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Abstract
Concentrations of 4 potentially toxic elements (As, Cd, Hg, Pb) were investigated in the feather, liver, kidney, and bone of 
great cormorants (Phalacrocorax carbo). The tissue samples were taken at the Central Tisza - Jászság Nature Conservation 
Area in Hungary. They were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The goal of 
the investigation was to analyse the metal burden of the above-mentioned elements in the various tissues of these wild birds 
and to provide important information for monitoring the environmental pollution.
Amongst the examined potentially toxic elements no statistical gender difference was observed, so the data were not separated 
based on them during the statistical analysis. The concentration of mercury was the highest in the feather, followed by the 
liver, kidney, and bone. The lead was detected in the feather with the highest level followed by the kidney, liver, and bone. 
The cadmium was determined in all investigated tissues with the next descending order: kidney > bone > liver > feather. 
Highest arsenic concentration was measured in the feather, followed by liver, kidney, and bone with the same concentration.
The detected concentrations of the investigated potentially toxic elements in different tissues of great cormorants (feathers, 
liver, kidney, bone) means that the living area of this birds is not highly contaminated to induce health problems or toxic 
signs, or even other undesirable effect in the animals.
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Introduction

Potentially toxic metals can be found naturally in all eco-
systems and released to the environment from many dif-
ferent anthropogenic sources such as industrial and agri-
cultural activities (e.g. waste materials, mining processing, 

incineration, traffic) in various concentration (Hazrat et al. 
2019). These elements that accumulate in the food net cause 
possible adverse effects on environmental and human health; 
thus, they have very important impact on the protection of 
the environment. These adverse effects on the environmental 
and health depend mostly on the mobility of metals through 
the different compartments (e.g. sediment, water, air) of 
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the environment and the pathways to get into the body of 
a human or animals. A lot of research has been carried out 
to report and assess the behaviour of these metals in the 
environment (AMAP 1998; Hazrat et al. 2019). Based on 
the outcomes of these studies, the application of a lot of 
metals as plant protection products has been banned by the 
European and other commissions.

The bioaccumulation of each metal in the body of an ani-
mal depends on various factors such as biotic ones (body 
dimensions and mass, age, sex, diet, metabolism, and its 
position in the food chain) and abiotic ones (distribution 
of metals in its environment, salinity, temperature, and 
water pH, habitat type, and metal-metal interactions). But 
amongst all these factors, diet has the biggest influence. Usu-
ally, larger animals that are at the end of a food chain have 
higher metal concentrations in their tissues than smaller 
organisms they feed on (Catsiki et al. 1994; Al-Yousuf et al. 
2000; Canli and Atli 2003; Storelli et al. 2005). So e.g. the 
consumption of fish exposed to different toxic heavy metals 
raises concerns and risks for health, not only for humans, 
especially in more sensitive groups of the human population 
(women, children), but also for birds that consume these fish 
(Hazrat et al. 2019).

Through contaminated water and food birds are directly 
exposed to potentially toxic metals and other contamina-
tion, because metals mostly enter the animals via their gas-
trointestinal system, and respiratory system and their skin 
(D’Haese et al. 2017). For most metals, the transport pro-
teins of different biological membranes that these must pass 
through to get into the body have been identified already. 
These proteins are like transporters or molecules in the chan-
nel of cell membranes based on the selective binding recep-
tors for the transportation of only one type of metal, not for 
all. These elements can be delivered to the organs and tissues 
via the bloodstream. From the digestive tract, the metals can 
be first transported to the liver by the portal circulation and 
then to the systemic circulation from there. Generally, the 
metals in the circulation can be bound to the erythrocytes or 
different plasma constituents (e.g. lead and organomercuri-
als are delivered by erythrocytes, whilst inorganic mercu-
ric derivatives and cadmium are bound to albumin section) 
(Lehel and Laczay 2011).

Different tissues (e.g. muscles, bones), organs (kidneys, 
liver), and the egg or feather of the birds can be used to 
analyse the difference at the level of distribution and accu-
mulation of the chemical agents in the body of the birds 
(Burger and Gochfeld 2000a; Markowski et al. 2013; Kim 
et al. 2019; Mukhtar et al. 2020).

Deposition and release of metals take place in bones 
slowly during the mineral metabolism of homoiotherm 
vertebrates (Sánchez et al. 1987; Brandão-Neto et al. 1995; 
King et al. 2000), which is why the use for biomonitoring 
and ecotoxicological studies is not so frequent, compared 

to the kidneys and liver. Since these organs play a key role 
in the detoxification processes of metals, e.g. cadmium 
(Cd), lead (Pb), and mercury (Hg), and can accumulate in 
the higher concentrations of various metals in a relatively 
short time (Wapnir 1998; Myklebust and Pedersen 1999; 
King et al. 2000; Barjaktarovic et al. 2002; Stout et al. 
2002), these tissues are studied more commonly.

It is important to know that Cd mostly accumulates in 
higher concentration primarily in the kidneys (Chen et al. 
2021) and only in a relatively insignificant concentration 
in muscle. Hg is accumulated mostly in the liver (Teunen 
et al. 2022) and Pb in bone (Rădulescu and Lundgren 
2019).

Hard tissues (e.g. bones, feathers) can provide useful 
information about the accumulation and multiannual expo-
sure to different metals. Bones are found to be a good exam-
ple, due to the high affinity of Pb to bones (Pain et al. 2005; 
Swaileh and Sansur 2006; Ethier et al. 2007), the accumu-
lation over a lifetime, and the effect on the nervous system 
(Pain 1996; Kalisinska 2000).

Roberts (1981) reported that liver in birds has a great 
potential to indicate the change of exposure via uptake 
from food because increases in the concentration measured 
in liver show potential adverse effects on the health of the 
birds.

Feathers is a useful indicator of different pollutants, since 
during the feather’s formation the concentration of elements 
can be agreed with the quantities found in them. Nowadays 
the use of feather tissue samples for biomonitoring is becom-
ing a more common method since the bird biology is well 
known, they have quite a long life span, and they can be 
found and feed at various levels of the food chain (Abbasi 
et al. 2015; Burger and Gochfeld 2016; Grúz et al. 2015, 
2018, 2019; Hamza et al. 2021).

The accumulated metals in the organs of birds, especially 
at high levels, can be harmful to their reproduction, survival, 
breeding, growth, moulting, and migration (Hutton 1981; 
Honda et al. 1985; Savinov et al. 2003; Canova et al. 2020). 
Because of these reasons, birds are the useful indicators of 
local, regional, and global metal contamination (Burger and 
Gochfeld 2016). Besides, the comparison of local species 
and the ones that migrate can provide us important informa-
tion (Frederick et al. 1999).

The objective of this study was to investigate the metal 
burden of the liver, kidneys, bones, and feather tissues of 
great cormorants (Phalacrocorax carbo) and thus the pos-
sible metal pollution in their feeding and nesting area at the 
Central Tisza - Jászság Nature Conservation Area of the 
Hortobágy National Park Directorate. Furthermore, the aim 
was to be able to obtain information about the possible con-
tamination of the most important potentially toxic elements, 
i.e. heavy metals, in the investigated environment through 
different tissues and organs.
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Materials and methods

Sample collection

Based on the official permission of the nature conser-
vation permit of the county government office (No. 
JN-07/61/00253-4/2020), 20 cormorants were shot in the 
Central Tisza area (on the river section below the dam near 
Kisköre) in January of 2020 (Decree No. 13/2001 2001), 
under the supervision of the Nature Conservation Service, 
due to population management activity to reduce the num-
bers of cormorants in the region (Fig. 1). Cormorants are 
non-protected species, which can cause economic losses 
in the fishery industry.

During the pathological investigation of the age and 
gender of animals, fish species found in the stomach were 
investigated and analysed by specialist.

Samples from 20 cormorants of both genders (10 males, 
10 females) were taken from feather, liver, kidneys and 
bones. All samples of liver and kidney (20 g in all cases) 
and the upper third part of the femur were loaded into 
individually labelled plastic bags and then all organs of 
each bird were placed in a common bag. After that, all 
samples were transported to the laboratory sites in cooler 
circumstances. They were frozen at −20 °C until analysis. 
In the case of feathers a mixed sample of primaries, sec-
ondaries, and coverts from breast an amount of 5 g was 
collected by plucking and placed into individually labelled 
paper bags, and they were stored in a dry, well-ventilated 
place till the analysis. In all cases a representative sample 

was taken from them to collect the quantity required for 
analytical measurement (0.5 g).

Method

Laboratory processing and measurements

The potentially toxic element concentration of the samples 
was determined in the analytical laboratory of the Depart-
ment of Animal Hygiene, University of Veterinary Medi-
cine using a Perkin Elmer Optima 3300 DV inductively 
coupled plasma optical emission spectrometry (ICP-OES) 
as described by Grúz et al. (2018). During the analysis, the 
following measurement parameters were applied: RF genera-
tor: 40 MHz, RF power: 1500 W, nebulizer type: concentric 
(Meinhard Type A), nebulizer gas flow rate: 0.9 dm3/min, 
cooling water flow rate: 1 dm3/min, sheath gas flow rate: 
0.9 dm3/min, sample feeding flow rate: 0.9 cm3/min, and 
observation height: 15 mm. The detected wavelengths of 
each element are shown in Table 1.

Analytical standards used in sample processing

Calibration was performed with ICP multi- and mono-ele-
ment standards (Perkin Elmer Inc., USA; VWR International 
Ltd., England). The measurements were performed with 
argon gas of 4.6 purity (Messer Hungarogáz Kft). Quality 
control (QC) standards were prepared from standard bovine 
liver reference material NIST SRM 1577c (National Institute 
of Standards and Technology, Gaithersburg, MD, USA).

Fig. 1   Sampling area
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Sample preparation

The feathers were washed in deionised water and ethanol 
(50 v/v%), to remove adherent exogenous contamination 
before the analytical procedure. The bones were cleaned 
from muscle and tendon, and they were broken to sample 
the required amount for the analytical procedure. After the 
homogenisation of the tissues, 0.5 g of each sample was 
weighted into a CEM MARS6 MARSXPreSS teflon ves-
sel for sample digestion. Then they were decomposed by 
5 mL nitric acid (69 m/m%) and 5 mL hydrogen peroxide 
(30 m/m%) in a microwave digestion system (ramp: 35 min; 
temperature: 200 °C; hold: 50 min; E: 1700 W). The sample 
was filled up with ultrapure water to 25 mL and analysed by 
inductively coupled plasma optical emission spectrometry 
(ICP-OES) after a double dilution of deionised water using 
1 mg/L Y solution as internal standard and 0.25 mg/L Au 
for the stabilisation of Hg content.

Blank and the quality control (QC) samples were pre-
pared by the same method. Internal quality control of the 
measurements was carried out via measuring QC samples 
of known heavy metal concentration at least 10 times (NIST 
1577C-standard bovine liver). After discarding the extremes, 
the standard deviation of data (SD) was established, which 
must have remained within the ±15% of the nominal con-
centration value in order to accept the QC measurement. 
Every sample, calibration and blank solutions were analysed 
by 3 replicates.

Validation of the analytical method

For assessing the reliability of the analytical method and 
sample preparation, several validation parameters were 
established according to the relevant guidelines (Commis-
sion Decision 2002). Limits of detection (LOD or deci-
sion limit, CCα) and limits of quantitation (LOQ or detec-
tion capability, CCβ) were defined as three and 10 times 
the standard deviation of the signals of the blank samples, 
respectively. Precision was determined as the relative stand-
ard deviation of the signals from 10 replicates of the same 
sample. Trueness was determined by analysing certified ref-
erence material (standard bovine liver NIST SRM 1577c) 
then adding the solution of the four target elements with 
known concentration (50 μg/kg each) to the same certified 
reference material as well as comparing and evaluating the 
analysis results. Both precision and trueness were expressed 
in percentages. Precision values were accepted below 20%; 
trueness was accepted in the deviation of the measured 
parameter that did not exceed ±15%. Linearity was evalu-
ated by the equations of the calibration curves. Matrix effect 
was not studied since the yttrium solution used as internal 
standard provided compensation.

The certified Cd content of the reference sample was 
above the LOD of the method; thus, it was measured directly. 
The standard deviation and the recovery values are presented 
(Table 2). The certified values of As, Hg, and Pb were below 
the relevant LODs; therefore, these parameters were checked 

Table 1   Results of validation

(1) “y” means the signal of the target element at the given concentration level; “x” means the concentration
(2) Regression coefficient

Element Wavelength of 
detection (nm)

Calibration curve parameters Limit of quantita-
tion (ppm)

Limit of detec-
tion (ppm)

Precision (%) Trueness (%)

Equation (y = a·x 
+ b) (1)

(2)

a b r

Arsenic 197.197 1287 0 0.999828 1.67 0.50 12.7 13.6
Cadmium 228.802 63,870 0 0.999529 0.17 0.05 8.4 −10.9
Mercury 253.652 10,030 0 1.000000 1.67 0.50 12.3 8.1
Lead 220.353 6520 0 0.999813 0.67 0.20 3.5 −8.4

Table 2   Results of quality 
control (QC) measurement 
(ppm)

n.d. = not detectable

Element Certified value Measured value Spiked QC samples LOD Measured/
calculated 
value

Recovery (%)

Arsenic 0.019 n.d. 76.098 ± 0.018 0.500 0.0197 103.5
Cadmium 0.097 0.095 ± 0.006 - 0.050 0.0953 98.3
Mercury 0.005 n.d. 75.875 ± 0.020 0.500 0.0053 106.7
Lead 0.063 n.d. 79.576 ± 0.020 0.200 0.0637 101.1
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by spiking the QC samples to contain additional 0.05 mg/L 
from the elements (this value is equal to 5.0 ppm calcu-
lated in the original sample). The same internal standard 
was used every time. As the recoveries of all measured ele-
ments were within the acceptable range, we classified our 
sample preparation method overall acceptable. However, we 
checked the measurement reliability of these elements from 
another point of view as well. The “percentage of the spiked 
QC sample” was calculated by dividing the measured spiked 
sample results by the theoretical results (certified value + 
5.0 ppm) and multiply by 100. Spiked QC samples were 
subjected to the same sample preparation process as all the 
other samples. In our opinion, this percentage can be used 
to demonstrate the trueness of method for these elements if 
we consider trueness as set in the 2002/657/EC Commission 
Decision.

During the analysis the following potentially toxic ele-
ments were analysed in all samples like arsenic (As), cad-
mium (Cd), mercury (Hg), and lead (Pb). Their limit of 
detection (LOD) was 0.05 ppm for Cd, 0.2 ppm for Pb, and 
0.5 ppm for As and Hg.

Statistical methods

Statistical analyses were performed using R statistical soft-
ware (R Core Team 2021).

Samples in which the concentration was below the LOD 
were calculated as LOD values. The concentrations of As 
in liver, kidneys, and bones, and that of Hg and Pb in bones, 
were below the LOD in all samples; therefore, they were not 
analysed statistically.

Distribution of concentrations was examined with boxplot 
charts. Independent sample t-test was used to compare sexes 
if normality assumptions were met; otherwise, the nonpara-
metric Mann-Whitney test was applied. Bonferroni correc-
tion was used to adjust for multiple tests.

Since statistical difference was not found between the 
sexes, observations from different sexes were pooled for 
further analyses. Different tissues were compared using 
repeated measures ANOVA if its assumptions were met, and 

the Friedman test was employed otherwise. Normality was 
checked using boxplots, whilst sphericity using Mauchly’s 
test. If only normality was met, and sphericity was violated 
Greenhouse–Geisser correction was applied. The p-values 
were Bonferroni corrected for multiple tests. In the case of 
significant difference, paired sample t-test or nonparamet-
ric Wilcoxon test was done with Bonferroni correction for 
pairwise comparisons.

Results

Evaluation of metal concentrations

The concentrations of elements in various types of feathers 
are different; however, the potential metal contamination 
of the whole body has been evaluated in this study using 
different types of feathers taken from several parts of the 
body, and together with the possible contamination of the 
environment.

Concentration of As was below detection limit in all sam-
ples taken from bones, kidneys, and liver. It was typically 
above detection limit only in feather samples. Concentration 
of Cd was above detection limit in all samples except 5% 
of liver samples. Concentration of Hg was below detection 
limit in all bone samples and in all other samples as well. 
Concentration of Pb was below detection limit in all bone 
samples, 40% of kidney samples, and 45% liver samples.

Mean and 95% confidence interval (95% CI) values can 
be found in Table 3, where the sexes are pooled.

Comparison of sexes

Since the distribution of the As concentrations was either 
highly skewed or constant for bone, kidney, and liver sam-
ples, so was that of Hg for bone sample and that of Pb for 
bone, kidney, and liver samples, the comparison was car-
ried out using Mann-Whitney test in these cases. In other 
cases, where the distributions were close to normal, the 
comparison was carried out by using t-test. There was no 

Table 3   Average and 95% confidence interval (95% CI) of metal concentrations measured in liver, kidney, bones, and feathers (unit: ppm)

n = number of samples

Liver Kidney Bone Feathers

As Cd Hg Pb As Cd Hg Pb As Cd Hg Pb As Cd Hg Pb

n 20 20 20 20

Average <0.5 0.129 3.428 0.530 <0.5 0.351 2.926 0.850 <0.5 0.237 <0.5 <0.2 1.222 0.096 4.793 1.721
95% CI - 0.032 0.705 0.289 - 0.124 0.725 0.449 - 0.021 - - 0.168 0.020 0.941 0.539
LOD (ppm) 0.5 0.05 0.5 0.2 0.5 0.05 0.5 0.2 0.5 0.05 0.5 0.2 0.5 0.05 0.5 0.2
Ratio below LOD (%) 100 5 0 45 100 0 0 40 100 0 100 100 0 0 0 0
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significant difference between the sexes at either metal-
tissue pair. Therefore, data from different sexes were 
pooled for further analysis.

Comparison of the tissue samples

The comparison of the tissues for As and Pb was carried 
out by using Friedman test since the distributions were 
highly skewed or constant (Fig. 2). In case of Hg the 
constant bone samples were omitted from the omnibus 
test. Mauchly’s test indicated that the assumption of sphe-
ricity was violated for both Cd (W = 0.021, p = 2e−13) 
and Hg (W = 0.138, p = 2e−8), so Greenhouse–Geisser 
correction was applied to the degrees of freedom to get 
valid p-values.

Difference of the concentration amongst the different 
tissues was found to be significant for each element. It 
suggests that every element accumulates in various con-
centrations in several organs and tissues. Results of the 
pairwise comparisons can be seen in Fig. 2.

Discussion

Arsenic

It is not generally accepted as essential element, but there 
is evidence that As has an essential and beneficial function. 
Its elemental form and organic compounds are not toxic, 
and the acute toxicity of its inorganic compounds is also 
greatly influenced by chemical structure (Thomas et al. 
2001; Laczay 2013; Hu et al. 2020), although in minimal 
amounts (0.012–0.025 mg/day) it is essential for the body 
(Sugár and Tóth 2010). Also, Nielsen (1998) suggests that 
for chicks a determined amount of As is required (12–50-μg/
kg diet). Due to the antibiotic and anticoccidial properties of 
some organic arsenicals, they were used as growth promoters 
in poultry (Anderson 1983). Czarnecki and Baker (1985) 
determined that 100-ppm diet as sodium arsenite generates 
copper accumulation in the kidneys of chicks (100-mg rox-
arsone/kg diet).

When excessive amounts are ingested, the highest amount 
of arsenic can be measured in liver and kidneys. Due to the 
affinity of arsenite to bind sulfhydryl groups in the body (e.g. 
keratin), high amounts can be accumulated in skin, hair, and 
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Fig. 2   Concentrations for each element-tissue combination. Obser-
vations of two sexes are pooled. Individual observations are super-
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below detection limits have been greyed out and denoted with BDL 
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nails. García-Cegarra and Martínez-López (2023) measured 
0.87 ± 0.12 ppm As in the feather samples of red-legged 
cormorants (Phalacrocorax gaimardi) in Chile. In a study 
of Einoder et al. (2018), 1.2 ± 0.8 ppm As was detected in 
black-faced cormorant (Phalacrocorax fuscescens) feathers. 
There are few similar studies using wetland birds’ feather to 
measure the amount of As, which makes it difficult to deter-
mine whether the concentrations presented in this study may 
have caused any effects. In our tissue samples arsenic was 
only detectable in the feather samples of the cormorants, but 
only at very low amount (1.222 ppm), its level was below 
LOD (0.50 ppm) in liver, kidneys, and bones.

Cadmium

Cd is non-essential and accumulates in the food net. It can 
induce damages of different tissue and behavioural problems 
(Burger and Gochfeld 2000b; Butt et al. 2018). Cadmium 
after absorption and distribution can be incorporated into 
zinc-containing proteins resulting in severe damages (Tang 
et al. 2014).

In birds, 3 ppm is the accepted threshold for Cd in the 
liver (Scheuhammer 1987; Nighat et al. 2013). However, its 
concentration close or above to 3 ppm testifies to heavy con-
tamination of the environment. Based on findings derived 
from other investigations in birds of prey, the adverse effects 
are as follows: reduced growth rate has been observed in the 
range of 0.1 to 2 ppm (Spahn and Sherry 1999; Burger 1993; 
Naccari et al. 2009). Cd is not transferred to eggs efficiently, 
so its level in egg is much lower than those found in the diet 
of hens. For example, the Cd level was undetectable in the 
albumen and 0.1 ppm in egg yolks collected from hens with 
100 ppm Cd in liver (Leach Jr et al. 1979; Sato et al. 1997).

When Cd accumulates in bones, it causes different osteo-
diseases. Even a low level of exposure may promote skel-
etal demineralisation, which leads to bone fragility and risk 
of fractures (Bhattacharyya et al. 1988; Silver and Nudds 
1995; Scheuhammer 1996; D’Haese et al. 2017; Järup 2002; 
McFarland et al. 2002). Because Cd has about a 20-year bio-
logical half-life, different pathological conditions have been 
diagnosed in avian species. During the time of exposure, the 
tissue levels reach a plateau, which occurs rapidly in muscles 
(within months), but in liver and kidneys for a much longer 
period. When the exposure ceases, the reduction of Cd from 
tissues is not too significant, even if the muscles and bones 
do not accumulate cadmium at high levels (White and Finley 
1978; Sharma et al. 1979; Baxter et al. 1982).

Studies in Japan show similarity to our measured data in 
the liver, where cormorants from the vicinity of Tokyo accu-
mulated 0.28 ppm Cd, and from the region of Lake Biwa 
1.25 ppm (Saeki et al. 2000).

In the feathers of red-legged cormorants García-Cegarra 
and Martínez-López (2023) detected average concentration 

of Cd as 1.49 ± 0.36 ppm. In black-faced cormorant feathers, 
this concentration was 1.7 ± 1.2 ppm (Einoder et al. 2018). 
Mirsanjari et al. (2014) measured 0.02 ± 0.02 ppm in feath-
ers of great cormorant in Iran. Compared to our results there 
is a higher concentration of Cd in kidney (18.56 ± 2.46 ppm) 
and in the liver (4.13 ± 0.59 ppm) in yellow-legged gulls 
(Larus michahellis) (Vizuete et al. 2022).

In our study the highest mean Cd level (0.351 ppm) was 
detected in the kidneys of cormorants, followed by the bones 
(0.237 ppm), liver (0.129 ppm), and feather (0.096 ppm), 
which correlates to the findings of other studies that Cd 
accumulation is the greatest in kidneys amongst the organs 
(NRC 2005). Cd concentrations in kidneys and bones were 
significantly higher than in liver and feather, whilst the 
bones vs kidneys and feather vs liver concentrations were 
not significantly different from each other.

Lead

Lead is a non-essential element and has various adverse 
effects on the CNS, renal, hematopoietic, neurologic, car-
diovascular, and gastrointestinal systems (Charkiewicz and 
Backstrand 2020). It can cause liver, skin, and lung cancer; 
changes haematological parameters; can also cause cer-
ebral oedema, neuronal damage, demyelination, anaemia, 
and bone marrow suppression; and decreased peripheral 
nerve conduction peripherally. Significant suppression of 
growth can be caused by 1 ppm Pb in the diet (Bakalli et al. 
1995). Also, behavioural changes occur (such as scream-
ing), because the bird is in pain or otherwise uncomfortable 
(Bakalli et al. 1995). By experience it has been found that 4 
ppm Pb in feather can induce delayed parental, locomotor, 
and feeding behaviour of seagulls (Burger 1995) and more 
adverse effects of lead can occur above 4 ppm (Burger and 
Gochfeld 2000c) whilst 2 ppm Pb in liver and 10–20 ppm 
(d.w.) in bones results in subclinical poisoning (Pain et al. 
1995, 2005).

Lead is retained by soft tissues and eventually by 
bone and the excretion is very slow through the kidneys 
(Rădulescu and Lundgren 2019). In the body of the animals 
Pb levels in bones are the highest, followed by kidneys and 
liver. Lower Pb concentration is detected in skeletal muscle.

In great cormorants’ feathers the average concentration 
of lead was 0.67 ± 0.24 ppm in the study of Mirsanjari 
et al. (2014). Higher concentration was detected by García-
Cegarra and Martínez-López (2023) 2.82 ± 0.96 ppm in 
red-legged cormorants’ feathers, and by Irena et al. (2017) in 
the feather samples of great cormorants (2.18 ± 0.74 ppm), 
and an even higher one in black-faced cormorant feathers, 
10.6 ± 5.9 ppm (Einoder et al. 2018). In liver samples of 
great cormorants collected at a nature conservation area of 
Kis-Balaton, the Pb concentration was 0.670 ± 0.221 ppm 
(Lehel et al. 2013), which is similar to our results.
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Compared to our data, Agusa et al. (2005) detected lower 
lead concentration in the liver and the kidneys of black-tailed 
gulls (0.05 ppm and 0.25 ppm).

Similar findings to ours have been observed in a study 
from Spain by Vizuete et al. (2022), where they measured 
higher concentration of Pb in kidneys (2.50 ± 0.78 ppm) 
than in liver (0.55 ± 0.77 ppm) in samples from yellow-leg-
ged gulls; 4.38 ± 1.09 ppm in the feathers of yellow-legged 
gulls was detected, and it is also a higher level compared 
to the 0.83 ± 0.37 ppm in the same species (Otero et al. 
2018), or the 0.399 ± 0.048 ppm in Northern gannet (Morus 
bassanus) (Nardiello et al. 2019). Vizuete et al. (2019) and 
Nardiello et al. (2019) stated that Pb values are higher in 
the kidney compared to liver and feathers (in yellow-legged 
gulls and in northern gannet), which is contradictory to our 
findings.

Our results as opposed to the abovementioned literature 
data showed the highest mean concentration in the feather 
(1.721 ppm), followed by kidneys (0.850 ppm), liver (0.530 
ppm), and in bones the concentration in all samples was 
below the detection limit. The feather vs liver, feather, and 
kidney concentrations were significantly different. But all 
the measured Pb levels in these tissues are below the above-
mentioned thresholds.

Mercury

Mercury is a non-essential heavy metal, one of the most 
toxic and persistent heavy metals in the aquatic ecosystem 
(Nguyen et al. 2005). In the environment, some mercury 
is transformed to methylmercury, which is more toxic, by 
bacteria and fungi during various biological processes 
(Wood and Wang 1983). This reaction occurs primarily in 
aquatic systems (Gworek et al. 2020). Thus, methylmercury 
of microbial origin is able to enter the food chain and accu-
mulate in animals; it is highly toxic and persistent, which 
can cause problems in the food web (Bloom 1992; Nguyen 
et al. 2005; Rodríguez-Estival et al. 2020). During long-
term administration, young chickens tolerated 1.35 ppm of 
mercury without growth problems (March et al. 1983), but 5 
ppm had already increased their mortality; in ducks 3.8 ppm 
caused behavioural changes (Soares Jr et al. 1973; Bhatnagar 
et al. 1982).

The majority of mercury load (70–93%) in the body of 
birds can be accumulated in feathers (Braune and Gaskin 
1987; Burger and Gochfeld 1997; Bond and Diamond 2009), 
because of the keratin content of the feathers, as methylmer-
cury has a high affinity for sulfhydryl groups. According to 
the literature, Hg binds to the matrix of the feathers, can-
not be mobilised and dissolved from it, so the only route of 
mercury excretion is moulting (Goede and de Bruin 1984; 
Burger 1993; Dauwe et al. 2002).

Burger and Gochfeld (2001) observed very low level of 
Hg (0.251 ppm) in the feather of Cape Cormorant (Phalac-
rocorax capensis) from Namibia. García-Cegarra and Mar-
tínez-López (2023) detected a similar low concentration in 
the feathers of red-legged cormorants (0.66 ± 0.04 ppm). 
Misztal-Szkudlińska et al. (2010) analysed great cormorants’ 
feathers, where the total Hg concentrations in contour feath-
ers were 9.73 ± 5.63 ppm, whilst in tail feathers were 6.43 
± 4.21 ppm. Furtado et al. studied imperial cormorant (Leu-
cocarbo atriceps) and their feather samples showed 2.69 ± 
0.77 ppm concentration of Hg. Higher concentration was 
detected in great cormorants (13.14 ± 4.89 ppm) by Irena 
et al. (2017) and in black-faced cormorants (19.3 ± 6.9 ppm) 
by Einoder et al. (2018).

In yellow-legged gulls the Hg concentrations of kidney 
(2.94 ± 0.18 ppm) and liver (2.95 ± 0.21 ppm) levels of Hg 
were similar, but in the feathers the highest metal concentra-
tion was Pb (4.38 ± 1.09 ppm), not Hg (1.13 ± 0.08 ppm), 
compared to the present study (Vizuete et al. 2022).

In a study on great cormorant tissue samples show higher 
concentrations in kidney (3.79 ± 0.71 ppm) and in liver 
(5.71 ± 1.85 ppm) (Aazami 2018). Similarly, to our data, in 
the liver and kidney samples of great cormorants 3.4 ± 1.1 
ppm and 2.5 ± 2.2 ppm Hg were measured by Nam et al. 
(2005). Skoric et al. (2012) studied the bones of great cor-
morants and measured 1.04 ± 0.22 ppm of Hg in adult birds.

In a previous study on great cormorants from Hungary 
at a nature conservation area of Kis-Balaton, Hg concentra-
tion in liver samples of adult birds was 4.479 ± 3.336 ppm 
(Lehel et al. 2013).

In the present study, mostly lower concentration was 
detected than in the above-mentioned sources. The highest 
mean Hg levels were in the feathers (4.793 ppm), followed 
by liver (3.428 ppm) and kidneys (2.926 ppm), and in bones 
were below LOD. The concentration in feathers is signifi-
cantly higher than in the bones, liver, and kidneys.

In our study the detected concentrations match well with 
the MTL (Maximum Tolerable Level) data of these elements 
(Table 4) (NRC 2005). Our results show that the investigated 
area is not contaminated with potentially toxic elements to 
such an extent that could lead to chronic exposure or could 

Table 4   Comparison of potentially toxic elements in feather, liver, 
kidney, and bone tissue samples (average, ppm) and MTL values 
(ppm feed)

Element Liver Kidney Bone Feather MTL value

Arsenic <0.50 <0.50 <0.50 1.222 30
Cadmium 0.129 0.351 0.237 0.096 10
Lead 0.530 0.850 <0.20 1.721 10
Mercury 3.428 2.926 <0.50 4.793 5.0
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even adversely affect the growth, reproduction, or behaviour 
of cormorants.

Conclusion

The burden of potentially toxic elements in the organs and 
tissues of birds is mostly influenced by various factors, as the 
accessibility of these elements, the quality of their food, and 
the metal burden in their nesting and feeding area. Based on 
our results the measured quantities of the examined elements 
stored in the liver, kidneys, bones, and feather samples of 
great cormorants do not exceed levels indicative of poison-
ing, even if the most exposed birds are the ones at the top of 
the food net, such as cormorants, and show that the tested 
area is not contaminated at a level that can cause adverse 
effects or poisoning in birds. In addition, it points out that 
these elements are presented in the environment and should 
be regularly monitored to be able to detect and analyse their 
increase of these to avoid possible pollution/poisoning in 
the future.
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