
metabolism in the brain and its association
with Parkinson’s disease. Exp Neurobiol.
2019;28(5):554–67.

104 Borràs C, Mercer A, Sirisi S, Alcolea D,
Escolà-Gil JC, Blanco-Vaca F, et al. HDL-
like-mediated cell cholesterol trafficking in
the central nervous system and alzheimer’s
disease pathogenesis. Int J Mol Sci. 2022;
23(16):9356.

105 Vitali C, Wellington CL, Calabresi L. HDL
and cholesterol handling in the brain.
Cardiovasc Res. 2014;103(3):405–13.

106 Berghoff SA, Spieth L, Sun T, Hosang L,
Schlaphoff L, Depp C, et al. Microglia fa-

cilitate repair of demyelinated lesions via
post-squalene sterol synthesis. Nat Neuro-
sci. 2021;24(1):47–60.

107 Saher G, Brügger B, Lappe-Siefke C, Möbius
W, Tozawa R, Wehr MC, et al. High cho-
lesterol level is essential for myelin mem-
brane growth. Nat Neurosci. 2005;8(4):
468–75.

108 Camargo N, Goudriaan A, van Deijk ALF,
Otte WM, Brouwers JF, Lodder H, et al.
Oligodendroglial myelination requires
astrocyte-derived lipids. PLoS Biol. 2017;
15(5):e1002605.

109 Serrano-Pozo A, Qian J, Monsell SE, Be-
tensky RA, Hyman BT. APOEε2 is associ-
ated with milder clinical and pathological
Alzheimer disease. Ann Neurol. 2015;77(6):
917–29.

110 Reiman EM, Arboleda-Velasquez JF, Quiroz
YT, Huentelman MJ, Beach TG, Caselli RJ,
et al. Exceptionally low likelihood of Alz-
heimer’s dementia in APOE2 homozygotes
from a 5,000-person neuropathological
study. Nat Commun. 2020;11(1):667.

111 Wennberg AM, Tosakulwong N, Lesnick
TG, Murray ME, Whitwell JL, Liesinger
AM, et al. Association of apolipoprotein E ε4
with transactive response DNA-binding
protein 43. JAMA Neurol. 2018;75(11):
1347–54.

112 Blanchard JW, Akay LA, Davila-Velderrain
J, von Maydell D, Mathys H, Davidson SM,
et al. APOE4 impairs myelination via cho-
lesterol dysregulation in oligodendrocytes.
Nature. 2022;611(7937):769–79.

113 Tcw J, Qian L, Pipalia NH, Chao MJ, Liang
SA, Shi Y, et al. Cholesterol and matrisome
pathways dysregulated in astrocytes and
microglia. Cell. 2022;185(13):2213–33.e25.

114 Wang H, Kulas JA, Wang C, Holtzman
DM, Ferris HA, Hansen SB. Regulation of
beta-amyloid production in neurons by
astrocyte-derived cholesterol. Proc Natl
Acad Sci USA. 2021;118(33):
e2102191118.

115 Cashikar AG, Toral-Rios D, Timm D, Ro-
mero J, Strickland M, Long JM, et al. Reg-
ulation of astrocyte lipid metabolism and
ApoE secretionby the microglial oxysterol,
25-hydroxycholesterol. J Lipid Res. 2023;
64(4):100350.

116 Victor MB, Leary N, Luna X, Meharena HS,
Scannail AN, Bozzelli PL, et al. Lipid ac-
cumulation induced by APOE4 impairs
microglial surveillance of neuronal-network
activity. Cell Stem Cell. 2022;29(8):
1197–212.e8.

117 Lee SI, Jeong W, Lim H, Cho S, Lee H, Jang
Y, et al. APOE4-carrying human astrocytes
oversupply cholesterol to promote neuronal
lipid raft expansion and Aβ generation.
Stem Cell Rep. 2021;16(9):2128–37.

118 Bandaru VV, Troncoso J, Wheeler D,
Pletnikova O, Wang J, Conant K, et al.
ApoE4 disrupts sterol and sphingolipid
metabolism in Alzheimer’s but not normal
brain. Neurobiol Aging. 2009;30(4):591–9.

168 Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

Zhao/Zhang/Sanders/Duan

https://doi.org/10.1080/09540260600583072
https://doi.org/10.1080/09540260600583072
https://doi.org/10.1016/0006-3223(93)90157-9
https://doi.org/10.1038/s41380-018-0200-8
https://doi.org/10.1038/s41380-018-0200-8
https://doi.org/10.1159/000322145
https://doi.org/10.1038/sj.npp.1301641
https://doi.org/10.1038/sj.npp.1301641
https://doi.org/10.3389/fpsyt.2018.00459
https://doi.org/10.3389/fpsyt.2018.00459
https://doi.org/10.1176/jnp.23.2.jnp215
https://doi.org/10.1016/j.bbalip.2022.159123
https://doi.org/10.1016/j.bbalip.2022.159123
https://doi.org/10.1146/annurev.nu.03.070183.000443
https://doi.org/10.1523/JNEUROSCI.4067-10.2010
https://doi.org/10.1038/s41580-019-0190-7
https://doi.org/10.1038/s41580-019-0190-7
https://doi.org/10.1186/1471-2202-8-1
https://doi.org/10.1111/j.1471-4159.2009.05917.x
https://doi.org/10.1016/j.neuron.2023.07.005
https://doi.org/10.1016/j.celrep.2021.109889
https://doi.org/10.7554/eLife.30498
https://doi.org/10.1172/JCI128114
https://doi.org/10.3390/antiox10050740
https://doi.org/10.3233/JAD-2012-121585
https://doi.org/10.1111/jnc.15228
https://doi.org/10.3389/fneur.2019.01152
https://doi.org/10.1016/j.celrep.2020.108572
https://doi.org/10.1146/annurev-biochem-032620-104801
https://doi.org/10.1097/01.wnr.0000221833.41340.cd
https://doi.org/10.1074/jbc.M300044200
https://doi.org/10.5607/en.2019.28.5.554
https://doi.org/10.3390/ijms23169356
https://doi.org/10.1093/cvr/cvu148
https://doi.org/10.1038/s41593-020-00757-6
https://doi.org/10.1038/s41593-020-00757-6
https://doi.org/10.1038/nn1426
https://doi.org/10.1371/journal.pbio.1002605
https://doi.org/10.1002/ana.24369
https://doi.org/10.1038/s41467-019-14279-8
https://doi.org/10.1001/jamaneurol.2018.3139
https://doi.org/10.1038/s41586-022-05439-w
https://doi.org/10.1016/j.cell.2022.05.017
https://doi.org/10.1073/pnas.2102191118
https://doi.org/10.1073/pnas.2102191118
https://doi.org/10.1016/j.jlr.2023.100350
https://doi.org/10.1016/j.stem.2022.07.005
https://doi.org/10.1016/j.stemcr.2021.07.017
https://doi.org/10.1016/j.neurobiolaging.2007.07.024
https://doi.org/10.1159/000535131


119 Sienski G, Narayan P, Bonner JM, Kory N,
Boland S, Arczewska AA, et al. APOE4
disrupts intracellular lipid homeostasis in
human iPSC-derived glia. Sci Transl Med.
2021;13(583):eaaz4564.

120 Moulton MJ, Barish S, Ralhan I, Chang J,
Goodman LD, Harland JG, et al. Neuronal
ROS-induced glial lipid droplet formation is
altered by loss of Alzheimer’s disease-
associated genes. Proc Natl Acad Sci USA.
2021;118(52):e2112095118.

121 WangN,WangM, Jeevaratnam S, Rosenberg
C, Ikezu TC, Shue F, et al. Opposing effects of
apoE2 and apoE4 on microglial activation
and lipid metabolism in response to demy-
elination. Mol Neurodegener. 2022;17(1):75.

122 Windham IA, Ragusa JV, Wallace ED,
Wagner CH, White KK, Cohen S. APOE
traffics to astrocyte lipid droplets and modu-
lates triglyceride saturation and droplet size.
bioRxiv. 2023:2023.04.28.538740.

123 Yerbury JJ, Poon S, Meehan S, Thompson B,
Kumita JR, Dobson CM, et al. The extra-
cellular chaperone clusterin influences am-
yloid formation and toxicity by interacting
with prefibrillar structures. FASEB J. 2007;
21(10):2312–22.

124 Yuste-Checa P, Trinkaus VA, Riera-Tur I,
Imamoglu R, Schaller TF, Wang H, et al.
The extracellular chaperone Clusterin en-
hances Tau aggregate seeding in a cellular
model. Nat Commun. 2021;12(1):4863.

125 De Roeck A, Van Broeckhoven C, Sleegers
K. The role of ABCA7 in Alzheimer’s dis-
ease: evidence from genomics, tran-
scriptomics and methylomics. Acta Neu-
ropathol. 2019;138(2):201–20.

126 Dib S, Pahnke J, Gosselet F. Role of ABCA7
in human health and in alzheimer’s disease.
Int J Mol Sci. 2021;22(9):4603.

127 Tanaka N, Abe-Dohmae S, Iwamoto N,
Fitzgerald ML, Yokoyama S. Helical apoli-
poproteins of high-density lipoprotein en-
hance phagocytosis by stabilizing ATP-
binding cassette transporter A7. J Lipid
Res. 2010;51(9):2591–9.

128 Shepardson NE, Shankar GM, Selkoe DJ.
Cholesterol level and statin use in alzheimer
disease: I. Review of epidemiological and
preclinical studies. Arch Neurol. 2011;
68(10):1239–44.

129 Iwagami M, Qizilbash N, Gregson J,
Douglas I, Johnson M, Pearce N, et al. Blood
cholesterol and risk of dementia in more
than 1·8 million people over two decades: a
retrospective cohort study. Lancet Healthy
Longev. 2021;2(8):e498–506.

130 Walker AJ, Kim Y, Borissiouk I, Rehder R,
Dodd S, Morris G, et al. Statins: neurobio-
logical underpinnings and mechanisms in
mood disorders. Neurosci Biobehav Rev.
2021;128:693–708.

131 Markovic VM, Cupic Z, Macesic S, Stano-
jevic A, Vukojevic V, Kolar-Anic L. Mod-
elling cholesterol effects on the dynamics of
the hypothalamic-pituitary-adrenal (HPA)
axis. Math Med Biol. 2016;33(1):1–28.

132 Martins-De-Souza D, Wobrock T, Zerr I,
Schmitt A, Gawinecka J, Schneider-Axmann
T, et al. Different apolipoprotein E, apoli-
poprotein A1 and prostaglandin-H2
D-isomerase levels in cerebrospinal fluid
of schizophrenia patients and healthy con-
trols. World J Biol Psychiatry. 2010;11(5):
719–28.

133 Dean B, Digney A, Sundram S, Thomas E,
Scarr E. Plasma apolipoprotein E is de-
creased in schizophrenia spectrum and bi-
polar disorder. Psychiatry Res. 2008;
158(1):75–8.

134 Jonas K, Clouston S, Li K, Fochtmann LJ,
Lencz T, Malhotra AK, et al. Apolipoprotein
E-ε4 allele predicts escalation of psychotic
symptoms in late adulthood. Schizophr Res.
2019;206:82–8.

135 González-Castro TB, Tovilla-Zárate CA,
Hernández-Díaz Y, Fresán A, Juárez-Rojop
IE, Ble-Castillo JL, et al. No association be-
tween ApoE and schizophrenia: evidence of
systematic review and updatedmeta-analysis.
Schizophr Res. 2015;169(1–3):355–68.

136 Yang Y, Wan C, Li H, Zhu H, La Y, Xi Z,
et al. Altered levels of acute phase proteins in
the plasma of patients with schizophrenia.
Anal Chem. 2006;78(11):3571–6.

137 Huang JT, Wang L, Prabakaran S, Wen-
genroth M, Lockstone HE, Koethe D, et al.
Independent protein-profiling studies show a
decrease in apolipoprotein A1 levels in
schizophrenia CSF, brain and peripheral
tissues.Mol Psychiatry. 2008;13(12):1118–28.

138 Saari K, Jokelainen J, Veijola J, Koponen H,
Jones PB, Savolainen M, et al. Serum lipids
in schizophrenia and other functional psy-
choses: a general population northern Fin-
land 1966 birth cohort survey. Acta Psy-
chiatr Scand. 2004;110(4):279–85.

139 Kim DD, Barr AM, Fredrikson DH, Honer
WG, Procyshyn RM. Association between
serum lipids and antipsychotic response in
schizophrenia. Curr Neuropharmacol. 2019;
17(9):852–60.

140 Pillinger T, McCutcheon RA, Howes OD.
Variability of glucose, insulin, and lipid
disturbances in first-episode psychosis: a
meta-analysis. Psychol Med. 2023;53(7):
3150–6.

141 Qiu Y, Li S, Teng Z, Tan Y, Xu X, Yang M,
et al. Association between abnormal gly-
colipid level and cognitive dysfunction in
drug-naïve patients with bipolar disorder.
J Affect Disord. 2022;297:477–85.

142 Torsvik A, Brattbakk HR, Trentani A,
Holdhus R, Stansberg C, Bartz-Jo-
hannessen CA, et al. Patients with
schizophrenia and bipolar disorder display
a similar global gene expression signature
in whole blood that reflects elevated pro-
portion of immature neutrophil cells with
association to lipid changes. Transl Psy-
chiatry. 2023;13(1):147.

143 Das D, Peng X, Lam ATN, Bader JS, Av-
ramopoulos D. Transcriptome analysis of
human induced excitatory neurons supports

a strong effect of clozapine on cholesterol
biosynthesis. Schizophr Res. 2021;228:
324–6.

144 Olzmann JA, Carvalho P. Dynamics and
functions of lipid droplets. Nat Rev Mol Cell
Biol. 2019;20(3):137–55.

145 Gluchowski NL, Becuwe M, Walther TC,
Farese RV Jr. Lipid droplets and liver dis-
ease: from basic biology to clinical impli-
cations. Nat Rev Gastroenterol Hepatol.
2017;14(6):343–55.

146 Cohen S. Lipid droplets as organelles. Int
Rev Cell Mol Biol. 2018;337:83–110.

147 Walther TC, Farese RV Jr. Lipid droplets
and cellular lipid metabolism. Annu Rev
Biochem. 2012;81:687–714.

148 Unger RH, Orci L. Lipoapoptosis: its
mechanism and its diseases. Biochim Bio-
phys Acta. 2002;1585(2–3):202–12.

149 Farmer BC, Walsh AE, Kluemper JC, John-
son LA. Lipid droplets in neurodegenerative
disorders. Front Neurosci. 2020;14:742.

150 Ralhan I, Chang CL, Lippincott-Schwartz J,
Ioannou MS. Lipid droplets in the nervous
system. J Cell Biol. 2021;220(7):e202102136.

151 Guttenplan KA, Weigel MK, Prakash P,
Wijewardhane PR, Hasel P, Rufen-Blanch-
ette U, et al. Neurotoxic reactive astrocytes
induce cell death via saturated lipids. Na-
ture. 2021;599(7883):102–7.

152 Fader Kaiser CM, Romano PS, Vanrell MC,
Pocognoni CA, Jacob J, Caruso B, et al.
Biogenesis and breakdown of lipid droplets
in pathological conditions. Front Cell Dev
Biol. 2021;9:826248.

153 Yang C,Wang X,Wang J,Wang X, ChenW,
Lu N, et al. Rewiring neuronal glycerolipid
metabolism determines the extent of axon
regeneration. Neuron. 2020;105(2):
276–92.e5.

154 Ioannou MS, Jackson J, Sheu SH, Chang CL,
Weigel AV, Liu H, et al. Neuron-astrocyte
metabolic coupling protects against activity-
induced fatty acid toxicity. Cell. 2019;
177(6):1522–35.e14.

155 Loving BA, Bruce KD. Lipid and lipoprotein
metabolism in microglia. Front Physiol.
2020;11:393.

156 Loats AE, Carrera S, Fleming AF, Roberts
ARE, Sherrard A, Toska E, et al. Cholesterol
is required for transcriptional repression by
BASP1. Proc Natl Acad Sci USA. 2021;
118(29):e2101671118.

157 Islimye E, Girard V, Gould AP. Functions of
stress-induced lipid droplets in the nervous
system. Front Cell Dev Biol. 2022;10:
863907.

158 Bruce KD, Zsombok A, Eckel RH. Lipid
processing in the brain: a key regulator of
systemic metabolism. Front Endocrinol.
2017;8:60.

159 Weightman Potter PG, VlachakiWalker JM,
Robb JL, Chilton JK, Williamson R, Randall
AD, et al. Basal fatty acid oxidation increases
after recurrent low glucose in human pri-
mary astrocytes. Diabetologia. 2019;62(1):
187–98.

Brain Lipids and Alzheimer’s Disease and
Neuropsychiatric Disorders

Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

169

https://doi.org/10.1126/scitranslmed.aaz4564
https://doi.org/10.1073/pnas.2112095118
https://doi.org/10.1186/s13024-022-00577-1
https://doi.org/10.1101/2023.04.28.538740
https://doi.org/10.1096/fj.06-7986com
https://doi.org/10.1038/s41467-021-25060-1
https://doi.org/10.1007/s00401-019-01994-1
https://doi.org/10.1007/s00401-019-01994-1
https://doi.org/10.3390/ijms22094603
https://doi.org/10.1194/jlr.M006049
https://doi.org/10.1194/jlr.M006049
https://doi.org/10.1001/archneurol.2011.203
https://doi.org/10.1016/S2666-7568(21)00150-1
https://doi.org/10.1016/S2666-7568(21)00150-1
https://doi.org/10.1016/j.neubiorev.2021.07.012
https://doi.org/10.1093/imammb/dqu020
https://doi.org/10.3109/15622971003758748
https://doi.org/10.1016/j.psychres.2007.05.008
https://doi.org/10.1016/j.schres.2018.12.010
https://doi.org/10.1016/j.schres.2015.08.031
https://doi.org/10.1021/ac051916x
https://doi.org/10.1038/sj.mp.4002108
https://doi.org/10.1111/j.1600-0447.2004.00358.x
https://doi.org/10.1111/j.1600-0447.2004.00358.x
https://doi.org/10.2174/1570159X17666190228113348
https://doi.org/10.1017/S0033291721005213
https://doi.org/10.1016/j.jad.2021.10.100
https://doi.org/10.1038/s41398-023-02442-1
https://doi.org/10.1038/s41398-023-02442-1
https://doi.org/10.1016/j.schres.2020.12.041
https://doi.org/10.1038/s41580-018-0085-z
https://doi.org/10.1038/s41580-018-0085-z
https://doi.org/10.1038/nrgastro.2017.32
https://doi.org/10.1016/bs.ircmb.2017.12.007
https://doi.org/10.1016/bs.ircmb.2017.12.007
https://doi.org/10.1146/annurev-biochem-061009-102430
https://doi.org/10.1146/annurev-biochem-061009-102430
https://doi.org/10.1016/s1388-1981(02)00342-6
https://doi.org/10.1016/s1388-1981(02)00342-6
https://doi.org/10.3389/fnins.2020.00742
https://doi.org/10.1083/jcb.202102136
https://doi.org/10.1038/s41586-021-03960-y
https://doi.org/10.1038/s41586-021-03960-y
https://doi.org/10.3389/fcell.2021.826248
https://doi.org/10.3389/fcell.2021.826248
https://doi.org/10.1016/j.neuron.2019.10.009
https://doi.org/10.1016/j.cell.2019.04.001
https://doi.org/10.3389/fphys.2020.00393
https://doi.org/10.1073/pnas.2101671118
https://doi.org/10.3389/fcell.2022.863907
https://doi.org/10.3389/fendo.2017.00060
https://doi.org/10.1007/s00125-018-4744-6
https://doi.org/10.1159/000535131


160 He M, Pei Z, Mohsen AW, Watkins P,
Murdoch G, Van Veldhoven PP, et al.
Identification and characterization of new
long chain acyl-CoA dehydrogenases. Mol
Genet Metab. 2011;102(4):418–29.

161 Ebert D, Haller RG, Walton ME. Energy
contribution of octanoate to intact rat brain
metabolism measured by 13C nuclear
magnetic resonance spectroscopy.
J Neurosci. 2003;23(13):5928–35.

162 Shimabukuro MK, Langhi LG, Cordeiro I,
Brito JM, Batista CM, Mattson MP, et al.
Lipid-laden cells differentially distributed in
the aging brain are functionally active and
correspond to distinct phenotypes. Sci Rep.
2016;6:23795.

163 Harkins D, Cooper HM, Piper M. The role
of lipids in ependymal development and the
modulation of adult neural stem cell func-
tion during aging and disease. Semin Cell
Dev Biol. 2021;112:61–8.

164 Capilla-Gonzalez V, Cebrian-Silla A,
Guerrero-Cazares H, Garcia-Verdugo JM,
Quiñones-Hinojosa A. Age-related changes
in astrocytic and ependymal cells of the
subventricular zone. Glia. 2014;62(5):
790–803.

165 Hamilton LK, Dufresne M, Joppé SE, Pet-
ryszyn S, Aumont A, Calon F, et al. Aberrant
lipid metabolism in the forebrain niche
suppresses adult neural stem cell prolifera-
tion in an animal model of alzheimer’s
disease. Cell Stem Cell. 2015;17(4):397–411.

166 Marschallinger J, Iram T, Zardeneta M, Lee
SE, Lehallier B, Haney MS, et al. Lipid-
droplet-accumulating microglia represent
a dysfunctional and proinflammatory state
in the aging brain. Nat Neurosci. 2020;23(2):
194–208.

167 Bailey AP, Koster G, Guillermier C, Hirst
EM, MacRae JI, Lechene CP, et al. Antioxi-
dant role for lipid droplets in a stem cell niche
of Drosophila. Cell. 2015;163(2):340–53.

168 Kis V, Barti B, Lippai M, Sass M. Specialized
cortex glial cells accumulate lipid droplets in
Drosophila melanogaster. PLoS One. 2015;
10(7):e0131250.

169 Liu L, Zhang K, Sandoval H, Yamamoto S,
Jaiswal M, Sanz E, et al. Glial lipid droplets
and ROS induced by mitochondrial defects
promote neurodegeneration. Cell. 2015;
160(1–2):177–90.

170 Smolic T, Tavcar P, Horvat A, Cerne U,
Haluzan Vasle A, Tratnjek L, et al. Astro-
cytes in stress accumulate lipid droplets.
Glia. 2021;69(6):1540–62.

171 Lee LL, Aung HH, Wilson DW, Anderson
SE, Rutledge JC, Rutkowsky JM.
Triglyceride-rich lipoprotein lipolysis
products increase blood-brain barrier
transfer coefficient and induce astrocyte
lipid droplets and cell stress. Am J Physiol
Cell Physiol. 2017;312(4):C500–16.

172 Etschmaier K, Becker T, Eichmann TO,
Schweinzer C, Scholler M, Tam-Amers-
dorfer C, et al. Adipose triglyceride lipase
affects triacylglycerol metabolism at brain

barriers. J Neurochem. 2011;119(5):
1016–28.

173 Chausse B, Kakimoto PA, Caldeira-da-Silva
CC, Chaves-Filho AB, Yoshinaga MY, da
Silva RP, et al. Distinct metabolic patterns
during microglial remodeling by oleate and
palmitate. Biosci Rep. 2019;39(4).

174 Alzheimer A, Stelzmann RA, Schnitzlein
HN, Murtagh FR. An English translation of
alzheimer’s 1907 paper, “über eine eige-
nartige erkankung der hirnrinde”. Clin
Anat. 1995;8(6):429–31.

175 van der Kant R, Langness VF, Herrera CM,
Williams DA, Fong LK, Leestemaker Y, et al.
Cholesterol metabolism is a druggable Axis
that independently regulates tau and
amyloid-beta in iPSC-derived alzheimer’s
disease neurons. Cell Stem Cell. 2019;24(3):
363–75.e9.

176 Jauhar S, Johnstone M, McKenna PJ.
Schizophrenia. Lancet. 2022;399(10323):
473–86.

177 Hussain G, Wang J, Rasul A, Anwar H,
Imran A, Qasim M, et al. Role of cholesterol
and sphingolipids in brain development and
neurological diseases. Lipids Health Dis.
2019;18(1):26.

178 Ng F, Berk M, Dean O, Bush AI. Oxidative
stress in psychiatric disorders: evidence base
and therapeutic implications. Int
J Neuropsychopharmacol. 2008;11(6):851–76.

179 Peruzzolo TL, Pinto JV, Roza TH, Shintani
AO, Anzolin AP, Gnielka V, et al. Inflam-
matory and oxidative stress markers in post-
traumatic stress disorder: a systematic re-
view and meta-analysis. Mol Psychiatry.
2022;27(8):3150–63.

180 Xie Z, Jones A, Deeney JT, Hur SK, Bank-
aitis VA. Inborn errors of long-chain fatty
acid β-oxidation link neural stem cell self-
renewal to autism. Cell Rep. 2016;14(5):
991–9.

181 Ramosaj M, Madsen S, Maillard V, Scan-
della V, Sudria-Lopez D, Yuizumi N, et al.
Lipid droplet availability affects neural
stem/progenitor cell metabolism and
proliferation. Nat Commun. 2021;12(1):
7362.

182 Clark D, Dedova I, Cordwell S, Matsumoto
I. A proteome analysis of the anterior cin-
gulate cortex gray matter in schizophrenia.
Mol Psychiatry. 2006;11(5):459–70, 423.

183 Krohn J, Domart F, Do TT, Dresbach T. The
synaptic vesicle protein Mover/TPRG1L is
associated with lipid droplets in astrocytes.
Glia. 2023;71(12):2799–814.

184 Muhtaseb AW, Duan J. Modeling common
and rare genetic risk factors of neuropsy-
chiatric disorders in human induced plu-
ripotent stem cells. Schizophr Res. 2022.

185 Lee SJ, Zhang J, Choi AM, Kim HP. Mi-
tochondrial dysfunction induces formation
of lipid droplets as a generalized response to
stress. Oxid Med Cell Longev. 2013;2013:
327167.

186 Benador IY, Veliova M, Liesa M, Shirihai
OS. Mitochondria bound to lipid droplets:

where mitochondrial dynamics regulate
lipid storage and utilization. Cell Metab.
2019;29(4):827–35.

187 Zhang S, Zhang H, Forrest MP, Zhou Y, Sun
X, Bagchi VA, et al. Multiple genes in a
single GWAS risk locus synergistically
mediate aberrant synaptic development and
function in human neurons. Cell Genom.
2023;3(9):100399.

188 Link JC, Reue K. Genetic basis for sex dif-
ferences in obesity and lipid metabolism.
Annu Rev Nutr. 2017;37(1):225–45.

189 Kanoni S, Graham SE, Wang Y, Surakka I,
Ramdas S, Zhu X, et al. Implicating genes,
pleiotropy, and sexual dimorphism at blood
lipid loci through multi-ancestry meta-
analysis. Genome Biol. 2022;23(1):268.

190 2020 Alzheimer’s disease facts and figures.
Alzheimers Dement. 2020.

191 Guo L, ZhongMB, Zhang L, Zhang B, Cai D.
Sex differences in Alzheimer’s disease: in-
sights from the multiomics landscape. Biol
Psychiatry. 2022;91(1):61–71.

192 Wang JM, Irwin RW, Brinton RD. Activa-
tion of estrogen receptor alpha increases and
estrogen receptor beta decreases apolipo-
protein E expression in hippocampus
in vitro and in vivo. Proc Natl Acad Sci USA.
2006;103(45):16983–8.

193 Ratnakumar A, Zimmerman SE, Jordan BA,
Mar JC. Estrogen activates Alzheimer’s
disease genes. Alzheimers Dement. 2019;5:
906–17.

194 Nathan BP, Barsukova AG, Shen F, McAsey
M, Struble RG. Estrogen facilitates neurite
extension via apolipoprotein E in cultured
adult mouse cortical neurons. Endocrinol-
ogy. 2004;145(7):3065–73.

195 Corder EH, Ghebremedhin E, Taylor MG,
Thal DR, Ohm TG, Braak H. The biphasic
relationship between regional brain senile
plaque and neurofibrillary tangle distribu-
tions: modification by age, sex, and APOE
polymorphism. Ann N Y Acad Sci. 2004;
1019:24–8.

196 Fisher DW, Bennett DA, Dong H. Sexual
dimorphism in predisposition to Alzhei-
mer’s disease. Neurobiol Aging. 2018;70:
308–24.

197 Beydoun MA, Boueiz A, Abougergi MS,
Kitner-Triolo MH, Beydoun HA, Resnick
SM, et al. Sex differences in the association
of the apolipoprotein E epsilon 4 allele with
incidence of dementia, cognitive impair-
ment, and decline. Neurobiol Aging. 2012;
33(4):720–31.e4.

198 Fleisher A, Grundman M, Jack CR Jr, Pe-
tersen RC, Taylor C, Kim HT, et al. Sex,
apolipoprotein E epsilon 4 status, and
hippocampal volume in mild cognitive
impairment. Arch Neurol. 2005;62(6):
953–7.

199 Brown CM, Choi E, Xu Q, Vitek MP, Colton
CA. The APOE4 genotype alters the re-
sponse of microglia and macrophages to
17beta-estradiol. Neurobiol Aging. 2008;
29(12):1783–94.

170 Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

Zhao/Zhang/Sanders/Duan

https://doi.org/10.1016/j.ymgme.2010.12.005
https://doi.org/10.1016/j.ymgme.2010.12.005
https://doi.org/10.1523/JNEUROSCI.23-13-05928.2003
https://doi.org/10.1038/srep23795
https://doi.org/10.1016/j.semcdb.2020.07.018
https://doi.org/10.1016/j.semcdb.2020.07.018
https://doi.org/10.1002/glia.22642
https://doi.org/10.1016/j.stem.2015.08.001
https://doi.org/10.1038/s41593-019-0566-1
https://doi.org/10.1016/j.cell.2015.09.020
https://doi.org/10.1371/journal.pone.0131250
https://doi.org/10.1016/j.cell.2014.12.019
https://doi.org/10.1002/glia.23978
https://doi.org/10.1152/ajpcell.00120.2016
https://doi.org/10.1152/ajpcell.00120.2016
https://doi.org/10.1111/j.1471-4159.2011.07498.x
https://doi.org/10.1042/BSR20190072
https://doi.org/10.1002/ca.980080612
https://doi.org/10.1002/ca.980080612
https://doi.org/10.1016/j.stem.2018.12.013
https://doi.org/10.1016/S0140-6736(21)01730-X
https://doi.org/10.1186/s12944-019-0965-z
https://doi.org/10.1017/S1461145707008401
https://doi.org/10.1017/S1461145707008401
https://doi.org/10.1038/s41380-022-01564-0
https://doi.org/10.1016/j.celrep.2016.01.004
https://doi.org/10.1038/s41467-021-27365-7
https://doi.org/10.1038/sj.mp.4001806
https://doi.org/10.1002/glia.24452
https://doi.org/10.1016/j.schres.2022.04.003
https://doi.org/10.1155/2013/327167
https://doi.org/10.1016/j.cmet.2019.02.011
https://doi.org/10.1016/j.xgen.2023.100399
https://doi.org/10.1146/annurev-nutr-071816-064827
https://doi.org/10.1186/s13059-022-02837-1
https://doi.org/10.1016/j.biopsych.2021.02.968
https://doi.org/10.1016/j.biopsych.2021.02.968
https://doi.org/10.1073/pnas.0608128103
https://doi.org/10.1016/j.trci.2019.09.004
https://doi.org/10.1210/en.2003-1707
https://doi.org/10.1210/en.2003-1707
https://doi.org/10.1196/annals.1297.005
https://doi.org/10.1016/j.neurobiolaging.2018.04.004
https://doi.org/10.1016/j.neurobiolaging.2010.05.017
https://doi.org/10.1001/archneur.62.6.953
https://doi.org/10.1016/j.neurobiolaging.2007.04.018
https://doi.org/10.1159/000535131


200 Hsu M, Dedhia M, Crusio WE, Delprato A.
Sex differences in gene expression patterns
associated with the APOE4 allele. F1000Res.
2019;8:387.

201 Prakash P, Manchanda P, Paouri E, Bisht K,
Sharma K,Wijewardhane PR, et al. Amyloid
β induces lipid droplet-mediated microglial
dysfunction in Alzheimer’s disease. bioRxiv.
2023:2023.06.04.543525.

202 Green T, Flash S, Reiss AL. Sex differences in
psychiatric disorders: what we can learn
from sex chromosome aneuploidies. Neu-
ropsychopharmacology. 2019;44(1):9–21.

203 Stoney CM, Matthews KA, Mcdonald RH,
Johnson CA. Sex differences in lipid, lipo-
protein, cardiovascular, and neuroendo-
crine responses to acute stress. Psycho-
physiology. 1988;25(6):645–56.

204 Ramos-Loyo J, Medina-Hernández V, Es-
tarrón-Espinosa M, Canales-Aguirre A,
Gómez-Pinedo U, Cerdán-Sánchez LF. Sex
differences in lipid peroxidation and fatty
acid levels in recent onset schizophrenia.
Prog Neuro-Psychopharmacol Biol Psychi-
atry. 2013;44:154–61.

205 Brivio E, Kos A, Ulivi AF, Karamihalev S,
Ressle A, Stoffel R, et al. Sex shapes cell-
type-specific transcriptional signatures of
stress exposure in the mouse hypothalamus.
Cell Rep. 2023;42(8):112874.

206 Millett CE, Phillips BE, Saunders EFH. The
sex-specific effects of LPS on depressive-like
behavior and oxidative stress in the Hip-
pocampus of the mouse. Neuroscience.
2019;399:77–88.

207 McNamara RK, Jandacek R, Rider T, Tso P,
HahnC-G, RichtandNM, et al. Abnormalities
in the fatty acid composition of the post-
mortem orbitofrontal cortex of schizophrenic
patients: gender differences and partial nor-
malization with antipsychotic medications.
Schizophr Res. 2007;91(1–3):37–50.

208 Kale A, Naphade N, Sapkale S, Kamaraju M,
Pillai A, Joshi S, et al. Reduced folic acid,
vitamin B12 and docosahexaenoic acid and
increased homocysteine and cortisol in
never-medicated schizophrenia patients:
implications for altered one-carbon meta-
bolism. Psychiatry Res. 2010;175(1–2):47–53.

209 Yin F. Lipid metabolism and Alzheimer’s
disease: clinical evidence, mechanistic link
and therapeutic promise. FEBS J. 2023;
290(6):1420–53.

210 Fassbender K, Simons M, Bergmann C,
Stroick M, Lutjohann D, Keller P, et al.

Simvastatin strongly reduces levels of Alz-
heimer’s disease beta -amyloid peptides
Abeta 42 and Abeta 40 in vitro and in vivo.
Proc Natl Acad Sci USA. 2001;98(10):
5856–61.

211 Refolo LM, Malester B, LaFrancois J, Bry-
ant-Thomas T, Wang R, Tint GS, et al.
Hypercholesterolemia accelerates the Alz-
heimer’s amyloid pathology in a transgenic
mouse model. Neurobiol Dis. 2000;7(4):
321–31.

212 Daneschvar HL, Aronson MD, Smetana
GW. Do statins prevent Alzheimer’s dis-
ease? A narrative review. Eur J Intern Med.
2015;26(9):666–9.

213 Power MC, Weuve J, Sharrett AR, Blacker
D, Gottesman RF. Statins, cognition, and
dementia-systematic review and methodo-
logical commentary. Nat Rev Neurol. 2015;
11(4):220–9.

214 Dagliati A, Peek N, Brinton RD, Geifman N.
Sex and APOE genotype differences related
to statin use in the aging population. Alz-
heimers Dement. 2021;7(1):e12156.

215 Kim JM, Stewart R, Kang HJ, Bae KY, Kim
SW, Shin IS, et al. A prospective study of
statin use and poststroke depression. J Clin
Psychopharmacol. 2014;34(1):72–9.

216 Kim SW, Kang HJ, Bae KY, Shin IS, Hong
YJ, Ahn YK, et al. Interactions between pro-
inflammatory cytokines and statins on de-
pression in patients with acute coronary
syndrome. Prog Neuro-Psychopharmacol
Biol Psychiatry. 2018;80(Pt C):250–4.

217 Rej S, Schulte SW, Rajji TK, Gildengers AG,
Miranda D, Menon M, et al. Statins and
cognition in late-life bipolar disorder. Int
J Geriatr Psychiatry. 2018;33(10):1355–60.

218 Nomura I, Kishi T, Ikuta T, Iwata N. Statin
add-on therapy in the antipsychotic treat-
ment of schizophrenia: a meta-analysis.
Psychiatry Res. 2018;260:41–7.

219 Sommer IE, Gangadin SS, de Witte LD,
Koops S, van Baal C, Bahn S, et al. Sim-
vastatin augmentation for patients with
early-phase schizophrenia-spectrum disor-
ders: a double-blind, randomized placebo-
controlled trial. Schizophr Bull. 2021;47(4):
1108–15.

220 Fotso Soh J, Beaulieu S, Trepiccione F,
Linnaranta O, Torres-Platas G, Platt RW,
et al. A double-blind, randomized, placebo-
controlled pilot trial of atorvastatin for
nephrogenic diabetes insipidus in lithium
users. Bipolar Disord. 2021;23(1):66–75.

221 Köhler-Forsberg O, Gasse C, Petersen L,
Nierenberg AA, Mors O, Østergaard SD.
Statin treatment and the risk of depression.
J Affect Disord. 2019;246:706–15.

222 Okereke OI, Vyas CM, Mischoulon D,
Chang G, Cook NR, Weinberg A, et al.
Effect of long-term supplementation with
marine omega-3 fatty acids vs placebo on
risk of depression or clinically relevant de-
pressive symptoms and on change in mood
scores: a randomized clinical trial. JAMA.
2021;326(23):2385–94.

223 Liang CS, Tseng PT, Su KP. Effect of long-
term supplementation with marine omega-3
fatty acids vs placebo on risk of depression.
JAMA. 2022;327(13):1290–1.

224 Papsdorf K, Brunet A. Linking lipid meta-
bolism to chromatin regulation in aging.
Trends Cell Biol. 2019;29(2):97–116.

225 Parnell E, Culotta L, Forrest MP, Jalloul HA,
Eckman BL, Loizzo DD, et al. Excitatory
dysfunction drives network and calcium
handling deficits in 16p11.2 duplication
schizophrenia induced pluripotent stem
cell-derived neurons. Biol Psychiatry. 2023;
94(2):153–63.

226 Zhang S, Sanders AR, Duan J. Modeling
PTSD neuronal stress responses in a dish.
Nat Neurosci. 2022;25(11):1402–4.

227 Kozlova A, Zhang S, Kotlar AV, Jamison B,
Zhang H, Shi S, et al. Loss of function of
OTUD7A in the schizophrenia- associated
15q13.3 deletion impairs synapse develop-
ment and function in human neurons. Am
J Hum Genet. 2022;109(8):1500–19.

228 Yue W, Huang H, Duan J. Potential diag-
nostic biomarkers for schizophrenia. Med
Rev Berl. 2022;2(4):385–416.

229 Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S,
Kozlova A, et al. Allele-specific open chro-
matin in human iPSC neurons elucidates
functional disease variants. Science. 2020;
369(6503):561–5.

230 Butler Iii RR, Kozlova A, Zhang H, Zhang S,
Streit M, Sanders AR, et al. The genetic
relevance of human induced pluripotent
stem cell-derived microglia to alzheimer’s
disease and major neuropsychiatric disor-
ders. Mol Neuropsychiatry. 2020;5(Suppl 1):
85–96.

231 Barretto N, Zhang H, Powell SK, Fernando
MB, Zhang S, Flaherty EK, et al. ASCL1- and
DLX2-induced GABAergic neurons from
hiPSC-derived NPCs. J Neurosci Methods.
2020;334:108548.

Brain Lipids and Alzheimer’s Disease and
Neuropsychiatric Disorders

Complex Psychiatry 2023;9:154–171
DOI: 10.1159/000535131

171

https://doi.org/10.12688/f1000research.18671.2
https://doi.org/10.1101/2023.06.04.543525
https://doi.org/10.1038/s41386-018-0153-2
https://doi.org/10.1038/s41386-018-0153-2
https://doi.org/10.1111/j.1469-8986.1988.tb01902.x
https://doi.org/10.1111/j.1469-8986.1988.tb01902.x
https://doi.org/10.1016/j.pnpbp.2013.02.007
https://doi.org/10.1016/j.pnpbp.2013.02.007
https://doi.org/10.1016/j.celrep.2023.112874
https://doi.org/10.1016/j.neuroscience.2018.12.008
https://doi.org/10.1016/j.schres.2006.11.027
https://doi.org/10.1016/j.psychres.2009.01.013
https://doi.org/10.1111/febs.16344
https://doi.org/10.1073/pnas.081620098
https://doi.org/10.1006/nbdi.2000.0304
https://doi.org/10.1016/j.ejim.2015.08.012
https://doi.org/10.1038/nrneurol.2015.35
https://doi.org/10.1002/trc2.12156
https://doi.org/10.1002/trc2.12156
https://doi.org/10.1097/JCP.0000000000000051
https://doi.org/10.1097/JCP.0000000000000051
https://doi.org/10.1016/j.pnpbp.2017.07.003
https://doi.org/10.1016/j.pnpbp.2017.07.003
https://doi.org/10.1002/gps.4956
https://doi.org/10.1002/gps.4956
https://doi.org/10.1016/j.psychres.2017.11.033
https://doi.org/10.1093/schbul/sbab010
https://doi.org/10.1111/bdi.12973
https://doi.org/10.1016/j.jad.2018.12.110
https://doi.org/10.1001/jama.2021.21187
https://doi.org/10.1001/jama.2022.2030
https://doi.org/10.1016/j.tcb.2018.09.004
https://doi.org/10.1016/j.biopsych.2022.11.005
https://doi.org/10.1038/s41593-022-01172-9
https://doi.org/10.1016/j.ajhg.2022.07.001
https://doi.org/10.1016/j.ajhg.2022.07.001
https://doi.org/10.1515/mr-2022-0009
https://doi.org/10.1515/mr-2022-0009
https://doi.org/10.1126/science.aay3983
https://doi.org/10.1159/000501935
https://doi.org/10.1016/j.jneumeth.2019.108548
https://doi.org/10.1159/000535131

	Brain Lipids and Lipid Droplet Dysregulation in Alzheimer’s Disease and Neuropsychiatric Disorders
	Introduction
	Genetic Evidence That Supports the Link of Lipids with AD and NPD
	Role of Glycerophospholipids and Sphingolipids in AD and NPD
	Function of Phospholipids in Neurons
	Function of Phospholipids in Glial Cells
	GPLs and Sphingolipids in AD
	GPLs and Sphingolipids in NPD

	Role of Cholesterol in AD and NPD
	Cholesterol in Neurons
	Cholesterol in Glial Cells
	Cholesterol in AD
	Cholesterol in NPD

	Lipid Droplets
	Neuronal LDs
	Glial LDs
	LDs in AD
	LDs in NPD

	Sex Differences of Lipids in AD and NPDs
	Treatment Strategies for AD and NPDs by Targeting Lipids
	Conclusion and Perspective
	Conflict of Interest Statement
	Funding Sources
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


