
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Renard T, Martinet B, De
Souza Araujo N, Aron S. 2023 DNA methylation

extends lifespan in the bumblebee Bombus

terrestris. Proc. R. Soc. B 290: 20232093.
https://doi.org/10.1098/rspb.2023.2093
Received: 14 September 2023

Accepted: 14 November 2023
Subject Category:
Genetics and genomics

Subject Areas:
genetics, molecular biology, physiology

Keywords:
epigenetics, ageing, DNA methylation, insects,

sirtuins, bumblebee
Author for correspondence:
Thibaut Renard

e-mail: thibaut.renard@ulb.be
© 2023 The Author(s) Published by the Royal Society. All rights reserved.
†Co-first authors.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6949032.
DNA methylation extends lifespan in the
bumblebee Bombus terrestris

Thibaut Renard†, Baptiste Martinet†, Natalia De Souza Araujo and Serge Aron

Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000,
Belgium

TR, 0000-0002-7796-3986; BM, 0000-0003-4369-8552; NDSA, 0000-0002-0074-6844;
SA, 0000-0002-1674-8828

Epigenetic alterations are a primary hallmark of ageing. In mammals, age-
related epigenetic changes alter gene expression profiles, disrupt cellular
homeostasis and physiological functions and, therefore, promote ageing. It
remains unclear whether ageing is also driven by epigenetic mechanisms
in invertebrates. Here, we used a pharmacological hypomethylating agent
(RG108) to evaluate the effects of DNA methylation (DNAme) on lifespan
in an insect—the bumblebee Bombus terrestris. RG108 extended mean life-
span by 43% and induced the differential methylation of genes involved
in hallmarks of ageing, including DNA damage repair and chromatin organ-
ization. Furthermore, the longevity gene sirt1 was overexpressed following
the treatment. Functional experiments demonstrated that SIRT1 protein
activity was positively associated with lifespan. Overall, our study indicates
that epigenetic mechanisms are conserved regulators of lifespan in both
vertebrates and invertebrates and provides new insights into how DNAme
is involved in the ageing process in insects.
1. Introduction
Ageing is a natural process during which organisms experience time-dependent
declines in their molecular, cellular and physiological functions [1–4]. Age-
related epigenetic changes are one of the primary hallmarks of ageing [2].
Under normal conditions, epigenetic mechanisms mediate gene–environment
interactions; thus, they serve an important adaptive function because they
enable organisms to phenotypically adjust to environmental conditions [5–7].
However, recent research has shown that the accumulation of epigenetic altera-
tions over time is a particularly important driver of the ageing process because
they affect gene expression profiles, consequently leading to disruptions in cel-
lular and physiological homeostasis [8–10]. Accordingly, ageing has been
shown to be modulable by manipulating the epigenome. In mammals, restoring
early-life epigenetic patterns was shown to promote in vivo rejuvenation by
‘resetting’ transcriptomic profiles and cellular functions [9,10].

The epigenetic mark cytosine DNA methylation (DNAme) is widespread in
eukaryotes [11] and has been robustly associated with the ageing process
[12,13]. Age-related changes in DNAme have been observed in multiple
vertebrate groups, including fishes [14], amphibians [15], birds [16] and mam-
mals [17], suggesting that the association between ageing and this epigenetic
mark is evolutionarily conserved. By contrast, to our knowledge, only one
study explored the role of DNAme in ageing in invertebrates and reported ten-
tative yet mixed evidence indicating that DNAme might play a role in lifespan
regulation in the honeybee Apis mellifera [18]. Therefore, it remains to be unequi-
vocally determined whether DNAme is also involved in ageing in invertebrates
and, if so, what are the mechanisms by which this epigenetic mark affects
this process.

Epigenetic regulation of lifespan has been consistently shown to be modu-
lated by genes from the highly conserved silent information regulator of
transcription (sirtuins, sirt) family, whose members act as master regulators
of multiple cellular processes [19,20], including some related to ageing [21],
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such as DNA damage repair [22], epigenetic regulation of
gene expression [23], proteostasis [24] and nutrient sensing
[25]. For instance, the protein SIRT1 interacts with DNA-
methyltransferase 1 (DNMT1) to regulate DNAme profiles
[26]. Experimentally increasing sirt1 expression or SIRT1
activity has been shown to extend lifespan in several model
organisms [27], including yeasts [28], nematodes [29], fruit
flies [29] and mice [30].

Social Hymenoptera (i.e. ants, social bees and social wasps)
are particularly useful models for studying the epigenetic
regulation of ageing because the same genetic background
can lead to phenotypically distinct groups with contrasting
lifespans. The female castes—reproductive queens and non-
reproductive workers—provide a dramatic illustration of this
point. Queens and workers of social Hymenoptera exhibit
the largest intraspecific difference in lifespan ever observed
in animals. For instance, in some ant species, queens may
live for more than 20 years, while workers die after just a
few months [31,32]. Caste fate is determined during larval
development and is shaped by environmental and social fac-
tors (e.g. food quantity and/or quality, presence of the queen
and/or brood) that can cause the same baseline genome to
express itself along different developmental paths [33–35]. Fur-
thermore, adult life expectancy can be dynamically influenced
by environmental factors, such as diet [36], reproductive status
[37], colony size [38], social task [39] or parasite load [40]. Such
dramatic plasticity in female lifespan suggests that epigenetic
mechanisms could mediate ageing in social Hymenoptera.
Indeed, several studies have found an association between
individual life expectancy and DNAme patterns in social
insects [41–43]. However, research has yet to explore whether
this relationship is causal in nature.

Here, we show that pharmacological alterations of DNAme
increased worker lifespan in an insect—the bumblebee Bombus
terrestris. Experimentally induced longer lifespans were associ-
ated with changes in the methylation status of genes involved
in several molecular and cellular processes related to ageing,
including DNA damage repair, chromatin organization, pro-
teostasis and nutrient sensing, as well as changes in the
expression level of the longevity gene sirt1.
2. Methods
(a) Model organism
The buff-tailed bumblebee (Bombus terrestris) is a particularly
well-suited biological model for studying the epigenetic
regulation of ageing for several reasons. First, females of this
species exhibit lifespan plasticity despite having the same geno-
type. Thus, lifespan variations must arise from epigenetic
differences, at least in part. Second, B. terrestris queens are singly
mated and produce workers that are also their closely related
daughters (r = 0.75), which greatly reduces the potential for gen-
etic confounding. Third, workers have relatively short lifespans
(four to five weeks), facilitating research on survival patterns [44].

In all experiments, we used B. terrestris workers of the same
age obtained from 12 different queenright colonies (supplier:
Biobest, Westerlo, Belgium). Queenless microcolonies were
formed by randomly selecting 5 or 10 workers (depending on
the experiment, see below) from the same natal colony to avoid
aggressive behaviour. The microcolonies were not given any
brood. Previous studies have shown that, in B. terrestris, the pres-
ence of five workers is sufficient to consistently reproduce colony
social dynamics [45]. The microcolonies were given ad libitum
quantities of Salix pollen (Ruchers de Lorraine, Nancy, France)
and sugar syrup (Biogluc, Biobest, Westerlo, Belgium). They
were maintained in constant darkness (temperature: 26°C, rela-
tive humidity: 50–60%). All the assays were performed under
red light conditions to minimize disturbances.

(b) Effect of RG108 treatment on worker lifespan
To investigate the role of DNAme in lifespan regulation, we treated
B. terrestris workers with the pharmacological hypomethylating
agent RG108 (MedChemExpress, HY-13642). RG108 is a non-
nucleoside, specific inhibitor of DNMT1 [46], which has been
reported to have a mild, but positive effect on lifespan in honey-
bees [18] and to show anti-senescent properties in cell cultures
[47]. One-week-old workers were exposed to a single dose of
RG108. We topically applied 2 µl of RG108 (0.2 mM diluted in
DMSO) on the thorax of treatment workers and 2 µl of DMSO (sol-
vent) on the thorax of control workers. We used 14 microcolonies
composed of a mix of 10 treated and untread workers each: five
treatment workers and five control workers. Treatment and control
workers were marked on the wings with different colors. For each
microcolony, worker mortality was recorded every 24 h until all the
workers had died.

Data normality and heteroscedasticity were tested using the
Shapiro–Wilk test and Levene’s test, respectively. Mean lifespan
and survival curves of workers were compared using the Mann–
Whitney U-test and mixed-effects cox model (coxme package in
R [48]), respectively. Colony was included as a random factor in
mixed-effects model. The statistical analyses were performed
using R environment [48].

(c) Food intake following RG108 treatment
Dietary intake is a robust and highly conserved determinant of
lifespan in animals [49,50]. Therefore, we explored whether the
hypomethylating agent RG108 affected dietary intake.

Food intake was compared for 50 days between treatment
microcolonies (n = 19) and control microcolonies (n = 16). Each
microcolony contained five workers and was given sugar
syrup (carbohydrate source; Biogluc, Biobest, Westerlo, Bel-
gium) and pollen (protein and lipid source; Salix sp. Rucher
de Lorraine, Nancy, France) ad libitum. Food intake was quanti-
fied twice a week by weighing the amount of sugar and pollen
consumed by the workers. To avoid potential alterations in
dietary behaviour due to changes in social structure [51], food
consumption was only quantified for colonies containing at
least two (out of the five) workers. The amount of food
consumed per worker was calculated by dividing the microcol-
ony’s total consumption by its number of workers at each intake
measurement point.

We used generalized linear models (GLM command in stats
package [48]) to evaluate the effect of the RG108 treatment on the
intake of sugar syrup and pollen. The latter were normally
distributed (model = Gaussian, link = identity). The colony of
origin was included as a random factor in the GLM models.

(d) Genome-wide DNA methylation patterns
We evaluated the genome-wide modifications in DNAme
induced by the RG108 treatment by conducting whole-genome
bisulfite sequencing (WGBS) of the entire bodies of treatment
and control workers from the feeding experiment. To differen-
tiate between the treatment’s short- and long-term effects, we
compared the methylomes of workers one week and four
weeks post treatment. WGBS was performed on the workers’
entire bodies; thus, we could not identify tissue-specific changes
in DNAme. However, this approach was intentionally adopted to
capture either the combined methylation pattern for multiple
tissues or tissue-specific methylation patterns that were
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pronounced enough to produce a signal strong enough to be
detected. At each time point, we sampled whole-body DNA
from three randomly selected workers in the treatment and con-
trol groups for WGBS. The DNA was extracted using a
NucleoSpin Tissue Kit (Macherey-Nagel, cat. no. 740952) and
was then sent to the Beijing Genomics Institute (BGI) for library
preparation and WGBS. Bisulfite conversion and WGBS were
performed using an EZ DNA Methylation-Gold Kit (Zymo
Research) and a DNBSEQ sequencing platform (DNBSEQ Tech-
nology), respectively. WGBS included an unmethylated lambda
phage to control for conversion. Sequencing was paired for
reads of 100 bp. Read quality was verified using FastQC
v. 0.11.9 [52]. Additional trimming of the sequenced reads was
performed using TrimGalore v. 0.6.6 [53]. The cleaned reads
were aligned with the B. terrestris reference genome (v. 1.2;
GCF_910591885.1) using Bismark v. 0.24.0 [54]; only the
paired-end alignments with the best unique hits were kept,
while duplicates were removed. The recommended default par-
ameters were used for TrimGalore and Bismark. We evaluated
alignment quality and read methylation bias using Bismark,
Qualimap v. 2.2.1 [55], and MethylDackel v. 0.6.1 (in HTSlib
v. 1.16) [56]. Bisulfite converted reads were mapped to the
genome with efficiency rates that ranged from 58.7% to 66.7%
for workers one week post treatment, and from 50.4% to 67%
for workers four weeks post treatment. Final mean coverage
for all the alignments was 21.7 ± 36.2 times.

Methylation data were extracted using MethylDackel.
Specifically, read methylation bias was estimated using the
‘mbias’ option, then biased positions were removed using
the options ‘–methylKit –OT 0,0,0,0 –OB 0,0,0,99’. Differently
methylated sites (DMS) were identified using MethylDackel to
exclude CpG sites with less than 8 times coverage (-minDepth
8). Differently methylated genes (DMGenes) were identified by
retaining low-coverage sites (–minDepth 1) for posterior filtering
with methylKit v. 1.24.0 [57].

Differential methylation analyses were performed using R
v. 4.2.0 (package =methylKit v 1.24.0 [55]). Workers from treat-
ment and control microcolonies were independently compared
for each time point. DMS were identified after only considering
sites with a minimum nucleotide coverage of 10× and a maximum
nucleotide coverage of 99.9%. To identify DMGenes, gene pos-
itions were filtered using the annotated reference genome. Mean
methylation levels for the entire gene were compared with a mini-
mum of 10 cytosines to be present (meth_genes$numCsN > = 10)
per gene for all sample replicates. The maximum nucleotide cover-
age was 99.9%. Additionally, we normalized the methylation
counts by coverage across replicates (3 per set of conditions). To
identify any possible batch effects, we analysed sample clustering
and correlation as well as performed a PCAwith all the replicates
per age category in methylKit. We used the suggested default
qvalue of 0.01 as the threshold for significant differences between
the treatment and control groups. However, because mean levels
of DNAme in B. terrestris are low—typically less than 1%—we
established a cut-off in methylation differences that was based
on the distribution of our data, excluding extremes. Briefly, we cal-
culated the mean difference between the 1% (hypomethylated)
and the 99% (hypermethylated) quartiles of all the methylation
data and identified 4% as the minimum cut-off, which is around
four times greater than the mean genome methylation level
and at least five times greater than the overall mean methylation
differences observed between the control and treatment workers
(see Results).

Gene ontology (GO) annotations for the B. terrestris genome in
the Hymenoptera Genome Database [58,59] (available at hyme-
noptera.elsiklab.missouri.edu/hgd-go-annotation) were used for
the GO term enrichment analyses. Based on the gene IDs
(obtained from www.ncbi.nlm.nih.gov/data-hub/gene/taxon/
30195/), the GO terms were associated with all the genes. The
GO terms for biological processes (BPs) that were enriched for
the DMGenes and DMS compared to the entire genome were
identified using the R package topGO v. 2.50.0 [60], with the
‘weight01’ algorithm, Fisher’s exact test, and alpha level of 0.01.

(e) Effect of RG108 on sirt1 expression
We compared sirt1 gene expression between treatment and
control workers at one week and four weeks post treatment.
Expression levels were quantified using reverse transcription
quantitative real-time PCR (RT-qPCR). Total RNA was extracted
from the whole bodies of six treatment and six control workers at
each time point using TRI Reagent (Thermo Fischer Scientific).
Relative sirt1 expression was quantified using the ΔΔCt method
[61], with the rpl32 gene serving as the standard of reference.
The primers were designed using gene sequences from the
Hymenoptera Genome Database [58,59] and NCBI primer
BLAST software [62].

( f ) Effect of the SIRT1 pharmacological activator and
inhibitor on worker lifespan

We sought to confirm the specific influence of SIRT1 on worker
lifespan using pharmacological modulators of SIRT1 activity.
Starting at one week of age and continuing over their entire life-
time, workers were fed sugar syrup solution that contained
either resveratrol—a potent activator of SIRT1 (hereafter called
RSV; MedChemExpress, HY-16561; 100 µM in DMSO)—or selisi-
stat—a specific inhibitor of SIRT1 (hereafter called SEL;
MedChemExpress, HY-15452; 75 nM in DMSO). Control workers
were fed a sugar syrup solution containing DMSO. These feeding
regimes were repeated daily over the course of the workers’ life-
times to ensure optimal levels of pharmacological activity. In
total, we established 40 microcolonies of five workers each
(RSV treatment n = 12, RSV control n = 10, SEL treatment n = 8
and SEL control n = 10). Worker mortality was recorded every
24 h. Statistical analyses were performed as described above for
the RG108 treatment.
3. Results
(a) The hypomethylating agent RG108 extends worker

lifespan
We found that a single topical application of RG108 increased
mean worker lifespan by 43% (mean lifespan ± s.d.: control
group = 35.4 ± 7.5 days, treatment group = 50.7 ± 17.5 days;
Mann–Whitney U-test: U = 1180.5, p < 0.0001; figure 1).
Accordingly, the survival curve for the treatment group was
significantly shifted to longer lifespans. RG108 also increased
maximum lifespan (control group = 55 days, treatment
group = 92 days; mixed-effects Cox model: p < 0.0001;
figure 1).

(b) Dietary differences do not explain the
RG108-mediated increase in lifespan

Despite its effect on lifespan, we did not observed any effect
of RG108 on dietary intake: neither sugar nor pollen con-
sumption significantly differed between the two groups
(mean total sugar syrup intake per worker ± s.d.: control =
23.36 ± 1.42 g, treatment = 24.34 ± 2.63 g, t1,33= 1.408, p = 0.17
and mean total pollen intake per worker ± s.d. of pollen: con-
trol = 1.94 ± 0.15 g, treatment = 1.93 ± 0.29 g, t1,33 =−0.161,
p = 0.87; electronic supplementary material, figure S1).

http://www.ncbi.nlm.nih.gov/data-hub/gene/taxon/30195/
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100

a

control RG108

b

35.4 � 7.5
n = 70

50.7 � 17.5
n = 70

(a)

80

lif
es

pa
n 

(d
ay

s)

cu
m

ul
at

iv
e 

su
rv

iv
al

 (
%

)

60

40

20

100

(b)

80

60

40

20

10 20 30 40
time (days)

6050 70 80 90

control RG108

Figure 1. RG108 extends worker lifespan. (a) Boxplots of worker lifespan for the control group (single dose of DMSO solution; white) or the treatment group (single
dose of RG108 diluted in DMSO; grey). The mean lifespan ± s.d. and sample size (n) are indicated above each box. The box’s midline indicates the median; the box’s
lower and upper edges are the first and third quartiles, respectively. The whiskers reflect the extreme values. Differences in the letters above the boxes indicate
statistically significant differences in mean lifespan (Mann–Whitney U-test: p < 0.0001). (b) Survival curves of workers in the control group (dashed line) and the
treatment group (solid line) (mixed-effects Cox model: p < 0.0001).

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20232093

4

(c) RG108 treatment induced short- and long-term
changes in DNA methylation profiles

Clustering and principal component analyses of WGBS data
grouped individuals of the same experimental condition
together (i.e. control workers were more similar to each
other from a methylomic standpoint than to treatment
workers, and vice versa; electronic supplementary material,
figure SB and SC).

Genome-wide methylation analyses revealed that treated
workers displayed global hypermethylation at both time
points, when compared with control workers (electronic sup-
plementary material, figure S2). Furthermore, treatment
workers had higher levels of hypermethylation at four
weeks than at one week. More specifically, 58% of the differ-
entially methylated single nucleotide polymorphisms (DMS)
and 75% of the differentially methylated genes (DMGenes)
were hypermethylated at one week, while 62% of DMS and
94% of DMGenes were hypermethylated at four weeks.

One week post treatment, we observed the presence of 4338
DMS: 1838 were hypomethylated (36.90% average methylation
difference between treatment versus control workers), and 2500
were hypermethylated (36.97% average methylation difference
between treatment versus control workers) (electronic sup-
plementary material, figure S2). Hypermethylated and
hypomethylated cytosines occurred in genes significantly
enriched for 31 and 37 GO terms for BPs, respectively. These
terms included DNA damage repair, chromatin organization
and proteostasis (electronic supplementary material, table S3).
When examining entire gene regions, we observed 174 hyper-
methylated genes (5.69% average methylation difference
between treatment versus control workers) and 58 hypomethy-
lated genes (5.83% average methylation difference between
treatment versus control workers). The genes that displayed
the largest methylation differences are shown in figure 2.

Four weeks post treatment, we observed 6137 DMS: 3781
were hypermethylated (35.28% average methylation difference
between treatment versus control workers), and 2356 were
hypomethylated (33.60% average methylation difference
between treatment versus control workers) (electronic sup-
plementary material, figure S2). The hypermethylated and
hypomethylated cytosines were found in genes significantly
enriched for 41 and 59 GO terms for BPs, respectively. These
terms included DNA damage repair, chromatin organization
and proteostasis as well as longevity- and growth-regulating
pathways (electronic supplementary material, table S3). The
analyses of the DMGenes identified 418 hypermethylated
genes (5.77% average methylation difference between treat-
ment versus control workers) and 26 hypomethylated genes
(6.71% average methylation difference between treatment
versus control workers). The genes that displayed the largest
methylation differences are shown in figure 2.

Overall, at both time points, the RG108 treatment induced
genome-wide and gene-specific modifications in DNAme
that were positively associated with worker lifespan.

(d) RG108 treatment induces sirt1 overexpression
Gene expression of sirt1 was significantly affected by the
RG108 treatment in a time-dependent manner (two-way
ANOVA: treatment: F1,32 = 84.26, p < 0.0001; time: F1,32 =
57.42, p < 0.0001; interaction: F1,32 = 33.76 p < 0.0001). sirt1
was significantly overexpressed in treatment workers one
week after treatment with RG108 (mean fold change ± s.d.:
control = 1.00 ± 0.11, treatment = 2.31 ± 0.35, Tukey’s post hoc
test: p < 0.0001; figure 3). By contrast, there was no difference
in sirt1 expression between the two groups at four weeks
post treatment (mean fold change ± s.d.: control = 0.85 ± 0.90,
treatment = 1.14 ± 0.19, Tukey’s post hoc test: p = 0.067;
figure 3). This finding indicates that the differential expression
of sirt1 induced by the single dose of RG108 did not persist
over time, even if the treatment did extend worker lifespan.

(e) Pharmacological modulators of SIRT1 activity affect
worker lifespan

Lifespan of workers that were chronically fed with modu-
lators of SIRT1 protein activity was significantly affected.
RSV and SEL had opposite effects on worker lifespan. RSV
increased mean worker lifespan by 51% (mean lifespan ±
s.d.: control group = 32.6 ± 4.9 days, RSV group = 49.1 ± 17.8
days; Mann–Whitney U-test: U = 406, p < 0.0001; figure 4).
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Maximum lifespan was also extended (+136% or 97 days
total). Conversely, workers fed with SEL had a 17% shorter
lifespan than control workers (mean lifespan ± s.d.: control
group = 42.0 ± 10.4 days, SEL group = 34.7 ± 10.4 days;
Mann–Whitney U-test: U = 474, p < 0.0001; figure 4), and a
shorter maximum lifespan (−8% or 47 days total).

These functional experiments suggest that SIRT1 is
involved in lifespan regulation in B. terrestris.
4. Discussion
Using functional experiments and genome-wide DNAme
analyses, we found that a single application of RG108, a
pharmacological hypomethylating agent, increased the life-
span of one-week-old B. terrestris workers by 43%. Our
discovery fits with the results of other studies in mammals,
which have shown that various short-term treatments with
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geroprotectors can have positive, long-lasting effects on long-
evity [9,63]. This result confirms the previously suggested
positive effect of RG108 on longevity in another insect, the
honeybee A. mellifera [18]. However, our study goes a step
further by analysing the consequences of RG108 on both
genome-wide and gene-specific DNAme patterns (see
below). Taken together, these findings suggest that DNAme
plays a conserved role in lifespan regulation in both
vertebrates and invertebrates.

Currently, dietary restriction is the most robust interven-
tion to extend lifespan [49,50]. Food restriction decelerates
ageing by preventing changes in DNAme over time [64].
However, our results show that the effects of the RG108 treat-
ment were not mediated via food intake, as previously
documented in the honeybee [18]. Instead, our findings
suggest that RG108-induced epigenetic changes have effects
downstream of food intake that promote longevity.

Consistent with the role of DNAme in lifespan regulation
in invertebrates, recent studies have shown that the patterns
of this epigenetic mark are influenced by age in the parasitoid
wasp Nasonia vitripennis [65] and the water flea Daphnia magna
[66]. Our functional analyses revealed that RG108 significantly
affected DNAme in the CG context, but not in the non-CG con-
text. This result is unsurprising given that RG108 specifically
inhibits DNMT1, which is mostly responsible for CG methyl-
ation. On the opposite, non-CG methylation is mostly
catalysed by DNMT3 [67], which is not targeted by RG108,
thus explaining the similar levels of this type of methylation
between treatment and control workers. Therefore, we focused
our analysis on CG methylation.

Several complementary explanations for RG108’s positive
effect on lifespan can be proposed from our WGBS analyses.
First, we found that the RG108 treatment induced genome-
wide DNA hypermethylation. Given that ageing is known
to correlated with global hypomethylation [68], genome
hypermethylation could buffer against the progressive loss
of DNAme over time. The fact that the hypomethylation
agent RG108 increased methylation levels could stem from
its influence on genes that directly or indirectly regulate
DNAme. For instance, genome hypermethylation might be
mediated by crosstalk involving other epigenetic mechan-
isms, such as histone post-translational modifications [69]
or non-coding RNA [70]. Support for this hypothesis comes
from our methylomic data, which showed that there were
associations with genes encoding proteins involved in his-
tone-related processes in treatment versus control workers
at four weeks post treatment and that levels of hypermethy-
lation in treatment workers were higher at four weeks post
treatment than at one week post treatment. Alternatively,
hypermethylation could result from a rebound effect,
where cells respond to RG108 exposure by adjusting the
methylation levels of the genome. Interestingly, another
hypomethylating agent, 5-Aza-20-deoxycytidine, has also
been found to induce hypermethylation in B. terrestris
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workers, which was associated with increased colony pro-
ductivity [71]. By contrast, the same treatment was found to
reduce global DNAme level in honeybees [18]. Such differ-
ences in the effect of a pharmacological agent were
previously reported in Nasonia vitripennis, where the conse-
quences of 5-Aza-dC on DNAme depend on the time of
sampling and the tissue [72]. Alternatively, the contrasted
effect of RG108 between A. mellifera and B. terrestris might
stem from the timing of the treatment (B. terrestris: one-
week-old workers; A. mellifera: newly emerged workers).
Increased susceptibility to epigenetic modifications at specific
time windows was indeed documented in mammals [73],
plants [74] and, recently, social Hymenoptera [75,76].

Another, non-mutually exclusive explanation for RG108’s
impact on worker lifespan is that the agent directly alters the
methylation status of the genes involved in lifespan regu-
lation. Consistent with this hypothesis, our enrichment
analyses showed that the RG108 treatment affected the
methylation status of genes whose GO terms were associated
with several key ageing-related processes at both one week
and four weeks post treatment, including DNA damage
repair, chromatin organization and proteostasis (electronic
supplementary material, table S3). (i) Genomic instability is
a molecular hallmark of ageing [2], and DNA damage
underlies several molecular and cellular mechanisms that
promote ageing, such as epigenetic changes and deteriorated
proteostasis [77]. Altering the methylation status of genes
involved in DNA damage repair could promote longevity
by countering ageing-related DNA damage. (ii) Altered chro-
matin organization and post-translational modifications in
histone proteins promote ageing by altering transcriptional
profiles [2]. Given that histones modifications act in tandem
with DNAme to regulate gene expression [69], RG108 may
extend lifespan via a combined effect on different epigenetic
marks that serves to ensure the maintenance of epigenomic
patterns. (iii) Loss of proteostasis is another hallmark of
ageing [2], which refers to alterations in proteomic processes,
such as protein synthesis, degradation, post-translational
modifications, folding and transport [78]. The enriched GO
terms related to proteostasis were mostly trafficking and
degradation, which are two key steps in autophagy [79], a
cytoprotective process that is strongly linked to longevity
[80]. Thus, RG108 could increase lifespan by functionally
maintaining autophagy across the lifespan of workers, thus
ensuring the prolonged maintenance of cell homeostasis.
Finally, at the four weeks mark, the treatment group was
characterized by the enrichment in GO terms related to
growth- and longevity-regulating pathways, including the
nutrient-sensing insulin/insulin-like growth factor signalling
(IIS) pathway and the target of rapamycin (TOR) pathway,
which are known to influence the trade-off between
growth, reproduction, and longevity in many animals
[81–84], including social insects [35,85,86]. Deregulation of
these nutrient-sensing pathways can drive ageing by altering
cell and organismal metabolism [87]. Interestingly, treatment
with rapamycin, a TOR inhibitor, in later life stage can
increase lifespan in mice [88]. Therefore, the effect of RG108
could be mediated, at least in part, by the methylation of
IIS- and TOR-related genes in treatment workers at four
weeks post treatment. Altogether, our methylomic analyses
indicate that the RG108 treatment induced a combination of
global and gene-specific changes in methylation profiles
that may act collectively to promote longevity.
The RG108 treatment led to a modest but nonetheless
statistically significant difference in sirt1 expression at
one week post treatment. This difference was no longer pre-
sent at the four weeks mark. Given the central role played
by sirt1 in cell metabolism, it is not surprising that its
expression remains strictly controlled to ensure proper
cell function. Mechanistically, it seems likely that the effects
of the RG108 treatment arose from an interaction between
SIRT1 and DNMT1 proteins. One week after workers
experienced the treatment, the hypomethylating effect of
RG108 was possibly being counteracted by high induced
levels of sirt1 expression. SIRT1 is known to promote the
activity of DNMT1, a protein that, in turn, promotes DNA
hypermethylation [26]. The resulting hypermethylation
would then have become more pronounced four weeks
after the treatment, whereas sirt1 expression would have
dropped back down to baseline to avoid excessively high
methylation levels.

The functional manipulation of SIRT1 activity revealed a
positive relationship between SIRT1 activity and lifespan in
B. terrestris. While the potent SIRT1 activator RSV increased
worker lifespan, the specific SIRT1 inhibitor SEL reduced it.
These results do not imply that SIRT1 was solely responsible
for the effects of the RG108 treatment on lifespan. Indeed,
RSV does not exclusively influence the activity of SIRT1. It
also inhibits the growth- and lifespan-regulating pathway
TOR [88]. Furthermore, SIRT1 interacts with the IIS [89]
and TOR pathways [90], whose components are encoded by
genes that we observed to be differentially methylated fol-
lowing RG108 treatment. Thus, it is possible that the two
pharmacological treatments that lead to lifespan extension
(i.e. RG108 and RSV) do so via the same BPs.
5. Conclusion
To our knowledge, our study is the first to functionally
manipulate lifespan in combination with genome-wide
DNAme analyses to explore how DNAme is involved in life-
span regulation in an insect. These findings should spark
future interest in invertebrates ageing research to determine
whether the epigenetic underpinnings of ageing are
conserved across animal taxa.
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